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17 Abstract.

18 Although information theoretic approaches have been used extensively in the analysis of the 

19 neural code, they have yet to be used to describe how information is accumulated in time 

20 while sensory systems are categorizing dynamic sensory stimuli such as speech sounds or 

21 visual objects. Here, we present a novel method to estimate the cumulative information for 

22 stimuli or categories. We further define a time-varying categorical information index that, by 

23 comparing the information obtained for stimuli versus categories of these same stimuli, 

24 quantifies invariant neural representations. We use these methods to investigate the dynamic 

25 properties of avian cortical auditory neurons recorded in zebra finches that were listening to a 

26 large set of call stimuli sampled from the complete vocal repertoire of this species. We found 

27 that the time-varying rates carry 5 times more information than the mean firing rates even in 

28 the first 100 ms. We also found that cumulative information has slow time constants (100-600 

29 ms) relative to the typical integration time of single neurons, reflecting the fact that the 

30 behaviorally informative features of auditory objects are time-varying sound patterns. When 

31 we correlated firing rates and information values, we found that average information 

32 correlates with average firing rate but that higher-rates found at the onset response yielded 

33 similar information values as the lower-rates found in the sustained response: the onset and 

34 sustained response of avian cortical auditory neurons provide similar levels of independent 

35 information about call identity and call type. Finally, our information measures allowed us to 

36 rigorously define categorical neurons; these categorical neurons show a high degree of 

37 invariance for vocalizations within a call-type. Surprisingly, call-type invariant neurons were 

38 found in both primary and secondary avian auditory areas. 

39
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40 Author Summary

41 Just as the recognition of faces requires neural representations that are invariant to 

42 scale and rotation, the recognition of behaviorally relevant auditory objects, such as spoken 

43 words, requires neural representations that are invariant to the speaker uttering the word and 

44 to his or her location. Here, we used information theory to investigate the time course of the 

45 neural representation of bird communication calls and of behaviorally relevant categories of 

46 these same calls: the call-types of the bird’s repertoire. We found that neurons in both the 

47 primary and secondary avian auditory cortex exhibit invariant responses to call renditions 

48 within a call-type, suggestive of a potential role for extracting the meaning of these 

49 communication calls. We also found that time plays an important role: first, neural responses 

50 carry significant more information when represented by temporal patterns calculated at the 

51 small time scale of 10 ms than when measured as average rates and, second, this information 

52 accumulates in a non-redundant fashion up to long integration times of 600 ms. This rich 

53 temporal neural representation is matched to the temporal richness found in the 

54 communication calls of this species.

55 Introduction

56 Information theoretic analyses are well suited to the study of neural representation 

57 since this mathematical framework was developed to quantify and optimize the encoding of 

58 informative signals in communication channels [1]. In sensory systems, Information Theory 

59 (IT) has been applied extensively as a complimentary approach to the estimation of stimulus-

60 response functions such as tuning curves, spatio-temporal or spectro-temporal receptive fields 

61 or other higher-level encoding models [2]. Information theoretic approaches have been 

62 particularly powerful in explorations of the nature of the neural code and its redundancy or 

63 efficiency [3-6]. For example, IT was used in early studies in the visual system to 
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64 demonstrate that spike patterns contain information beyond average rate both for static 

65 images [7] and dynamic visual stimuli [8]. IT was also used to show that spike doublets can 

66 contain synergistic information that cannot be explained by an analysis of successive single 

67 spikes [9] and that, although information can only decrease in a signal processing chain, the 

68 neural coding efficiency increases as one moves to higher levels of sensory processing [10]. 

69 Finally, IT investigations also revealed that neural efficiency is higher when sensory systems 

70 process natural stimuli versus synthetic stimuli [11-13], in support of ethological theories of 

71 optimal sensory processing [14].

72 In sensory systems, the mutual information between a stimulus and the neural 

73 responses has often been estimated in a stimulus reconstruction framework and for 

74 continuous dynamic stimuli in stationary conditions, where time averages can be performed. 

75 In the stimulus reconstruction framework, one attempts to estimate the information about all 

76 aspects of the stimulus; for example, in audition, the stimulus would be represented by its 

77 exact sound pressure waveform. As long as the stimulus set is rich (i.e. has very large 

78 entropy), the mutual information can be an estimate of the maximum information that can be 

79 transmitted by a neural communication channel, also known as the channel capacity [3, 4]. 

80 For instance, one can obtain the mutual information of an adapted auditory neuron processing 

81 white noise or colored noise sounds [11]. As long as the stationary assumption is valid, using 

82 continuous stimuli is also beneficial as it provides large data sets that are needed to estimate 

83 the joint probability of stimuli and neural responses, both of which can have high dimensions. 

84 Even in these conditions, it is noteworthy that a direct estimation of information is only 

85 possible when many repeats of the same stimulus can be obtained [15] or when simplifying 

86 assumptions are made [9]. Ultimately, the calculation of information based on stimulus 

87 reconstruction gives a single number corresponding to the information transmitted by a single 

88 neuron or an ensemble of neurons for a particular stimulus ensemble. By repeating the 
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89 calculation for different stimulus ensembles, one can investigate how the channel capacity of 

90 particular neurons or neural ensembles might depend on the stimulus statistics (e.g. for 

91 natural vs synthetic stimuli). Furthermore, by repeating the calculation using different 

92 symbols to represent the response, the potential nature of the neural code (e.g. time patterns 

93 vs. rate) can be revealed.

94 Here we are using IT in a different sensory encoding context: the accumulation of 

95 information in a recognition task, such as face recognition in the visual system [16] or word 

96 recognition in the auditory system [17]. Recognition or identification is one of the key 

97 computations performed by higher sensory areas as opposed to the task of efficient stimulus 

98 representations that is performed in lower sensory areas and that might therefore be well 

99 quantified by information values based on stimulus reconstruction. In the recognition tasks, 

100 each stimulus is described by a simple label, such as the word corresponding to a given 

101 speech sound or that is used to label a given visual object. The relevant value of information 

102 in that task is then the information about these discrete labels and the information capacity of 

103 the system in its ability to identify the stimulus as a whole. In the recognition framework, one 

104 can ask how the information about the stimulus identity or label changes as a function of time 

105 relative to the stimulus onset and to what extent that time-varying information is redundant 

106 and, thus, how it accumulates over time. For example, one could ask at what time after 

107 stimulus onset does the performance of single neurons or ensemble of neurons match a 

108 behavioral performance of word recognition. Such an IT analysis has been performed in the 

109 primate visual system using a delay-matching to sample paradigm, and using spike counts, 

110 estimated in progressively longer windows, as the neural symbols [18].

111 In information studies based on continuous stimulus reconstruction, the neural code 

112 can be investigated in terms of its temporal resolution (i.e. letter size) and its integration time 

113 (i.e. word length). While the same properties of the neural code can be deciphered in the 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 10, 2018. ; https://doi.org/10.1101/492546doi: bioRxiv preprint 

https://doi.org/10.1101/492546
http://creativecommons.org/licenses/by/4.0/


6

114 recognition framework, one can also examine the relationship between spikes at different 

115 points in time and time-varying information. This analysis is meaningful because a time zero 

116 corresponding to stimulus onset can be clearly defined and is behaviorally relevant. 

117 Moreover, stimulus-response functions for such discrete stimuli are not time-invariant. 

118 Responses in sensory neurons, in vision [19, 20] and in audition [21, 22], are often 

119 characterized by an onset response (or on-response) and a sustained response, where both the 

120 precision of spikes and the information coded might be different [23, 24]. For example, a first 

121 spike latency code has been proposed as a fast encoding scheme in vision [25], audition [26] 

122 and somato-sensation [27]. Rolls et al. tested this hypothesis, by quantifying the fraction of 

123 information that is present in the first spike relative the on-going response [28].  

124 Finally, in the recognition framework, one can also compare the information values 

125 obtained when different labelling schemes are used for identifying the stimuli as objects. For 

126 example, speech sounds could be labeled hierarchically as unique utterances, as phonemes, as 

127 syllables, as words, etc..  One can then compare time-varying information about each of the 

128 levels in such hierarchical labelling scheme and gain insight on the neuro processing involved 

129 in object categorization. Although such a hierarchical representation of stimulus features has 

130 been used in encoding models for studying human processing [29], it has not yet been used in 

131 an IT analysis.

132 In this study, we developed a new approach for estimating time-varying information 

133 and cumulative information for sensory object identification task. Our approach assumes that 

134 time-varying neural responses can be modeled as inhomogeneous Poisson processes and 

135 generalizes well to large number of stimulus categories and to long integration times relative 

136 to the dynamics of the time-varying response. Our motivation for developing this 

137 methodology was to gain additional understanding on the neural representation of 

138 communication signals in high level auditory areas. Animal communication calls, just as 
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139 speech sounds in humans, are categorized into behaviorally meaningful units. Significant 

140 progress has been made in identifying brain regions involved in categorizing sounds, in 

141 particular in the primate brain, where neural responses that are correlated with progressively 

142 more abstracts concepts are found in primary auditory cortex, the lateral belt of the auditory 

143 cortex and the prefrontal cortex [30]. However, the neural computations involved in 

144 generating categorical responses remain poorly described [31] and only a small number of 

145 studies have examined the neural categorization of natural communication calls in non-

146 human species [32-36]. We and others have been developing an avian model system to study 

147 the neural processing of relatively large and complex vocal repertoires [37, 38]. Our prior 

148 studies include a detailed bioacoustical analysis of the features that define each call-type of 

149 the complete vocal repertoire of the zebra finch [39] and the first characterization of neural 

150 responses to the calls from that large repertoire in primary and secondary avian auditory 

151 cortical areas [40]. In that study, we found that approximately 45% of auditory neurons 

152 encode information about call-type categories. Among those, a minority show strong 

153 selectivity for single call-type categories and invariance for calls within that category. Here, 

154 we investigated the processing in time that could lead to those observed categorical responses 

155 by comparing the time-varying information for stimuli labelled as individual utterances to the 

156 time-varying information for the same stimuli labelled by their call-type category. With that 

157 analysis, we were able to obtain values of temporal integration for stimulus identification and 

158 call-type category identification. We also analyzed the relationship between the time-varying 

159 firing rate and the time-varying information and, in particular, examined differences in 

160 selectivity in the onset versus sustained response. Finally, we used anatomical data to 

161 examine the distribution of neurons in primary and secondary avian auditory cortical areas 

162 with distinct responses properties as revealed by this IT analysis.

163
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164 Results

165 We studied the time-varying information in a population of neurons recorded from 

166 primary and secondary regions in the avian auditory cortex of head-fixed urethane 

167 anesthetized zebra finches listening to a large set of natural communication calls. Zebra 

168 finches emit various calls in different behavioral contexts and have a complete vocal 

169 repertoire composed of 11 call-types. The acoustical characteristics of each call-type have 

170 previously been described in detail [39]. Here we focused on the neural representation of 9 

171 call-types: 1) 3 pro-social calls emitted for pair bonding and social cohesion: the Distance 

172 Call (DC), the Tet Call (Te), the Nest Call (Ne); 2) the Song (So) that is emitted as a sexual 

173 display in males; 3) 2 calls emitted in aggressive encounters: the aggressive Wsst Call (Ws) 

174 and the Distress Call (Di); 4) 1 alarm call, the Thuk Call (Th) and 5) 2 calls emitted by 

175 juveniles: the Begging Call (Be), used by young to request food, and the Long Tonal Call 

176 (LT), a contact call that is a precursor of the adult DC. A stimulus set was composed of 

177 approximately 10 different exemplars of calls, train of calls or song produced by different 

178 vocalizers for each of the 9 call-types. The call stimuli were randomly sampled from a large 

179 annotated data base of calls and songs from the complete repertoire of the male and female 

180 zebra finch. Neural responses were recorded using electrode arrays implanted in both 

181 hemispheres of 4 male and 2 female adult zebra finches. We recorded from a total of 914 

182 single auditory units in both primary (Field L) and secondary (CML, CMM and NCM) avian 

183 auditory areas. In previous analysis, we showed using a decoding approach that information 

184 about call-types was found in 404 (44%) of these units [40]. Here, we further restricted our 

185 population analysis of information to neurons, from that same data set, that reached a 

186 significant level of information about the stimulus (see methods) and analyzed the time-

187 varying information of 337 neurons during the first 600 ms of their response. Note that many 

188 calls are shorter than 600 ms, but also that they are often produced in succession with short 
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189 inter-call intervals. Thus, this analysis window could contain two or more calls or the 

190 beginning of a longer song motif comprised of multiple syllables. We only analyzed the 

191 response in the first 600 ms because the estimation of the cumulative information for longer 

192 time windows became unreliable, as we will explain below. Additional details on the 

193 neurophysiological recordings can be found in the methods section and in Elie and 

194 Theunissen [40].

195 In the Results, we first describe the approach we developed to estimate instantaneous 

196 and cumulative time varying information. We illustrate these calculations with specific 

197 examples of model and actual neurons in the avian auditory cortex. We then analyze the 

198 time-varying coding properties of the avian cortical auditory neurons with an emphasis on: 

199 the relationship between spike rate and instantaneous information, the time constants 

200 observed for the cumulative information and the relative fraction of stimulus cumulative 

201 information that is used for extracting the behaviorally relevant categories corresponding to 

202 distinct call-types.

203 Estimation of the time-varying information 

204 At a given time t, the instantaneous mutual information between the stimulus S and 

205 the response  can be written as a difference in Shannon entropies:𝑌𝑡

206 𝐼𝑡 =  𝐻(𝑌𝑡) ‒  𝐻(𝑌𝑡|𝑆)

207 Here,  is the response entropy for a window at time t, while  corresponds to 𝐻(𝑌𝑡) 𝐻(𝑌𝑡|𝑆)

208 entropy of the response given the stimulus or the conditional response entropy.  can 𝐻(𝑌𝑡|𝑆)

209 also be called the neural noise since it represents the variability in the neural response to the 

210 same stimulus. For spiking neurons,  represents the number of spikes in the window at time 𝑦𝑡

211 t (Note: In our notation, capitals are used for random variables and lower case for a sample 

212 from that random variable).
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213 Similarly, the cumulative mutual information in neural responses that are discretized 

214 into time intervals is given by:

215 𝐶𝐼𝑡 =  𝐻(𝑌𝑡, 𝑌𝑡 ‒ 1,𝑌𝑡 ‒ 2,…,𝑌0) ‒  𝐻(𝑌𝑡,𝑌𝑡 ‒ 1,𝑌𝑡 ‒ 2,…,𝑌0 |𝑆)

216 The entropies now include the time course of the neural responses starting at t=0 and up to 

217 time t. The reference time t=0 is set to the stimulus onset in our analyses but could be any 

218 arbitrary reference point.

219 The conditional response entropy and the response entropy are obtained from the 

220 distribution of the conditional probability of neural responses given the stimulus, , and 𝑝(𝑦𝑡|𝑠)

221 the distribution of probability of each stimulus :𝑝(𝑠𝑖)

222 𝐻(𝑌𝑡|𝑆) = ∑
𝑖

𝑝(𝑠𝑖)
𝑅𝑀𝑎𝑥

∑
𝑦𝑡 = 0

‒ 𝑝(𝑦𝑡│𝑠𝑖)log2 𝑝(𝑦𝑡│𝑠𝑖)

223 𝐻(𝑌𝑡) =
𝑅𝑀𝑎𝑥

∑
𝑦𝑡 = 0

‒ 𝑝(𝑦𝑡)log2 𝑝(𝑦𝑡) 

224 with 𝑝(𝑦𝑡) = ∑
𝑖𝑝(𝑠𝑖)𝑝(𝑦𝑡|𝑠𝑖)

225 , the neural response at time t, is measured in spike counts and takes values from zero to a 𝑦𝑡

226 maximum rate value, (for example, as dictated by the neuron’s refractory period or 𝑅𝑀𝑎𝑥

227 numerically as  becomes infinitely small for high spike counts that have very small 𝑝log 𝑝

228 probability of occurring). The probability of the stimulus  is usually taken as , 𝑝(𝑠𝑖) 1/𝑛𝑠

229 where  is the number of stimuli, unless the study incorporates natural stimulus statistics. 𝑛𝑠

230 The probability of spike counts at time t given a stimulus,  , could be estimated 𝑝(𝑦𝑡|𝑠𝑖)

231 empirically by recording hundreds or thousands of responses of the same neuron to the same 

232 stimulus. Although this approach has been shown to be possible in certain preparations [15], 

233 it severely limits the number of stimuli that can be investigated in most neurophysiological 

234 experiments. Here we propose a parametric approach where we model the distribution of 
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235 neural responses to a given stimulus  as an inhomogeneous Poisson process. The 𝑠𝑖

236 conditional probability of response (spike count) given the stimulus is then:

237 𝑝(𝑦𝑡|𝑠𝑖) =
𝜇𝑠𝑖(𝑡)𝑦𝑡

𝑦𝑡!
𝑒

‒ 𝜇𝑠𝑖(𝑡)

238 where  is the mean response at time t for stimulus  . This mean rate was estimated 𝜇𝑠𝑖(𝑡) 𝑠𝑖

239 empirically using the time varying kernel density estimation (KDE) proposed by Shimazaki 

240 and Shinomoto [41]. The instantaneous information estimated in this fashion is relatively 

241 straightforward, as long as the Poisson assumption is valid and a sufficient number of trials is 

242 obtained to estimate  (see methods).𝜇𝑠𝑖(𝑡)

243 The estimation of the cumulative information then extends this approach to joint 

244 probabilities of responses in successive time windows, . Due to what has (𝑦𝑡, 𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2, …)

245 been labelled as the “curse of dimensionality”, the numerical estimation of the unconditional 

246 probability becomes exponentially more expensive as the integration time increases. We 

247 evaluated multiple approaches based on different assumptions and found that Monte Carlo 

248 with importance sampling yielded the best results (see methods and Sup. Fig. 3 for 

249 comparison to alternative approaches).

250 Given our Poisson assumption, the conditional probability of response at t is 

251 independent of the conditional response at previous times.

252 𝑝(𝑦𝑡,𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2,…│𝑠𝑖) = 𝑝(𝑦𝑡│𝑠𝑖)𝑝(𝑦𝑡 ‒ 1│𝑠𝑖)𝑝(𝑦𝑡 ‒ 2│𝑠𝑖)…

253 Because of this probabilistic independence, it can be shown that the joint conditional 

254 response entropy is simply the sum of the conditional response entropies at each time point 

255 (see methods):

256 𝐻(𝑌𝑡,𝑌𝑡 ‒ 1,𝑌𝑡 ‒ 2,…│𝑆) = 𝐻(𝑌𝑡│𝑆) + 𝐻(𝑌𝑡 ‒ 1│𝑆) + 𝐻(𝑌𝑡 ‒ 2│𝑆) + …
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257 Thus, the estimation of the conditional response entropy is straightforward and not affected 

258 by the integration time. The problem of dimensionality arises in the estimation of the 

259 unconditional probabilities of response and the corresponding response entropy. 

260 The probability of the time varying response is the joint probability of observing 

261 . This joint probability cannot be expressed as the product of the (𝑦𝑡, 𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2, …)

262 probabilities at different times because these are not independent. More intuitively observing 

263 a particular  will affect the probability of observing . This is true because the time 𝑦𝑡 ‒ 1 𝑦𝑡

264 varying means of the Poisson distributions  are correlated in time; for example, if 𝜇𝑠𝑖(𝑡) 𝜇𝑠𝑖

265  is high we might expect  to also have high values. These high values could be (𝑡 ‒ 1) 𝜇𝑠𝑖(𝑡)

266 true for one particular stimulus  but not for the other stimuli. Then observing a high value of 𝑠𝑖

267  would predict a higher value than expected for  (and an increase in probability that it 𝑦𝑡 ‒ 1 𝑦𝑡

268 was caused by  ). The joint unconditional probability distribution is:𝑠𝑖

269 𝑝(𝑦𝑡,𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2,…) = ∑
𝑠𝑖

𝑝(𝑠𝑖)[𝑝(𝑦𝑡│𝑠𝑖)𝑝(𝑦𝑡 ‒ 1│𝑠𝑖)𝑝(𝑦𝑡 ‒ 2│𝑠𝑖)…] ≠ 𝑝(𝑦𝑡)𝑝(𝑦𝑡 ‒ 1)𝑝(𝑦𝑡 ‒ 2)…

270 Given the lack of independence, the response entropy must then be calculated from the joint 

271 probability distribution:

272 𝐻(𝑌𝑡,𝑌𝑡 ‒ 1,𝑌𝑡 ‒ 2,…) =‒
𝑅𝑀𝑎𝑥

∑
𝑦𝑡 = 0

𝑅𝑀𝑎𝑥

∑
𝑦𝑡 ‒ 1 = 0

𝑅𝑀𝑎𝑥

∑
𝑦𝑡 ‒ 2 = 0

…𝑝(𝑦𝑡,𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2,…)𝑙𝑜𝑔2 𝑝(𝑦𝑡,𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2,…)

273 The estimation of this entropy was performed using Monte Carlo with importance sampling. 

274 In Monte Carlo, random samples of a vector  are drawn from a proposal (𝑦𝑡, 𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2, …)

275 distribution q  and used to estimate the expected value of (𝑦𝑡, 𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2, …)

276  by an algebraic average weighted by the likelihood ratio of log2 𝑝(𝑦𝑡, 𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2, …) 𝑝

277 . The sampling stops when entropy estimations reach (𝑦𝑡, 𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2, …)/𝑞(𝑦𝑡, 𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2, …)

278 an equilibrium. Information estimations are also known to suffer from positive bias [42]. 

279 Here, biased-corrected estimates and errors on information values were obtained from 
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280 Jackknifing the estimation of the time-varying rates and bootstrapping the Monte Carlo 

281 samples.

282 For these calculations, one has also to determine the size of the time window used for 

283 estimating the instantaneous information and correspondingly the steps for the cumulative 

284 information. This time window is used to estimate spike counts and the average rate  𝜇𝑠𝑖(𝑡)

285 and depends both the dynamics of the stimulus and on the response properties of the neurons. 

286 By performing a coherence analysis on spike trains and a power spectral analysis on time 

287 varying rate in response to natural stimuli, we found that 10 ms (or 50 Hz) captured between 

288 97% and 99% of the dynamics in our system (see methods and Sup. Fig. 1).

289 Finally, we also estimated the information values for stimulus categories by 

290 performing the weighted sum of probabilities for stimuli belonging to each category. The 

291 information about categories at time t:

292 .𝐼𝑡 =  𝐻(𝑌𝑡) ‒  𝐻(𝑌𝑡|𝐶)

293 is obtained from the conditional probability of response given the category , which is in 𝑐𝑘

294 turn calculated as the average conditional probability of response for the stimuli belonging to 

295 that category:

296 𝑝(𝑦𝑡|𝑐𝑘) = ∑
𝑠𝑘

𝑝(𝑠𝑘)𝑝(𝑦𝑡|𝑠𝑘)

297 Here,  is the probability of occurrence of stimulus  within the category . In 𝑝(𝑠𝑘) 𝑠𝑘 𝑐𝑘

298 controlled playback experiments (as here),  is  where is the number of stimuli 𝑝(𝑠𝑘) 1/𝑛𝑠𝑘 𝑛𝑠𝑘

299 used to sample category . Similarly, , the probability of occurrence of vocalizations in 𝑐𝑘 𝑝(𝑐𝑘)

300 category  was taken as  where  is the number of categories. In our system, the 𝑐𝑘 1/𝑛𝑐 𝑛𝑐

301 stimuli are individual renditions of vocal communication calls that fall into 9 call categories 

302 of the zebra finch vocal repertoire. We will contrast stimulus information to categorical 

303 information, both instantaneous and cumulative for these behaviorally relevant categories of 
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304 call-types.

305 Time-varying information for model neurons.

306 To validate our approach and to illustrate the behavior of time-varying information 

307 values, we calculated instantaneous and cumulative information for model neurons with 

Figure 1. Instantaneous and Cumulative Information for 3 Model Poisson Neurons. The top row 

(A,B,C) shows the firing rate and simulated spike rasters of 3 model neurons to 4 hypothetical stimuli 

(S1-S4). The onset and offset of all stimuli are identical and shown by the top solid black line. The 

model rates for the four stimuli are shown in colored dotted lines. These rates are used to generate 

spike patterns using an inhomogeneous Poisson process. Ten realizations for S1-S4 are shown as spike 

rasters. The rate recovered from those rasters using a time-varying kernel density estimate (KDE) are 

shown as colored solid lines. The shaded area around each line indicate the error on the KDE rate 

estimated by the standard error on the Jackknife estimates. The bottom row (D,E,F) shows the 

instantaneous and cumulative information obtained using either the true model rate or the recovered 

rate from KDE. The error bars in the instantaneous information calculations were obtained by 

jackknifing the KDE estimates. For the cumulative information calculations, the Monte Carlo 

simulations were repeated for each jackknife estimate. The error bars therefore include both the errors 

in the estimation of the true rate from spike rasters (data limitation) and the errors in the estimation of 

the cumulative information due to limited sampling (computational limitation). The time-varying 

response rates were chosen to illustrate neural representation for stimuli using different neural codes 

labelled here as Rate (A, D), Onset (B, E), and Temporal (C, F).
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308 simple and stereotyped response properties. Figure 1 shows the firing rates, raster plots and 

309 information values for 3 model neurons in response to 4 stimuli (S1-S4). One model neuron 

310 responds to the 4 stimuli with different mean firing rates that are constant in time (Rate 

311 Neuron). A second model neuron responds to the four stimuli with the same fixed firing rate 

312 but with different latencies (Onset Neuron). The third model neuron also responds with equal 

313 average firing rates to the four stimuli but the response occurs at different times (Temporal 

314 Neuron).  

315 These simulations illustrate some very basic principles of neural coding. First, many 

316 different response profiles can lead to very similar rates of information: in all three 

317 simulations, the cumulative information approaches the maximum possible value (2 bits).  

318 Second, the coding capacities of neurons are a function of both the range of firing rates that 

319 can be achieved (as in the rate neuron) and the modulations in time of this neural activity.  

320 Third, the estimation of the instantaneous information gives an incomplete picture of the 

321 neural coding of a neuron as it does not incorporate the redundancy or independence of the 

322 neural representation over time. For example, on the one hand, comparing the instantaneous 

323 information in the Rate neuron to that of the Onset neuron, one might erroneously conclude 

324 that the Rate neuron has more information while, in fact, the cumulative information shows 

325 that the Onset neuron is more informative at short time scales. On the other hand, one can 

326 also observe that the cumulative information in the Rate neuron continues to increase while 

327 the firing rate is constant; additional time points allows for a better assessment of that firing 

328 rate by time-averaging out neural noise.

329 These simulations also allowed us to validate our methods. The KDE for the 

330 empirical estimation of the time-varying rate based on the generated spike rasters (solid line) 

331 gave very good predictions of the actual model rates (dashed lines): over all stimuli and 

332 model neurons, the average error was less than 0.02 spikes/ms. Not surprisingly then, using 
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333 the actual rate versus the estimated rate yielded practically identical results in the information 

334 calculations (dashed vs solid lines). We also checked that the bias corrected estimates were 

335 accurate: the instantaneous information was indeed centered at zero when the response to the 

336 4 stimuli was identical. We verified that the actual values of instantaneous and cumulative 

337 information were correct. For example, in the Temporal neuron a peak instantaneous 

338 information of 0.5 bits is expected as 1 out 4 stimuli will be almost perfectly discriminated.  

339 Finally, we also assessed the limitations of Monte Carlo with importance sampling for the 

340 estimation of the cumulative information. For neurons, with continuously high firing rates, 

341 this estimation can become unreliable at longer integration times as illustrated by the 

342 calculation for the Rate neuron. However, in those cases, the estimate of the standard error 

343 also increased drastically and allowed us to define end points for the calculation of the 

344 cumulative information. 
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345 Avian auditory neurons have Poisson statistics. 

346 Since our estimation of the time-varying information values was based on a Poisson 

347 parametrization for the distribution of spike counts, we first assessed the validity of this 

348 assumption. Given the small number of trials, we could only assess whether the first and 

349 second moments (mean and variance) obeyed Poisson statistics. Figure 2 shows the Fano 

350 Factor estimated at consecutive time points after stimulus onset and both for individual 

351 stimuli (onset) and average across stimuli. The mean Fano factor for the population was 1.04 

352 with SEM of 0.04.  

Figure 2. Avian Auditory Neurons have Poisson Statistics. A. Time-varying Fano Factor 

(Variance/Mean) obtained from the empirical distribution of spike counts estimated in successive 10 

ms windows. Spike count distributions are obtained from 10 trials and the average Fano Factor from 

repeating the estimation of mean and variance calculation for all stimuli presented (min=54, 

max=104).  The Fano Factor is shown for one example neuron (solid black line) and also averaged 

across the entire population (n=404). Error bars are  two SEMs. The insets show the mean and 

variance spike count for the example neuron at a given time shown by the arrows. On those plots, each 

red dot corresponds to one stimulus (many points overlap).  B. Distribution of time averaged Fano 

Factors for the population of neurons (n=404). Fano Factors are not significantly different from 1.
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353

Figure 3. Time-varying Firing Rates and Information Values for Example Neuron 1. A. Time-

varying firing rate obtained from kernel density estimation (KDE) of ten repetitions of different 

example stimuli. The plot shows the responses to two examples of calls from each call-type: 18 time 

series color coded by call-type using the color scheme shown in the legend of B. 0 ms corresponds to 

stimulus onset. B. Averaged time-varying firing rate obtained for each call-type category. These 

average responses are obtained by averaging the KDE estimates of firing rates for each stimulus 

belonging to the same call-type (~ 10 example stimuli per call-type). Shaded error bars show  one 

SEM. C. The overall (averaged over all stimuli) time-varying firing rate for the same example neuron 

is shown by the solid black line (right y-axis) with  SEM as shaded error bars. The green line and 

yellow line (left y-axis) correspond to the instantaneous information for stimuli and call-type 

categories calculated in successive 10 ms windows. Shaded error bars were obtained by a jackknife 

procedure D. Cumulative information for stimuli and call-type categories for the same example 

neuron. The shaded error bars are  SE obtained by jackknifing and resampling (see Fig. 1 and 

Methods). Each cumulative information curve is also fitted using an exponential function (dashed 

lines) characterized by three parameters: a latency (dt, in ms), an exponential rate (tau, in ms) and the 

infinite time limit value expressed as a fraction of the maximum information achievable (k). The MSE 

is the mean square error of the fit in bits. This example neuron had a very high stimulus evoked mean 

firing rate with rapid and reliable time-varying dynamics leading to high information rates. 

Spontaneous firing was very low (~0 spikes/s). Spike rasters for this neuron are shown on Sup. Fig. 4.
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354 Time-varying Information for 3 example neurons. 
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355 In Figures 3-5, we show the time-varying firing rates, the time-varying instantaneous 

Figure 4. Time-varying Firing Rates and Information Values for Example Neuron 2. As in figure 

3 but for a neuron with lower firing rates and displaying selectivity for Distance Calls. Spike rasters 

for this neuron are shown on Sup. Fig. 5.
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356 information and the cumulative information for 3 zebra finch auditory neurons with distinct 
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357 response properties. The neuron in Figure 3 responded robustly to all communication calls 
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358 with high and reliable firing rates. It also responded in a time locked fashion sometimes at 
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359 multiple time points for single calls. Although this neuron was not selective for a particular 

360 stimulus or call-type category, by combining rate and temporal codes it reached very high 

361 levels of instantaneous information. Moreover, this instantaneous information showed little 

362 redundancy yielding very high cumulative information. One can also observe, that for this 

363 particular neuron, the average time-varying firing rate is not correlated with instantaneous 

364 information. This neuron shows a strong onset response in its firing rate while the 

365 instantaneous information is almost constant and even slightly lower during the onset 

366 response. The neurons in Figures 4 and 5 have much lower firing rates and exhibit selectivity 

367 for a call-type, the Distance Call (DC) and the Wsst Call (Ws) respectively. The neuron in 

Figure 5. Time-varying Firing Rates and Information Values for Example Neuron 3. As in figure 

3 but for a neuron with intermediate firing rates and displaying selectivity for Wsst (Ws) or 

Aggressive Calls. Note also the longer latency relative to the neuron shown in 3 and 4. Spike rasters 

for this neuron are shown on Sup. Fig. 6.
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368 Figure 4 exhibits both an onset and sustained response both of which are selective for DC. 

369 The neuron in Figure 5 has a much longer latency for response with correlated peaks in firing 

370 rate and instantaneous information found between 100 and 300 ms after stimulus onset 

371 (Example of spike rasters from single trials for these three neurons are shown in Sup. Figs. 4-

372 6).

373 The cumulative information curves were fitted with an exponential function that 

374 allows us to quantify the time constant of information accumulation ( ), the saturation level (𝜏

375 ) relative to the maximum information that could be achieved (IMax) and the latency ( ):𝑘 𝑑𝑡

376 𝐶𝐼𝑚𝑜𝑑(𝑡) = 𝑘𝐼𝑀𝑎𝑥(1 ‒ 𝑒 ‒ (𝑡 ‒ 𝑑𝑡)/𝜏)

377 Most of the calls in the zebra finch repertoire have durations that are shorter than 300 ms 

378 [39]. In order to investigate the cumulative information accumulated at this behaviorally 

379 relevant fixed point in time, we estimated the relative cumulative information as the value of 

380 the model at 300 ms relative to IMax.; 

381 .𝑘(300) = 𝐶𝐼𝑚𝑜𝑑(300)/𝐼𝑀𝑎𝑥

382 The results of the fit are shown in dashed lines in the cumulative information plot for 

383 each neuron. One can observe that the neuron in Figure 3 has exceptionally high values of 

384 saturation: with sufficiently long integrations time, single spike trials could be used to 

385 perfectly assess what stimulus (out of those used in the experiment) was hear and, thus, 

386 which call-type category it belonged to. The selective neurons in Figures 4 and 5 have much 

387 lower saturation levels as expected since they mostly respond to stimuli from a single call-

388 type category. The neuron in Figure 5 has longer latency in its categorical cumulative 

389 information but this is not the case for the neuron in Figure 4 that has a rapid yet selective 

390 onset response. The high firing neuron (Figure 3) also has a faster time constant  for the 𝜏

391 stimulus information than the selective neurons shown in Figures 4-5. All three neurons have 
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392 similar and relatively slow time constants for the categorical information in the 200-300 ms 

393 range.

394

395 Rate and Time-Varying Information: Population Analysis 

396 Figure 6A shows the time course of the firing rate averaged across all stimuli and its 

397 relationship with the instantaneous information. On average, avian cortical auditory neurons 

398 show an onset response followed by a sustained response as observed at many stages of 

399 auditory processing and in many sensory systems. The instantaneous information, however, 

400 remains almost constant during the entire time. This is true both for the information about 

401 individual stimuli or the information about categories. Thus, the onset response is only less 

402 selective/informative than the sustained response in bits/spike but not in bits/s; when 

403 processing natural vocalizations, the onset and sustained response are equally informative. 

Figure 6. Time-varying Firing Rates and Information Values for the Population. A. The solid 

black line (right y-axis) shows the time-varying firing rate averaged across all neurons (n=337) and all 

stimuli played. The shaded error bars are  SEM. The green and yellow lines (left y-axis) show the 

instantaneous information for stimuli and call-type categories respectively. The shaded error bars are  

SEM. B. The time-varying mean firing rate is shown as in A. The blue and red solid lines show the 

population average cumulative information for stimuli and call-type categories respectively. The blue 

and red dashed lines show the corresponding average cumulative information values calculated with 

constant averaged firing rates for each stimulus for each neuron over the first 600ms after stimulus 

onset (a rate code). The shaded error bars are  SEM.
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404 Moreover, the information in the sustained response continues to provide new information as 

405 reflected by the continuous and relatively fast increase in cumulative information shown in 

406 Figure 6B. That rapid rate of increase should be compared to the one observed when the 

407 mean firing rate for each stimulus estimated across the entire time-window was used in the 

408 calculation (dashed lines in Fig. 6B). As seen in those curves, the increases in the cumulative 

409 information for the rate code is much smaller (the information still increases because of noise 

410 averaging as explained above). The time-varying rates observed in neural responses (as 

411 illustrated in Fig. 3A) provide additional information. How much more? For the coding of 

412 individual stimuli (comparing the dashed blue line to the solid blue line in Fig. 6B), a fixed 

413 rate code (or assumption) captures only 24% of the information at 100 ms and 21% at 300 

414 ms. The effect for categorical information is smaller because some of the coding dynamics in 

415 time-varying responses to stimuli belonging to the same category effectively become neural 

416 noise: for categorical information, a fixed rate code captures 50% of the information at 100 

417 ms and 41 % at 300 ms. 

418 The distributions of time constants,  for the cumulative information for stimuli and 𝜏

419 call-type categories are shown on Figure 9. The distributions of relative cumulative 

420 information at 300ms (k(300)) are shown on Figure 10.. The range of time constants 

421 observed across the population of neurons was large (100 ms-600 ms) with average time 

422 constants of 459 ms for cumulative stimulus information and 372 ms for cumulative 

423 categorical information. This difference in means of time constants is statistically significant 

424 (Paired t-test t(214)=3.49, p=0.00058); the ongoing time-varying rate changes continue to 

425 provide more information for decoding stimuli and less so for decoding categories of stimuli. 

426 There is also a wide distribution of relative cumulative information values (k(300) ranging 

427 from close to zero to 0.6 . On average across neurons, the k(300) was 0.2 (or 20%) for stimuli 

428 and 0.15 (or 15%) for categories. These differences in relative information values are highly 
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429 significant suggesting that, single neurons, capture more variability in stimuli than in 

430 categories. Note however that measures of relative information depend on the number of 

431 stimuli or categories. Therefore, a direct statistical comparison is not warranted. The 

432 comparison between stimulus representation and category representation requires estimations 

433 of expected values of categorical information given stimulus information which is performed 

434 below. Relative cumulative information values can, however, be used for stimulus and 

435 categories independently to assess other coding properties: although average time-varying 

436 rates and instantaneous time varying information are not well correlated within single 

437 neurons (as shown in Figs. 3 and 6), the relative cumulative information is correlated with 

438 average firing rates. For cumulative stimulus information, one finds an increase in k(300) of 

439 1%  per spike/s (Adj R2=0.36, F(1,213)=120, p=1.82 10-22) and, for cumulative categorical 

440 information, an increase in  of 0.8% per spike/s (Adj R2=0.34, F(1,213) = 112, p = 2.26 𝑘300

441 10-21).
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Figure 7. Cumulative Information and the Categorical Information Index. A. Schematic of 

hypothetical response probability distributions that yield different values of the Categorical 

Information Index (CII). CII is defined by comparing the cumulative categorical information to a floor 

(CII = 0), an expected value predicted from the stimulus information (CII=1) and a ceiling value (CII 

= 2) as described in the text and methods. Each plot represents the distributions of hypothetical neural 

responses for different stimuli (S1 to S4) that yield different values of CII. When stimuli are grouped 

randomly into categories (S1 and S2 belong to C1, while S3 and S4 belong to C2), CII is close to 0 (left 

panel). When stimulus categories preserve the order of the stimulus conditioned response distributions 

and these distributions are equally separated, effectively coding for both stimuli and categories, CII is 

equal to 1 (middle panel). When stimuli belonging to the same category have identical responses, the 

stimulus information is equal to the category information, the response being effectively invariant 

within categories and CII is equal to 2 (right panel). Note that the actual response probability 

distributions are multidimensional (one dimension for each time lag) with Poisson marginals. B. 

Example of the cumulative information for stimuli and call-type categories and CII for 3 different 

representative neurons. The blue and red lines are the cumulative information for stimuli and 

categories respectively. Estimates of the floor (dashed-green), expected (dashed-orange) and ceiling 

(dashed-purple, here overlapping with blue) values for the categorical cumulative information as 

described in A are given as well. The CII is shown as a solid line in the second row for each example 

neuron. Cell 1 has long periods of time with CII < 1, Cell 2 has long periods of time with CII ~ 1 and 

Cell has long periods of time with CII > 1 as shown by the arrows.
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456 Analysis of the Categorical Information

457 We are interested in identifying neurons that could play an important role in 

458 categorizing vocalizations. We had previously identified example neurons that were highly 

459 selective for particular call-types and showed a high degree of invariance such as those 

460 shown in Figures 4 and 5 [40]. Here, we attempted to quantify the neural invariance for call 

461 renditions within call-type categories along time. For this purpose, we computed a 

462 Categorical Information Index (CII). The CII compares the actual categorical cumulative 

463 information to three potential values: a floor or minimum value (set at 0), an expected value 

464 for shared information between stimuli and categories (set at 1) and a ceiling or maximum 

465 value (set at 2). The floor is the categorical information that one would obtain if stimuli are 

466 randomly grouped. The shared-information value is the information that one would obtain if 

467 the information about stimuli is equally shared across all stimuli and the neural responses for 

468 stimuli are perfectly sorted for each natural call-type category; for example, at a given point 

469 in time the 10 renditions of DC would elicit the 10 highest rates, the 10 renditions of LT call 

470 the next 10 higher firing rates and so forth. This shared-information value does therefore 

471 assume that, for a given neuronal signal to noise ratio, neural responses segregate categories 

472 maximally while also preserving the maximum discrimination between stimuli within 

473 categories. The ceiling value is the categorical information value that one would obtain if a 

474 maximum amount of information about stimuli was used for the discrimination of categories 

475 and a minimum for discriminating stimuli within categories; it assumes maximum invariance 

476 to variations within a category. The ceiling value is equal to the stimulus information until it 

477 reaches , where  is the number of categories, corresponding here to the 9 call-log2 (𝑛𝑐) 𝑛𝑐

478 types.
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479 Figure 7B shows the time-varying floor (dashed-green), shared (dashed-orange) and 

480 ceiling (dashed-red) values of cumulative categorical information along with the actual 

481 stimulus (solid blue) and categorical (solid red) cumulative information for 3 neurons chosen 

482 to illustrate CIIs that are below 1, around 1 and above 1. Figure 7A shows cartoon probability 

483 distributions of neural responses for particular stimuli and particular categories that 

484 correspond to the floor, shared and ceiling values. 

485 The plots in Figure 8 show the results of this analysis for the population both in 

486 absolute information units (left panel) and in the normalized units of CII. The thin colored 

487 lines correspond to CII curves for single neurons and they are colored according to the time 

488 average CII. The average CII over neurons (bold line on right panel) is very close to the 

489 shared value of 1 as one might expect if acoustical differences across stimuli drive neural 

Figure 8. Categorical Cumulative Information. As explained in Fig. 7 and in the text, the 

cumulative information (CI) for call-type categories can be analyzed in terms of a floor or minimum 

value, a shared value and a ceiling or maximum value. A. Difference in the observed cumulative 

information in bits relative to the shared value. The bold black line is the average across all neurons 

(n=337). The thin colored lines correspond to individual neurons. Each line color corresponds to the 

time average Categorical Information Index (CII) of the neuron obtained between 50 and 300ms. The 

solid red line is the average obtained for the quartile of neurons with the highest CII and the blue solid 

line is average obtained for the quartile of neurons with the lowest CII. The same color code is used in 

B and in Figs. 9 and 10. B. Value of the Categorical Information Index as a function of time for all 

neurons in the population.  Error bars on the average CII (solid bold black line)  are 2 sem.
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490 responses in a linear fashion along some acoustical feature and call categories segregate 

491 perfectly along that same acoustical feature. The average CII is slightly (and significantly) 

492 above 1 between 120 and 260 ms showing some small degree of average invariance for call 

493 renditions within a call-type category during those times. Focusing, on the 25% of neurons 

494 with the highest CII, we found a peak at 175 ms. More significantly, perhaps, it is clear that 

495 there is a wide distribution of CII around the shared value of 1. However, this distribution 

496 includes many neurons that exhibit a high degree of invariance for call renditions within call-

497 type categories as shown by the average CII for the top quartile (red solid line). For that top 

498 25%, the absolute value of additional categorial cumulative information relative to the 

499 expected shared information value reaches a maximum of 0.16 bits at 320 ms (Figure 8A).

500 Do these high CII neurons exhibit other characteristic response properties? In the 

501 scatter plots of Figures 9 and 10, we examined the relationship between CII (color coded) 

502 and, respectively, time constants and relative level of the cumulative information. It can be 

Figure 9. Time constants for Cumulative Information. For a large fraction of neurons (214/337 

neurons), cumulative information for stimuli and call-type categories were well fitted with exponential 

curves. A. Scatter plot of the time constant of the exponential fit for stimuli (Stim – x axis) versus call 

categories (Sem – y axis). Single data points are colored according to the time averaged CII of each 

neuron (see Fig 8). B. Histogram of the two distributions of time constants. Dashed lines indicate the 

mean of each distribution (Stim = 459 ms; Cat = 372 ms).
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503 seen from Figure 9, that neurons with high CII have relatively long stimulus time constants in 

504 comparison to their corresponding time constant observed for categorical information. This 

505 relationship is also significant for the entire population of neurons (Linear Regression 

506 explaining CII from : Adj R2=0.11, F(1,213) = 28.5, p=2.37 10-7). As shown in 𝜏𝑐𝑎𝑡/𝜏𝑠𝑡𝑖𝑚

507 Figure 10, neurons with high CII also have higher relative levels of categorical information in 

508 comparison to their relative values for stimulus information although this result is expected 

509 given our definition of CII (Linear Regression explaining CII from kcat(300)-kstim(300): Adj 

510 R2=0.76, F(1,213) = 675, p=5.5 10-68). Finally, one can also notice that neurons with high CII 

511 have low values of relative cumulative information (Linear Regression explaining CII from 

512 kstim(300) : Coef = -0.84 Adj R2=0.28, F(1,213) = 84, p=3.96 10-17 ). This effect is caused by 

513 the correlation between invariance and selectivity as we have shown previously[40]: neurons 

514 that show the highest degrees of invariance also tend to respond to a small number of call-

515 type categories and thus a small number of stimuli. As such, high invariance and high 

516 selectivity goes hand in hand with lower values of information.
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517

518 Anatomical Organization

519 We examined whether neurons were organized in the avian auditory cortex based on 

520 their CII, cumulative information time constants ( ) and saturation levels ( ). Most of our 𝜏 𝑘

521 recording sites were identified histologically and could be assigned to avian cortical areas 

522 that had been segregated into the thalamic recipient area, L2; intermediate primary auditory 

523 regions, L1, L3, CML and L; and secondary areas, CMM and NCM [43-46]. We also 

524 obtained spatial x,y,z coordinates of the recording sites relative to the midline, the position 

525 along the rostral-caudal axis where the lamina pallio-subpallialis  LPS) is the most dorsal, 

526 and the top of the brain (Fig. 11). 

Figure 10. Distribution of Relative Cumulative Information estimated at 300 ms. For a large 

fraction of neurons (214/337 neurons), cumulative information for stimuli and call-type categories 

were well fitted with exponential curves. Here we used these fits, to estimate the cumulative 

information obtained at 300 ms relative to the maximum achievable information (log2(nstim) or 

log2(ncat)), k(300). k(300) is a number between 0 and 1 A. Scatter plot of k(300) for stimuli (Stim – x 

axis) versus categories (Cat – y axis). Single data points are colored according to the time average 

Categorical Information Index (see Figs 7-8). B. Histogram of the two distributions of k(300). Dashed 

lines indicate the mean of each distribution (Stim = 0.2; Cat = 0.15).
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527 In all regions, we found a range of CII and thus only weak anatomical trends across 

528 areas. Using the L2 dorsal-ventral oblique axis as reference point, CII was slightly higher as 

529 one moved rostrally or caudally to higher regions of auditory processing (Linear Regression: 

530 Adj R2= 0.03, F(3,194)=4.19, p=0.016). However, an ANOVA also suggested that both 

531 regions NCM and L2 had slightly higher mean CII (Adj R2=0.027, F(4,185) = 2.77, 

532 p=0.042). We also observed an increase in the time constant ( ) for the stimulus cumulative 𝜏

533 information that parallel the increase in CII as one moved away from the L2 axis (Linear 

534 Regression: Ajd R2=0.03, F(3,194)=4.79, p=0.0093). These significant anatomical trends 

535 were characterized by very small effect sizes. We also did not find any anatomical 

536 organization of saturation constants ( ) for the cumulative information; neurons that had high 𝑘

537 levels of information could be found next to neurons with much lower levels and similar 

538 levels of average information were found in all regions. 
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539

540  

541

Figure 11.  Anatomical Organization. A.  The left panel is a schematic of the different processing 

stages in the ascending avian auditory system (grey areas) shown on a parasagittal view. Our 

recording sites were from the primary and secondary avian auditory cortical areas (the auditory 

pallium) and are shown on the right panel. The recording sites from different birds were aligned in 

the rostral-caudal dimension using the oblique rostro-caudal long axis of L2 (dotted line). Recording 

site positions also varied along the medial-lateral dimension (in and out of the page) and are all 

superimposed here. B. Functional anatomical maps of the Categorical Information Index, the time 

constant  and saturation value  of the cumulative information for stimuli. Each site is colored 

according to the value(s) of the variable being displayed. Transparency is used to reveal overlapping 

sites in this view as well as, potentially, combination of single units that were recorded from the same 

electrode and site.
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542 Discussion

543 We modeled responses that are observed in the auditory system as inhomogeneous 

544 Poisson processes in order to estimate the time-varying instantaneous and cumulative 

545 information for vocalizations used in communications. We showed that using Kernel Density 

546 Estimation for the time-varying firing rate and Monte Carlo with importance sampling for 

547 estimating probabilities, we were able to obtain accurate and bias-free estimates of these 

548 time-varying information values. This parametric approach is powerful because a relative 

549 small number of trials can be used to estimate the time-varying response and thus information 

550 values can be estimated in response to a relative large set of stimuli (here over 100 distinct 

551 vocalizations) given typical recording times. Poisson statistics were observed in the auditory 

552 cortical neurons recorded here when they were stimulated with short natural communication 

553 calls. More generally, the same procedures can also be used with spike trains statistics that 

554 can be parametrized with probability functions that depend only on a time varying rate such 

555 as inhomogeneous gamma or inhomogeneous inverse Gaussian [12, 47] and could also be 

556 extended to ensemble of neurons. Although Poisson statistics are often observed in neural 

557 data and will correctly fit any data set obtained from pooling responses across a large number 

558 of trials [48], it makes the strong assumption that the firing rate for a particular trial for a 

559 particular neuron depends only on time. Refractory period in spiking neurons and other 

560 correlations in single neurons or in an ensemble of neurons that are not phased locked to the 

561 stimulus (i.e. noise correlations) are common violations of this assumption. Taking noise 

562 correlations into account can increase stimulus decoding accuracies [23]. In cases where 

563 noise correlations are informative, the method proposed here would only yield lower bound 

564 estimates of information theoretic values. Alternatively, one should try the use of spike 

565 metrics measures [49] in combination with stimulus decoding approaches to then obtain 

566 measures of information from the confusion matrix of predicted versus actual stimuli [13, 40, 
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567 50, 51]. If spike metrics can be estimated accurately (with limited data), repeating the 

568 stimulus decoding procedure for progressively longer time windows would yield cumulative 

569 information values such as those calculated here but which could consider noise correlations. 

570 Beyond our methodological contribution, the principal goal of this analysis was to 

571 characterize the neural code in higher auditory areas for communication calls. We found that, 

572 on average, auditory cortical neurons responded to these natural stimuli with time-varying 

573 firing rates that exhibited an onset and a sustained component of the response. Although in 

574 some situations the auditory cortex appears to respond only transiently [26, 52], our data 

575 supports findings from mammalian species that have showed strong sustained responses 

576 when neurons are driven by preferred stimuli [21]. Similarly, in the human superior temporal 

577 gyrus, the sustained responses to speech have been shown to be more informative for 

578 decoding speech phonemes [53]. Natural sounds in general have also been shown to be 

579 particularly efficient at driving auditory areas [12, 54-59] and thus the presence of 

580 informative sustained responses is not surprising. Indeed, in some of our most selective 

581 neurons, such as the neuron in Figure 5, the onset response is missing and only the sustained 

582 response is observed. More generally, and on average, we found that both the transient and 

583 sustained response had information about the stimulus identity and that the information in 

584 these two response phases was not redundant: the stimulus space of natural vocalizations is 

585 very large and although the initial response provides some clue as to the nature of the 

586 vocalization, new and additional information is observed in the sustained response. On the 

587 one hand, one might argue that, in natural vocalizations, the sound itself is changing with 

588 time. These stimulus changes occur both within calls that are made of composite notes or in 

589 call bouts and song motifs made of multiple syllables. Sustained responses in such cases 

590 could be interpreted as multiple onset responses (but with decreasing amplitude). On the 

591 other hand, from a behavioral perspective, these communication calls correspond to a single 
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592 auditory object: a message from a particular individual about a particular state. From either 

593 perspective, these observations and analyses illustrate the importance of using behaviorally 

594 relevant stimuli when analyzing the nature of the neural code.

595 The information about stimulus identity was shown to be approximately equal in 

596 bits/s in the onset and sustained response. Given that the average onset response (in spikes/s) 

597 is greater that the sustained response, one might conclude that the onset coding (in bit/spikes) 

598 is not as efficient. Although, this is true from the point of view of a single neuron, it is almost 

599 certainly not true when ensemble of neurons is considered; the relative timing of the first 

600 spike has been shown both in audition [26] and in other sensory modalities [25, 27] to be 

601 highly informative. Moreover, in addition to stimulus identity other stimulus features are also 

602 encoded in neural responses; the timing of the stimulus is clearly marked by the onset 

603 response or transient response [22, 53, 60, 61] but other stimulus attributes such as the 

604 location, fundamental and loudness/distance of the sound source are also processed in 

605 auditory cortex [62-64]. It is therefore very likely that the onset response contains 

606 information about stimulus features other than stimulus identity or category and, potentially 

607 to a greater extent than in the sustained response (e.g. relative timing of onset). We note, 

608 however, that  the opposite was found for the neural discrimination of two vowel sounds in 

609 the ferret auditory cortex where the onset response or early response was the most 

610 informative for decoding vowel identity relative to other attributes [64]. 

611 Our IT analysis also revealed the importance of stimulus locked spike patterns even in 

612 relatively short neural responses: in just 100 ms, the mean rate captured only a quarter of the 

613 information present when time-varying firing rates are considered. Thus, our analyses 

614 provide additional evidence that spiking patterns carry a significant amount of stimulus 

615 information and should therefore not be ignored in the analysis of neural responses [65]. The 

616 spiking precision analyzed here was relatively coarse (10 ms windows) and matched to the 
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617 time scales of the relevant dynamics in the stimulus: although zebra finch calls are much 

618 longer than 10 ms, they are complex sounds with fast spectro-temporal features [39]. 

619 Therefore, although the neural code observed here uses fast varying spike rates, it cannot be 

620 labelled as a temporal code. In a rigorous definition of a temporal code, temporal information 

621 in spike patterns must code stimulus attributes other than the stimulus dynamics [66].

622 The cumulative information for stimulus identity or for categories increased for 

623 sustained periods of time before saturating. These saturating curves were well fitted with 

624 exponentials and yielded relatively long-time constants of approximately 460 ms for stimuli 

625 identity and 370 ms for call categories. These information time constants are long in 

626 comparison to the integration times that are usually found for auditory cortical neurons; the 

627 spectro-temporal receptive fields of avian auditory neurons rarely extend beyond 50 ms [67-

628 70] although adaptive responses on longer time scales have also been described [71-73]. 

629 Information time constants depend on the integration and adaptation time constants of 

630 neurons but also on the stimulus dynamics: although stimulus identity and stimulus category 

631 are fixed in time, the sound itself has time varying features that can provide additional 

632 information as time goes on. It is the triple combination of the dynamics of the natural 

633 stimulus statistics, the neuronal integration time and the neuronal signal to noise levels that 

634 are going to affect the information time constant. Natural sounds and in particular 

635 communication calls are informative objects not only because of their spectral structure but 

636 also their rich dynamical structure. The importance of time in the neural code used in the 

637 auditory system has been emphasized multiple times [74-78] and our cumulative information 

638 analysis further stresses the importance of using natural sounds or synthetic sounds that 

639 carefully match natural dynamics when probing auditory neural encoding. Ultimately, it is an 

640 information time constant that includes stimulus dynamics that should be compared to 

641 behavioral responses [18]. A behavioral assay of reaction time for all the calls in the zebra 
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642 finch repertoire has not been performed but the values of a few hundred of ms correspond to 

643 the shortest time intervals between call and call back in anti-phonal calling in paired zebra 

644 finches [79]. Although, faster times could be obtained in reaction to any sounds (e.g. startle 

645 or orientation), the processing of stimulus identity to extract the information on who is calling 

646 and what is being said might require these longer processing times.

647 Finally, we quantified the fraction of the information about stimulus identity that 

648 could be used for extracting the call-type category. We used that analysis to characterize 

649 neurons not only in terms of their absolute coding capacities for call-type categories but also 

650 in terms of their invariance in their response to different stimuli belonging to the same call-

651 type category. We found that, on average, information for categories is very close to what 

652 one would expect if neural representation for stimulus identity is also segregated along call-

653 type categories. However, we also found neurons that had a high degree of invariance and 

654 could therefore be classified as categorical. On the one hand, these categorical and invariant 

655 neurons had even longer time constants for cumulative stimulus information suggesting that 

656 they could be higher in the auditory processing stream. On the other hand, we did not find a 

657 separate population of invariant neurons across all of our recordings of neurons informative 

658 for categories: the distribution of our categorical index was unimodal. Moreover, we found 

659 only weak anatomical correlations with very small increases in the Categorical Information 

660 Index along an anatomical axis corresponding to lower vs higher auditory areas. Higher avian 

661 auditory cortical areas have been associated with more complex spectro-temporal receptive 

662 fields [67, 70, 80], increase robustness to noise [81-83] and more specificity for processing 

663 natural sounds [12, 84]; but, it is also striking to see that in all those analyses as well as those 

664 that focused on single avian auditory cortical areas [85] there is a high degree of 

665 heterogeneity in the neural responses within each area. Here, we also found that neurons with 

666 high Categorical Information Indices could be found anatomically next to neurons with low 
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667 Categorical Information Indices. Some of this functional heterogeneity could be associated 

668 with different cell types [69, 84] and a better understanding of the micro-circuitry in the avian 

669 auditory cortical areas is needed [30]. It is interesting to note, however, that this mixing of 

670 low level and high-level response properties is not unique to the avian auditory system as 

671 similar heterogeneity has been found in the mouse [86] and ferret auditory cortex [87, 88]. 

672 Contrary to the visual system, the auditory system might preserve a higher mixture of low-

673 level and high-level sensory responses properties at multiple stages of processing including 

674 the higher auditory areas involved in auditory object recognition. If this is true and 

675 universally found in vertebrates, it might be a necessary property of the computations needed 

676 for auditory object recognition, potentially related to the fact that complexity in auditory 

677 signals is in time-varying spectral patterns that quickly disappear; the fleeting nature of 

678 sounds could prevent higher processing stages from subsequently accessing lower-level 

679 representations for additional information.

680
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681 Methods

682 Animals and Stimuli

683 Four male and two female adult zebra finches (Taeniopygia guttata) were used for the 

684 electrophysiological experiments. The birds were bred and raised in family cages until they 

685 reached adulthood, and then maintained in uni-sex groups. Although birds could only freely 

686 interact with their cage-mates, all cages were in the same room allowing for visual and 

687 acoustical interactions between all birds in the colony. All birds were given seeds, water, grid 

688 and nest material ad libitum and were supplemented with eggs, lettuce and bath once a week. 

689 All animal procedures were approved by the Animal Care and Use Committee of the 

690 University of California Berkeley and were in accordance with the NIH guidelines regarding 

691 the care and use of animals for experimental procedures.

692 Vocalizations used as stimuli during neurophysiological experiments were recorded 

693 from 15 adult birds and 8 chicks (20-30 days old). The vocalization bank obtained contains 

694 486 vocalizations that included for each bird most of the calls in the Zebra finch repertoire: 7 

695 call-types in adults and 2 in chicks. The adult calls included the following affiliative calls: 

696 Song (So), Distance Call (DC), Tet call (Te) and Nest Call (Ne); and the following non-

697 affiliative calls: Wsst or aggressive call (Ws), the Distress Call (Di) and one of the two alarm 

698 calls, the Thuk (Th).  The juvenile calls included the Begging call (Be) and the Long Tonal 

699 Call (LT).  Additional information about these stimuli and their behavioral meanings can be 

700 found in [39, 40, 89]. 

701 For the neurophysiological experiments, a new subset of the vocalization bank was 

702 used at each electrophysiological recording site. This subset was made from a representative 

703 number of vocalizations from the repertoire of individuals: three adult females, three adult 

704 males, two female chicks and two male chicks. From each individual caller, we randomly 

705 chose 3 call bouts from each category or fewer if fewer than 3 call bouts were obtained for 
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706 that particular call-type and individual. The maximum number of stimuli that could be 

707 selected in that procedure was therefore 3x7x3 (adult males x repertoire x renditions) + 

708 3x6x3 (adult females x repertoire x renditions) + 4x2x3 (juveniles x repertoire x renditions) = 

709 141.  Fewer stimuli were used when we had fewer renditions than 3 for a particular bird or 

710 when the signal from a single unit was lost before the end of the recording.  The average 

711 number of stimuli played for each single unit was 114 (sd = 22, min = 34, max = 123). Ten 

712 trials were acquired for each stimulus with a few exceptions (min=9, max = 11).  Sounds 

713 were broadcasted in a random order using an RX8 processor (TDT System III, sample 

714 frequency 24414.0625 Hz) connected to a speaker (PCxt352, Blaupunkt, IL, USA) facing the 

715 bird at approximately 40cm. The sound level was calibrated on song stimuli to obtain 

716 playbacks at 75dB SPL measured at the bird's location using a sound meter (Digital Sound 

717 Level Meter, RadioShack).

718 Neurophysiological and Histological Procedures. 

719 Extra-cellular electrophysiological recordings were performed in 6 urethane 

720 anesthetized adult zebra finches. The birds were placed in a sound-attenuated chamber 

721 (Acoustic Systems, MSR West, Louisville, CO, USA) and sound presentation and neural 

722 recording were performed using custom code written in TDT software language and TDT 

723 hardware (TDT System III). Sounds were broadcasted in a random order as described above. 

724 Neural responses were recorded using the signal of two (5 subjects) or one (1 subject) 16- 

725 tungsten electrode arrays, band-pass filtered between 300Hz and 5kHz and collected by an 

726 RZ5-2 processor (TDT System III, sample frequency 24414.0625 Hz). The electrode arrays 

727 consisted of two rows of 8 electrodes with row separation of 500 mm and inter-electrode 

728 separation within row of 250 mm.  Electrode impedances were approximately 2 MOhms. 

729 When two electrode arrays were used, they were placed each in one hemisphere. Spike 

730 arrival times and spike shapes of multiple units were obtained by voltage threshold. The level 
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731 of the threshold was set automatically by the TDT software using the variance of the voltage 

732 trace in absence of any stimuli. Electrodes were progressively lowered and neural responses 

733 were collected as soon as auditory responses to song, white noise, Distance call or limited 

734 modulation noise could be identified on half of the electrodes in each hemisphere (the stimuli 

735 used to identify auditory neurons were different from the stimuli used in the analysis). 

736 Several recording sites were randomly selected by progressively deepening the penetration of 

737 the electrodes and ensuring at least 100 μm between two sites. On average 4.2±2 sites (mean 

738 ± sd) were recorded per bird and per hemisphere at a depth ranging from 400 μm to 2550 μm.

739 After the last recording site, the subject was euthanized by overdose of isoflurane and 

740 transcardially perfused.  Coronal slices of 20μm obtained with a cryostat were then 

741 alternatively stained with Nissl staining or simply mounted in Fluoroshield medium (F-6057, 

742 Fluoroshield with DAPI, Sigma-Aldrich). While Fluoroshield slices were used to localize 

743 electrode tracks, Nissl stained slices were used to identify the position of the 6 auditory areas 

744 investigated here: the three regions of Field L (L1, L2 and L3), 2 regions of Mesopallium 

745 Caudale (CM): Mesopallium Caudomediale (CMM) and Mesopallium Caudolaterale (CLM); 

746 and Nidopallium Caudomediale (NCM). By aligning pictures, we were able to anatomically 

747 localize most of the recording sites and calculate the approximate coordinates of these sites. 

748 Since we could not localize the Y-sinus on slices, we used the position of the Lamina Pallio-

749 Subpallialis (LPS) peak as the reference point for the rostro-caudal axis in all subjects. The 

750 surface of the brain and the midline were the reference for respectively the dorsal-ventral axis 

751 and the medial-lateral axis. The approximate coordinates of units were used to build 3-D 

752 reconstructions of all single unit positions in an hypothetic brain. 

753 Single unit isolation was performed off-line using custom software that used a 

754 combination of supervised and unsupervised clustering algorithms. These clustering 

755 algorithms used the spike-snippets shape as described by a PCA. Sorted units where declared 
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756 to be single units based on spike shape reliability across snippets. The spike shape reliability 

757 measure was a signal to noise ratio (SNR) where the signal was the difference between the 

758 maximum and the minimum of the average snippet and the noise was the standard deviation 

759 of this measure across all snippets. Single units in our data set have an SNR > 5. Additional 

760 details on these experimental procedures can be found in [40].

761

762 Data Analysis:  Time-varying Spike Rate Estimation

763 The data of neural responses from 404 out of 914 isolated single units were used in 

764 this study. The 404 were selected based on a prior analysis that showed that this subset of 

765 units were not only auditory but also contained information about call-types, in the sense that 

766 call-types could be decoded above chance level from neural responses (see [40]). Here, we 

767 analyzed the neural response in the first 600ms after stimulus onset.

768 For each stimulus, the 9 to 11 raw spike patterns of 600ms, sampled at 10kHz, were 

769 combined to obtain the corresponding time varying spike rate (sample frequency set at 1kHz) 

770 by applying a locally adaptive kernel bandwidth optimization method [41]. In cases where 

771 the neuron did not respond to any of the presentations of the stimulus or responded only once 

772 over all presentations, the rate was estimated as being constant for the 600ms duration of the 

773 neural response. For those two unresponsive cases, the rate was set to be 

774 1/(2*Ntrials*NTimes) in the absence of any spike or 1/(Ntrials* NTimes) in case of one 

775 spike, with Ntrials the number of stimulus presentations (9-11) and NTimes the number of 

776 time points at which the rate was estimated (here 600, for a 600ms neural response section 

777 with a sampling rate set at 1kHz). 

778 Calculations of cumulative information requires the estimation of very large 

779 distributions which sizes grow exponentially with the number of time points investigated. To 

780 investigate cumulative information values up to 600ms after stimulus onset, time-varying 
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781 rates were sampled at 10ms (Nyquist limit frequency of 50Hz). To estimate, the amount of 

782 information potentially lost by this low-pass filtering, we estimated an information value 

783 based on coherence analysis of the signal to noise ratio in the raw spike train. The coherence 

784 between a single spike train (R) and the actual time-varying mean response (A)   can be 𝛾 2
𝐴𝑅

785 derived from the coherence between the peristimulus time histogram (PSTH) obtained from 

786 half of the trials and the PSTH obtained from the other half [90].

787 γ 2
AR = [1 ‒

M
2 × (1 ‒

1
γ 2

R1,M 2R2,M 2
)]

788 where M the total number of trials (presentations of the stimuli) and the coherence γ 2
R1,M 2R2,M 2

789 between the two PSTHs calculated on half of the trials. The coherence between two 

790 responses is a function of frequency (ω). An estimate of the mutual information (in bits per 

791 second) between R and A responses can then be obtained by integrating over all frequencies 

792 [4, 90]:

793 𝐼𝐴𝑅 =‒ ∫∞

0
log2 [1 ‒ 𝛾 2

𝐴𝑅(𝜔)]𝑑𝜔

794  For each unit, we estimated the percentage of information preserved as the ratio 

795 between   calculated up to 50Hz and  calculated over all frequencies. Over all units, 𝐼𝐴𝑅 𝐼𝐴𝑅

796 96.7% 6.9% (mean  SD) of information was conserved by a lowpass filtering at 50Hz and 

797 only 88 out of 404 cells had information losses greater than 5%. For each unit, we also 

798 calculated the proportion of cumulative power across frequencies in the time varying spike 

799 rate estimation obtained with the KDE before low-pass filtering and down-sampling 

800 (averaged periodogram in overlapping 200 ms Hanning windows and 1 kHz sampling rate). 

801 The cumulative sum of the power was calculated across frequencies and normalized by the 

802 maximum power value to obtain the proportion of cumulative power. On average across 
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803 units, the cumulative power reached 98.8%1.6% (mean  SD) at 50Hz, further validating 

804 our choice of the temporal resolution (Supp Fig. 1).

805

806 Information Theoretic Calculations.

807 As described in the results, the time-varying instantaneous mutual information 

808 between the stimulus S and the response  can be written as a difference in Shannon 𝑌𝑡

809 entropies:

810 𝐼𝑡 =  𝐻(𝑌𝑡) ‒  𝐻(𝑌𝑡|𝑆)

811 and the cumulative mutual information for neural responses that are discretized into time 

812 intervals is given by: 𝐶𝐼𝑡 =  𝐻(𝑌𝑡, 𝑌𝑡 ‒ 1,𝑌𝑡 ‒ 2,…,𝑌0) ‒  𝐻(𝑌𝑡,𝑌𝑡 ‒ 1,𝑌𝑡 ‒ 2,…,𝑌0 |𝑆)

813 In the present paper we calculated 4 different types of information: the stimulus instantaneous 

814 information, the categorical instantaneous information, the stimulus cumulative information 

815 and the categorical cumulative information. Stimulus instantaneous and cumulative 

816 information were calculated for all 404 units, while categorical instantaneous and cumulative 

817 information were calculated on a restricted set of 337 neurons that presented at least one time 

818 point with a significant value of stimulus cumulative information (significant threshold set as 

819 3 times the local error, see below for error calculations). While we verified our assumptions 

820 (minimal information loss with spike rate binning, Poisson distributions of spike counts and 

821 maximum value of spike counts) on the full set of 404 units, the population analysis of time-

822 varying information presented in the results section only include the relevant dataset of 337 

823 neurons.

824 The custom Matlab code used to calculate time-varying information values is available at 

825 https://github.com/julieelie/PoissonTimeVaryingInfo along with a tutorial on how to use the 

826 core functions.

827

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 10, 2018. ; https://doi.org/10.1101/492546doi: bioRxiv preprint 

https://doi.org/10.1101/492546
http://creativecommons.org/licenses/by/4.0/


50

828 The Instantaneous Information

829 The conditional response entropy and the response entropy are obtained from the distribution 

830 of the conditional probability of neural responses given the stimulus, , and the 𝑝(𝑦𝑡|𝑠)

831 distribution of probability of each stimulus :𝑝(𝑠𝑖)

832 𝐻(𝑌𝑡|𝑆) = ∑
𝑖

𝑝(𝑠𝑖)
𝑅𝑀𝑎𝑥

∑
𝑦𝑡 = 0

‒ 𝑝(𝑦𝑡│𝑠𝑖)log2 𝑝(𝑦𝑡│𝑠𝑖)

833 𝐻(𝑌𝑡) =
𝑅𝑀𝑎𝑥

∑
𝑦𝑡 = 0

‒ 𝑝(𝑦𝑡)log2 𝑝(𝑦𝑡) 

834 with 𝑝(𝑦𝑡) = ∑
𝑖𝑝(𝑠𝑖)𝑝(𝑦𝑡|𝑠𝑖)

835

836 We modeled the distribution of neural responses to a given stimulus  as an inhomogeneous 𝑠𝑖

837 Poisson process. The conditional probability of response (spike count) given the stimulus is 

838 then:

839 𝑝(𝑦𝑡|𝑠𝑖) =
𝜇𝑠𝑖(𝑡)𝑦𝑡

𝑦𝑡!
𝑒

‒ 𝜇𝑠𝑖(𝑡)

840 And the local entropy is:

841 𝐻(𝑌𝑡│𝑠𝑖) = 𝜇𝑠𝑖(𝑡)[1 ‒ log2 (𝜇𝑠𝑖(𝑡))] + 𝑒
‒ 𝜇𝑠𝑖(𝑡)

𝑅𝑀𝑎𝑥

∑
𝑦𝑡 = 0

𝜇𝑠𝑖(𝑡)𝑦𝑡log2 (𝑦𝑡!) 
𝑦𝑡!

842 Because, in our data, the probability of response is very small for high values of  , 𝑦𝑡

843 calculations of entropies were bounded for  between zero and . Here we set   𝑦𝑡 𝑅𝑀𝑎𝑥 𝑅𝑀𝑎𝑥 = 20

844 which corresponds to a rate of 2 spike/ms in the 10 ms analysis windows. The maximum rate 

845 observed in all of our neurons across all time bins was 0.8 spike/ms (Sup. Fig. 2). Note that 

846 this very high firing rate (800 Hz) was only observed only once; that is in one 10 ms time 

847 windows across all neurons (404) and all stimuli (114*60= 6840) or with a p=1/ 2763360. 

848 This is clearly the very upper limit of a distribution with a long tail. Our time-varying rates 
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849 were well below that upper bound but we verified that the cumulative probability up to 𝑅𝑀𝑎𝑥

850  was numerically identical to 1 before estimating entropies. As described above (see = 20

851 time-varying spike rate estimation), we also enforced a lower bound for  of 1/20.𝜇𝑠𝑖(𝑡)

852 The total conditional entropy at time t is:

853 𝐻(𝑌𝑡│𝑆) =
𝑛𝑠

∑
𝑖 = 1

𝑅𝑀𝑎𝑥

∑
𝑦𝑡 = 0

‒ 𝑝(𝑠𝑖)(𝑝(𝑦𝑡|𝑠𝑖)log2 𝑝(𝑦𝑡|𝑠𝑖))

854 where  is the probability of observing stimulus  and is the number of stimuli 𝑝(𝑠𝑖) 𝑠𝑖 𝑛𝑠

855 sampled: it is the average of the local entropies obtained for the conditional probability of 

856 response for each stimulus Assuming that our sample is representative of stimuli 𝑠𝑖. 

857 encountered, each stimulus is equally probable,  or:𝑝(𝑠𝑖) =
1
𝑛𝑠

858 𝐻(𝑌𝑡│𝑆) =
1
𝑛𝑠

𝑛𝑠

∑
𝑖 = 1

𝐻(𝑌𝑡│𝑠𝑖)

859 Alternatively, one can assume that each call category is equally probable. If 𝑘𝑖

860 is the number of stimuli in the particular call category c to which si belongs and  is the 𝑛𝑐

861 number of categories, then:

862 𝑝(𝑠𝑖) = ( 1
𝑘𝑖)( 1

𝑛𝑐)
863 for . Then:𝑠𝑖 ∈ 𝑐

864 𝐻(𝑌𝑡│𝑆) =
1
𝑛𝑐

𝑛𝑠

∑
𝑖 = 1

1
𝑘𝑖

𝐻(𝑌𝑡│𝑠𝑖)

865 The unconditional probability (i.e. across all stimuli) of a response at time  is not Poisson 𝑡

866 but is given by a weighted sum of Poisson with different mean rates:

867 𝑝(𝑦𝑡) =
𝑛𝑠

∑
𝑖 = 1

𝑝(𝑠𝑖)𝑝(𝑦𝑡│𝑠𝑖)
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868 𝑝(𝑦𝑡) =
1
𝑛𝑐

𝑛𝑠

∑
𝑖 = 1

1
𝑘𝑖[𝜇𝑠𝑖(𝑡)𝑦𝑡

𝑦𝑡!
𝑒

‒ 𝜇𝑠𝑖(𝑡)]
869

870 The response entropy is obtained from these unconditional probabilities:

871 𝐻(𝑌𝑡) =‒
𝑅𝑀𝑎𝑥

∑
𝑦𝑡 = 0

𝑝(𝑦𝑡)log2 (𝑝(𝑦𝑡)) 

872 𝐻(𝑌𝑡) =‒
𝑅𝑀𝑎𝑥

∑
𝑦𝑡 = 0

[ 1
𝑛𝑐

𝑛𝑠

∑
𝑖 = 1

1
𝑘𝑖[𝜇𝑠𝑖(𝑡)𝑦𝑡

𝑦𝑡!
𝑒

‒ 𝜇𝑠𝑖(𝑡)]]log2 [ 1
𝑛𝑐

𝑛𝑠

∑
𝑖 = 1

1
𝑘𝑖[𝜇𝑠𝑖(𝑡)𝑦𝑡

𝑦𝑡!
𝑒

‒ 𝜇𝑠𝑖(𝑡)]] 

873

874 The Cumulative Information.

875 The conditional probability of a time varying response is the joint probability of 

876 observing  given . Given our Poisson assumption, the conditional (𝑦𝑡, 𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2, …) 𝑠𝑖

877 probability of response at t is independent of the conditional response at previous times.

878 𝑝(𝑦𝑡,𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2,…│𝑠𝑖) = 𝑝(𝑦𝑡│𝑠𝑖)𝑝(𝑦𝑡 ‒ 1│𝑠𝑖)𝑝(𝑦𝑡 ‒ 2│𝑠𝑖)…

879 We can show that the conditional entropy of the joint responses is the sum of the individual 

880 entropies:

881

𝐻(𝑌𝑡,𝑌𝑡 ‒ 1,𝑌𝑡 ‒ 2,…│𝑆)

=
1
𝑛𝑐

𝑛𝑠

∑
𝑖 = 1

1
𝑘𝑖

∞

∑
𝑦𝑡 = 0

∞

∑
𝑦𝑡 ‒ 1 = 0

∞

∑
𝑦𝑡 ‒ 2 = 0

… (𝑝(𝑦𝑡│𝑠𝑖)𝑝(𝑦𝑡 ‒ 1│𝑠𝑖)𝑝(𝑦𝑡 ‒ 2│𝑠𝑖)…

log2 {𝑝(𝑦𝑡│𝑠𝑖)𝑝(𝑦𝑡 ‒ 1│𝑠𝑖)𝑝(𝑦𝑡 ‒ 2│𝑠𝑖)…})

882

883

𝐻(𝑌𝑡,𝑌𝑡 ‒ 1,𝑌𝑡 ‒ 2,…│𝑆)

=
1
𝑛𝑐

𝑛𝑠

∑
𝑖 = 1

1
𝑘𝑖{ ∞

∑
𝑦𝑡 = 0

(𝑝(𝑦𝑡│𝑠𝑖)log2𝑝(𝑦𝑡│𝑠𝑖)) +
∞

∑
𝑦𝑡 ‒ 1 = 0

(𝑝(𝑦𝑡 ‒ 1│𝑠𝑖)log2𝑝(𝑦𝑡 ‒ 1│𝑠𝑖)) +
∞

∑
𝑦𝑡 ‒ 2 = 0

(𝑝(𝑦𝑡 ‒ 2│𝑠𝑖)log2𝑝(𝑦𝑡 ‒ 2│𝑠𝑖)) + …}
884 𝐻(𝑌𝑡,𝑌𝑡 ‒ 1,𝑌𝑡 ‒ 2,…│𝑆) = 𝐻(𝑌𝑡│𝑆) + 𝐻(𝑌𝑡 ‒ 1│𝑆) + 𝐻(𝑌𝑡 ‒ 2│𝑆) + …
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885

886 The probability of the time varying response is the joint probability of observing 

887 . This joint probability cannot be expressed as the product of the (𝑦𝑡, 𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2, …)

888 probabilities at different times because these are not independent. The joint unconditional 

889 probability distribution is:

890 𝑝(𝑦𝑡,𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2,…) =
1
𝑛𝑐

𝑛𝑠

∑
𝑖 = 1

1
𝑘𝑖

[𝑝(𝑦𝑡│𝑠𝑖)𝑝(𝑦𝑡 ‒ 1│𝑠𝑖)𝑝(𝑦𝑡 ‒ 2│𝑠𝑖)…] ≠ 𝑝(𝑦𝑡)𝑝(𝑦𝑡 ‒ 1)𝑝(𝑦𝑡 ‒ 2)…

891 This joint probability distribution could be expressed as a product of probabilities by 

892 assuming that most of the interdependence can be calculated from the previous time point, as 

893 in the Markov chain assumption at a beginning of the time series at t=0.  In all cases, the joint 

894 probability distribution can be written as:

895 𝑝(𝑦𝑡,𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2,…) = 𝑝(𝑦𝑡|𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2,…)𝑝(𝑦𝑡 ‒ 1|𝑦𝑡 ‒ 2,𝑦𝑡 ‒ 3, …)…𝑝(𝑦0)

896 or when it is approximated by a first-order Markov chain:

897 𝑝(𝑦𝑡,𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2,…)≅𝑝(𝑦𝑡|𝑦𝑡 ‒ 1)𝑝(𝑦𝑡 ‒ 1|𝑦𝑡 ‒ 2)…𝑝(𝑦0)

898 The conditional probability of  given  is:𝑦𝑡 𝑦𝑡 ‒ 1

899 𝑝(𝑦𝑡|𝑦𝑡 ‒ 1) =
𝑝(𝑦𝑡,𝑦𝑡 ‒ 1)

𝑝(𝑦𝑡 ‒ 1)

900 𝑝(𝑦𝑡|𝑦𝑡 ‒ 1) =

1
𝑛𝑐

𝑛𝑠

∑
𝑖 = 1

1
𝑘𝑖

[𝑝(𝑦𝑡│𝑠𝑖)𝑝(𝑦𝑡 ‒ 1│𝑠𝑖)]

1
𝑛𝑐

𝑛𝑠

∑
𝑖 = 1

1
𝑘𝑐

[𝑝(𝑦𝑡 ‒ 1│𝑠𝑖)]

901

902 Note that this joint probability distribution can have very high dimensions. Assuming the 

903 number of spikes , the number of probabilities that must be estimated is 20nt where 𝑦𝑡 ∈ [0,19]

904 nt is the number of windows in time.  For example, calculating all the probability of all the 

905 outcomes for 10 windows (100ms) requires 2010~1013 calculations. On the other hand, the 
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906 Markov chain approximation only requires the estimation of all pair-wise joint probability 

907 distributions: for 10 windows and 20 outcomes, the number of calculations is 

908 (10)(202)~4000.

909 The response entropy is then calculated from the joint probability distribution:

910 𝐻(𝑌𝑡,𝑌𝑡 ‒ 1,𝑌𝑡 ‒ 2,…) =‒
∞

∑
𝑦𝑡 = 0

∞

∑
𝑦𝑡 ‒ 1 = 0

∞

∑
𝑦𝑡 ‒ 2 = 0

…𝑝(𝑦𝑡,𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2,…)log 𝑝(𝑦𝑡,𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2,…)

911

912 To estimate this response entropy, we investigated various approaches: a time-running 

913 cumulative information, the Markov chain approximation and Monte Carlo with importance 

914 sampling. Monte Carlo with importance sampling gave the best results and was therefore 

915 used in our analyses. We briefly describe the three approaches. The time-running cumulative 

916 information consisted in calculating the full cumulative information (using all possible spike 

917 events) but only for a fixed number of successive time windows. We estimated that we could 

918 easily calculate all possible probabilities for 4 time-windows, corresponding to a 40 ms 

919 history. This approach gave the best estimate of the information in 40 ms windows but, in our 

920 system, grossly underestimated the cumulative information: some of the information in 

921 successive 40 ms is clearly independent (Sup. Fig. 3). 

922 The second approximation was based on Markov chain of variable orders up to 4 

923 (also 40 ms). With this approximation, we overestimated the cumulative information: the 

924 correlation time of the time-varying rates for different stimuli is clearly also greater than 40 

925 ms. Using the first order Markov chain approximation:

926

𝐻(𝑌𝑡,𝑌𝑡 ‒ 1,𝑌𝑡 ‒ 2,…)
=‒ ∑

𝑦𝑡

∑
𝑦𝑡 ‒ 1

…

∑
𝑦0

{𝑝(𝑦𝑡│𝑦𝑡 ‒ 1)𝑝(𝑦𝑡 ‒ 1│𝑦𝑡 ‒ 2)…𝑝(𝑦0)log (𝑝(𝑦𝑡│𝑦𝑡 ‒ 1)𝑝(𝑦𝑡 ‒ 1│𝑦𝑡 ‒ 2)…𝑝(𝑦0))}
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927
=‒ ∑

𝑦𝑡

∑
𝑦𝑡 ‒ 1

…∑
𝑦0

{(𝑝(𝑦𝑡│𝑦𝑡 ‒ 1)𝑝(𝑦𝑡 ‒ 1│𝑦𝑡 ‒ 2)…𝑝(𝑦0))

(log (𝑝(𝑦𝑡│𝑦𝑡 ‒ 1)) + log 𝑝(𝑦𝑡 ‒ 1│𝑦𝑡 ‒ 2) + … + log 𝑝(𝑦0))}

928

929 Expanding that sum, the last term is:

930  𝐿.𝑇. =‒ ∑
𝑦𝑡

∑
𝑦𝑡 ‒ 1

…∑
𝑦0

{(𝑝(𝑦𝑡│𝑦𝑡 ‒ 1)𝑝(𝑦𝑡 ‒ 1│𝑦𝑡 ‒ 2)…𝑝(𝑦0))log (𝑝(𝑦0)}

931 =‒ ∑
𝑦0

∑
𝑦1

…{∑
𝑦𝑡

𝑝(𝑦𝑡|𝑦𝑡 ‒ 1)}(𝑝(𝑦𝑡 ‒ 1│𝑦𝑡 ‒ 2)…𝑝(𝑦0))log (𝑝(𝑦0)

932 =‒ ∑
𝑦0

∑
𝑦1

…{∑
𝑦𝑡 ‒ 1

𝑝(𝑦𝑡 ‒ 1|𝑦𝑡 ‒ 2)}(𝑝(𝑦𝑡 ‒ 2│𝑦𝑡 ‒ 3)…𝑝(𝑦0))log (𝑝(𝑦0)

933 …

934 =‒ ∑
𝑦0

{∑
𝑦1

𝑝(𝑦1|𝑦0)}𝑝(𝑦0)log (𝑝(𝑦0)

935 =‒ ∑
𝑦0

𝑝(𝑦0)log (𝑝(𝑦0)

936 = 𝐻(𝑌0)

937

938 The second to last term is:

939 =‒ ∑
𝑦0

∑
𝑦1

…{∑
𝑦𝑡

𝑝(𝑦𝑡|𝑦𝑡 ‒ 1)}(𝑝(𝑦𝑡 ‒ 1│𝑦𝑡 ‒ 2)…𝑝(𝑦0))log (𝑝(𝑦1|𝑦0))

940 =‒ ∑
𝑦0

𝑝(𝑦0)∑
𝑦1

𝑝(𝑦1│𝑦0)log 𝑝(𝑦1|𝑦0)

941 = 𝐻(𝑌1|𝑌0)

942

943 The third to last term is:

944 =‒ ∑
𝑦0

∑
𝑦1

…{∑
𝑦𝑡

𝑝(𝑦𝑡|𝑦𝑡 ‒ 1)}{(𝑝(𝑦𝑡 ‒ 1│𝑦𝑡 ‒ 2)…𝑝(𝑦0))(log (𝑝(𝑦2|𝑦1))}
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945 =‒ ∑
𝑦0

∑
𝑦1

∑
𝑦2

{(𝑝(𝑦2│𝑦1)𝑝(𝑦1|𝑦0)𝑝(𝑦0)(log (𝑝(𝑦2|𝑦1))}

946 =‒ ∑
𝑦1

∑
𝑦2

{(𝑝(𝑦2│𝑦1)∑
𝑦0

{𝑝(𝑦1|𝑦0)𝑝(𝑦0)})log (𝑝(𝑦2|𝑦1)}
947 =‒ ∑

𝑦1

∑
𝑦2

(𝑝(𝑦2│𝑦1)𝑝(𝑦1)log (𝑝(𝑦2|𝑦1)

948 =‒ ∑
𝑦1

𝑝(𝑦1)∑
𝑦2

𝑝(𝑦2│𝑦1)log (𝑝(𝑦2|𝑦1))

949

950

951 = 𝐻(𝑌2|𝑌1)

952

953 and, similarly, for all the other terms.

954 Thus, the response entropy using the Markov chain approximation is:

955 𝐻(𝑌𝑡,𝑌𝑡 ‒ 1,𝑌𝑡 ‒ 2,…) = 𝐻(𝑌𝑡│𝑌𝑡 ‒ 1) + 𝐻(𝑌𝑡 ‒ 1│𝑌𝑡 ‒ 2) + … + 𝐻(𝑌0)

956 with 𝐻(𝑌𝑡│𝑌𝑡 ‒ 1) =‒ ∑
𝑦𝑡 ‒ 1

[𝑝(𝑦𝑡 ‒ 1)∑
𝑦𝑡

𝑝(𝑦𝑡|𝑦𝑡 ‒ 1)log2 (𝑝(𝑦𝑡|𝑦𝑡 ‒ 1))]

957 This approximation can be extended using estimates at two previous time points, etc.:

958
𝐻(𝑌𝑡,𝑌𝑡 ‒ 1,𝑌𝑡 ‒ 2,…)

= 𝐻(𝑌𝑡│𝑌𝑡 ‒ 1,𝑌𝑡 ‒ 2) + 𝐻(𝑌𝑡 ‒ 1│𝑌𝑡 ‒ 2,𝑌𝑡 ‒ 3) + … + 𝐻(𝑌2│𝑌1,𝑌0) +  𝐻(𝑌1|𝑌0)
+ 𝐻(𝑌0)

959 where the conditional probability based on two prior measurements is:

960 𝑝(𝑦𝑡|𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2) =
𝑝(𝑦𝑡,𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2)

𝑝(𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2)

961 𝑝(𝑦𝑡|𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2) =

1
𝑛𝑐

𝑛𝑠

∑
𝑖 = 1

1
𝑖𝑐

[𝑝(𝑦𝑡│𝑠𝑖)𝑝(𝑦𝑡 ‒ 1│𝑠𝑖)𝑝(𝑦𝑡 ‒ 2│𝑠𝑖)]

1
𝑛𝑐

𝑛𝑠

∑
𝑖 = 1

1
𝑖𝑐

[𝑝(𝑦𝑡 ‒ 1│𝑠𝑖)𝑝(𝑦𝑡 ‒ 2│𝑠𝑖)]
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962 where 𝐻(𝑌𝑡│𝑌𝑡 ‒ 1,𝑌𝑡 ‒ 2) =‒ ∑
𝑦𝑡 ‒ 1

963 ∑
𝑦𝑡 ‒ 2

[𝑝(𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2)∑
𝑦𝑡

𝑝(𝑦𝑡|𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2)log2 (𝑝(𝑦𝑡|𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2))

964

965 Finally, we estimated cumulative information using Monte Carlo with importance 

966 sampling.  In Monte Carlo in conjunction with importance sampling,  samples or, here, 𝑁𝑖

967 time varying responses , are taken from a proposal distribution, . The actual 𝑦𝑖 𝑞(𝑦)

968 probability, , is calculated exactly at those samples and an estimate of the expected 𝑝(𝑦𝑖)

969 value of the measure of interest (here ) is obtained by the average of  𝑓(𝑦) = log (𝑝(𝑦)) 𝑓(𝑦)

970 at the sample points, , weighted by the likelihood ratio p/q:𝑦𝑖

971 𝐸[𝑓(𝑦)] =
1
𝑁𝑖

∑
𝑖

(𝑝(𝑦𝑖)/𝑞(𝑦𝑖))𝑓(𝑦𝑖)

972 Our proposal distribution was based on the distribution at each time point and assuming 

973 independence across time:

974 𝑞(𝑦𝑡,𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2,…) = 𝑝(𝑦𝑡)𝑝(𝑦𝑡 ‒ 1)𝑝(𝑦𝑡 ‒ 2)…

975 For each sample obtained from the proposal distribution q we calculated the actual 

976 probability value using: 

977 𝑝(𝑦𝑡,𝑦𝑡 ‒ 1,𝑦𝑡 ‒ 2,…) =
1
𝑛𝑐

𝑛𝑠

∑
𝑖 = 1

1
𝑘𝑖

[𝑝(𝑦𝑡│𝑠𝑖)𝑝(𝑦𝑡 ‒ 1│𝑠𝑖)𝑝(𝑦𝑡 ‒ 2│𝑠𝑖)…]

978 and used that probability value in the estimation of the entropy. Monte Carlo samples were 

979 chunked in groups of 100,000 samples and at each additional sample chunk, a 

980 bootstrapped/jackknife bias corrected mean and standard error were estimated (see below). 

981 Sampling stopped when the standard error was below 0.2 bits or at a max number of samples 

982 set to 5,000,000 samples. If the error at the maximum number of samples was greater than 

983 0.6 bits, the estimation was deemed unreliable and the calculation was not performed for any 

984 successive time points.
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985

986 Bias Correction and Standard Error for Information Calculations.

987 The small number of trials used to estimate spike rates is the source of bias and 

988 uncertainty in our calculation of information: a small number of stimulus presentations 

989 increase the probability of obtaining by chance estimated spike rate that are different between 

990 stimuli and so yields a positive bias on information calculations. We used a Jackknife 

991 procedure on the estimation of spike rate for each stimulus to correct for this positive bias. 

992 Jackknife kernel density estimate of the rate were obtained by applying the locally adaptive 

993 kernel bandwidth optimization method on the Ntrials possible sets of Ntrials-1 spike patterns 

994 of each stimulus (Ntrials being the number of stimulus presentation of a given stimulus). 

995 Moreover, uncertainty about information values comes from the sampling errors on spike rate 

996 and on the Monte Carlo estimation of joint spike rate probability distributions (cumulative 

997 information only). These errors on information calculations were estimated by bootstrapping 

998 the jackknife procedure:

999  with  the number of boostrap ( ),  the bias-corrected 𝐸𝑟𝑟𝑜𝑟 =  2
∑

𝑁𝐵𝑣𝑎𝑟(𝐼𝐽𝑁)

𝑁𝐵 𝑁𝐵 𝑁𝐵 = 20 𝐼𝐽𝑁

1000 estimation of information obtained from the Jackknife procedure.

1001

1002 Calculation of the Expected Value of Categorical Information Given the Stimulus 

1003 Information

1004 We computed a Categorical Information Index (CII) that compared the empirical 

1005 categorical cumulative information for call-type categories, CCI, to three hypothetical values: 

1006 a floor (CCIFloor) , an expected value (CCIExp) and a ceiling value (CCICeil). The floor value is 

1007 the categorical cumulative information obtained from random categories. The expected value 

1008 is the categorical cumulative information that would be achieved if the stimulus information 
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1009 was 1) equally distributed for each stimulus and 2) could be used for classifying stimuli into 

1010 groups. Note that the second assumption is not necessarily true in the actual data because the 

1011 categorical information is based on averaging the probabilities for stimulus from the same 

1012 category and thus effectively averaging time-varying rates. If time-varying rates are not 

1013 grouped by categories, then it is possible that two stimuli from two different categories are 

1014 distinguishable based on their time-varying rate, but that, the average time-varying rates for 

1015 the two categories are not distinguishable, or less so than expected from the average pair-wise 

1016 distances. The ceiling value corresponds to the case where all the cumulative information 

1017 about stimuli is used for the categorization and none to discriminate stimuli belonging to the 

1018 same category: CCICeil. The CII is a number between 0 and 2 that is then calculated as:

1019 𝐶𝐼𝐼 =  
𝐶𝐶𝐼 ‒ 𝐶𝐶𝐼𝐹𝑙𝑜𝑜𝑟

𝐶𝐶𝐼𝐸𝑥𝑝 ‒ 𝐶𝐶𝐼𝐹𝑙𝑜𝑜𝑟
 𝑖𝑓 𝐶𝐶𝐼 < 𝐶𝐶𝐼𝐸𝑥𝑝

1020 𝐶𝐼𝐼 =  1 +  
𝐶𝐶𝐼 ‒ 𝐶𝐶𝐼𝐸𝑥𝑝

𝐶𝐶𝐼𝐶𝑒𝑖𝑙 ‒ 𝐶𝐶𝐼𝐸𝑥𝑝
 𝑖𝑓 𝐶𝐶𝐼 ≥ 𝐶𝐶𝐼𝐸𝑥𝑝

1021

1022 The following three steps were taken to calculate the expected categorical information 

1023 (CCIExp) from the stimulus cumulative information. First, the stimulus mutual information, 

1024 mi, was expressed as the conditional probability of correct stimulus decoding, p, for any 

1025 given stimulus (and assumed to be equal for all stimuli). Given a confusion matrix of size nxn 

1026 obtained from a decoder for n stimuli, with p as the conditional probability given a stimulus 

1027 of correct decoding (diagonal terms) and thus (1-p)/(n-1) as the conditional probability of 

1028 error (off-diagonal terms), the mutual information is equal to:

1029  𝑚𝑖 = 𝑝[2log 𝑝 ‒ log
𝑝
𝑛] + (1 ‒ 𝑝)[2log

1 ‒ 𝑝
𝑛 ‒ 1 ‒ log

1 ‒ 𝑝
(𝑛 ‒ 1)𝑛]

1030 The above equation was inverted numerically to solve for p given mi. Second, a new 

1031 matrix was generated by grouping rows and columns of joint probabilities (and not 

1032 conditional) to form a confusion matrix for categories. The number of stimulus in each 
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1033 category was matched to the actual values in the neurophysiological data on a unit per unit 

1034 basis. Third, the expected mutual information for categories was then estimated from this 

1035 new confusion matrix by subtracting the total entropy obtain from the joint probabilities, 

1036 from the sum of the entropies of the marginal distributions for the rows and columns:

1037 𝑚𝑖𝑐𝑎𝑡 = 𝐻𝑅𝑜𝑤 + 𝐻𝐶𝑜𝑙 ‒ 𝐻𝑇𝑜𝑡

1038 Data availability

1039 The custom Matlab code used to calculate time varying information values is available at 

1040 https://github.com/julieelie/PoissonTimeVaryingInfo, along with a tutorial on modeled data.
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1324 Supplemental Figures

1325

1326 Supplemental Figure 1. Tests for Temporal Resolution. We performed two tests to assess 
1327 the potential information loss from sampling the time-varying rate at 50 Hz (10 ms bins).  A. 
1328 The Coherence Test is based on the coherence between individual spike trains. A measure of 
1329 total coherence (Information Coherence) can be obtained by integrating over frequencies (see 
1330 Methods). The Information Coherence obtained by integrating from 0 to 50 Hz can then be 
1331 compared to the Information Coherence obtained for the entire frequency range of 0 to 500 
1332 Hz. The histogram shows the number of cells versus the fraction of Information Coherence in 
1333 0-50 Hz. B. The Power Spectrum Test is based on the power spectrum of the time-varying 
1334 rates for each neuron obtained with the Kernel Density estimation (sample frequency: 1kHz). 
1335 Just as for the Coherence Information, the fraction of the power between 0-50 Hz relative to 
1336 the power between 0-500 Hz was estimated for all cells. The histogram shows the number of 
1337 neurons as a function of that fraction.
1338
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1339

1340 Supplemental Figure 2. Distribution of Spike Counts in 10 ms Bins. This distribution is 
1341 shown as the number of time bins across all 404 neurons, all stimuli and all time points that 
1342 had 0, 1, … 8 spikes. Not a single neuron had more than 8 spikes in a 10 ms bins andhigh 
1343 spiking events were very rare (only one 10ms bin with 8 spikes over all neurons, all time bins 
1344 and all stimuli). The average number of spikes per 10 ms bin was 0.108 .
1345
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1346

1347 Supplemental Figure 3. Estimation of the Cumulative Information.  Three methods were 
1348 tested for the estimation of the Cumulative Information (see Methods): a Markov chain 
1349 approximation of variable order up to 4 or 40 ms (purple line), the exact information in 4 bins 
1350 (40 ms) evaluated in running windows (red line), and a Monte Carlo estimation (green line). 
1351 For comparison, the instantaneous time-varying information in 10 ms windows (blue line) 
1352 and the integral of that information (yellow line) are also shown. The ceiling value 
1353 corresponds here to the log2(Ncat=9) because this example is showing the categorical 
1354 cumulative information of the neuron. The Markov chain overestimates the cumulative 
1355 information while the running window of 40 ms underestimates the cumulative information. 
1356 The information values plotted here were obtained from the neural data of Example Neuron 1 
1357 shown in Fig. 3 and also in Sup. Fig. 4. This high-firing, high-information neuron allowed us 
1358 to verify that the calculations were correct around ceiling values.
1359
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1360

1361 Supplemental Figure 4. Example Spike Rasters for Example Neuron 1.  The spectrogram 
1362 of two (randomly chosen) stimuli from each stimulus category are shown with the 
1363 corresponding spike rasters for 10 trials and a smoothed PSTH for the example neuron shown 
1364 in Fig. 3. This neuron had a very high stimulus driven firing rate and responded to all sound 
1365 stimuli. The mlnoise stimulus is modulation limited noise: white noise that is low-pass 
1366 filtered in amplitude and spectral modulations. This stimulus was used here to search for 
1367 auditory regions but the responses to these synthetic sounds were not included in these 
1368 analyses. 
1369
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1371
1372 Supplemental Figure 5. Example Spike Rasters for Example Neuron 2. As Sup. Fig. 4 
1373 but for the Example Neuron 2. Example Neuron 2 also shown in Fig. 4 of the main paper is 
1374 selective for Distance Calls (DC).
1375
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1377

1378 Supplemental Figure 6. Example Spike Rasters for Example Neuron 3. As Sup. Fig. 4 
1379 but for the Example Neuron 3.  Example Neuron 3 also shown in Fig. 5 of the main paper is 
1380 selective for aggressive calls or Wsst Calls (Ws).
1381
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