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Abstract 21 

Determining correlates of density for large carnivores is important to understand their ecological 22 

requirements and develop conservation strategies. Of the several earlier density studies 23 

conducted, few were done at a scale that allows inference about the correlates of density over 24 

heterogeneous landscapes. We deployed 164 camera trap stations covering ~2500 km2 across 25 

five distinct habitats in the Udzungwa Mountains, Tanzania, to investigate correlates of density 26 

for a widespread and adaptable carnivore, the leopard (Panthera pardus). We modelled data in a 27 

capture-recapture framework, with both biotic and abiotic covariates hypothesised to influence 28 

leopard density. We found that leopard density increased with distance to protected area borders 29 

(mean±SE estimated effect = 0.44±0.20), a proxy for both protected area extent and distance 30 

from surrounding human settlements. Second, we detected a weak positive relationship between 31 

leopard density and estimated mean prey occupancy, while density was not related to habitat 32 

type. We estimated mean leopard density at 3.84 individuals/100km2 (95% CI = 2.53 ‒ 33 

5.85/100km2), with relatively moderate variation across habitat types. These results indicate that 34 

protected habitat extent and anthropogenic disturbance seemingly limit leopard populations more 35 

than prey abundance or habitat type. Such vulnerability is relevant to the conservation of this 36 

carnivore, which is generally considered more resilient to human disturbance than other large 37 

cats. Our findings support the notion that protected areas are important to preserve viable 38 

population of leopards, increasingly so in times of unprecedented habitat fragmentation. 39 

Protection of buffer zones smoothing the abrupt impact of human activities at reserve edges also 40 

appears of critical conservation relevance. 41 

42 
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Introduction 43 

Carnivores, and large cats in particular, are not only among the most important flagship 44 

species but they also carry out critical ecosystem functions such as herbivore control, which in 45 

turn influence ecosystem health [1-3]. Yet, large cats are declining worldwide due to 46 

anthropogenic activities determining prey decline, habitat loss, unsustainable trophy hunting 47 

and direct persecution [4, 5]. Obtaining accurate density estimates for these species, and 48 

understanding the underlying factors, represents a pervasive goal in animal ecology [6]. 49 

However, this is challenging because the low abundance and elusive nature of large cats make 50 

them inherently difficult to study [2, 7]. 51 

Among the large cats, the leopard (Panthera pardus) has the largest distributional range 52 

in the Old World and, while it is still considered common in some areas, its range has declined 53 

by 63-75% [8]. Hunting for leopard fur and retaliatory killings for loss of livestock or human 54 

attacks, along with prey’s habitat loss, have been the major causes of such decline [8]. Leopards 55 

are highly adaptable with regards to habitat, and have been recorded in the widest range of 56 

habitat types of any Old World large feline, from mountains, rainforests and deserts to 57 

agricultural and urban areas; they are generally nocturnal, secretive in nature and have large 58 

home ranges [8-10]. Such broad adaptability in diet and habitat, along with their cryptic nature, 59 

make deciphering the relative importance of factors affecting density, such as prey abundance, 60 

habitat type, and human disturbance, particularly challenging.  61 

Previous studies found that most often multiple correlates are associated with leopard 62 

density. In a review on carnivore abundance correlates by Carbone, Pettorelli (7), prey 63 

abundance was highlighted as the most influential factor. However, other studies found that 64 

leopard densities were not affected by prey availability but rather availability of a specific prey 65 

size category and optimal hunting habitat [11, 12]. Protected area size is another commonly 66 
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assumed predictor of large carnivore densities and likelihood of their long-term persistence [13, 67 

14]. A study conducted in South Africa addressed edge and disturbance effects on leopard 68 

abundance, and found declining density from the core of a protected area to the surrounding, 69 

unprotected landscape [15]. A study on leopards from Thailand showed a negative correlation 70 

between habitat use, with avoidance of areas with high human activity, and proximity to 71 

trafficked roads [16]. In contrast, direct anthropogenic disturbance due to encroachment into a 72 

protected area did not appear to influence a leopard population in Nepal [17], and in South 73 

Africa some leopard populations had higher densities in non-protected areas [18, 19]. In India 74 

leopards have adapted to agriculture-dominated landscapes where they occur in relatively high 75 

densities [9].  76 

Telemetry information has been commonly used to study resource selection (e.g. [20]). However, 77 

while telemetry typically generates fine scale spatial data for a few individuals, spatial capture-78 

recapture (SCR) sampling using camera traps generates sparse information on several-to-many 79 

individuals [21], allowing testing of explicit hypotheses on correlates of density and space use 80 

[22]. Despite the vast potential of this approach, to our knowledge there are only a dozen studies 81 

that applied robust SCR analyses to leopard density estimation; in addition, a high proportion of 82 

these studies have been performed within a single habitat type [9, 19, 23-29], while other studies 83 

have addressed differences in density between protected and non-protected areas [18, 30]. Yet 84 

the vast majority of leopard density studies have not embraced the potential of SCR analyses by 85 

incorporating drivers of species density and detectability, other than those inbuilt in the various 86 

programmes that exists. 87 

Here, we used camera trapping across an area of ~2500 km2 to estimate the density of 88 

a leopard population inhabiting a heterogeneous landscape in Tanzania, the Udzungwa 89 

Mountains. This area is a mosaic of forest blocks interspersed with drier habitats and 90 
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surrounded by settled and intensively farmed areas, hence it represents a relevant landscape to 91 

study factors affecting leopard density. We used a stratified population model in a spatially-92 

explicit capture-mark-recapture framework [31] to test hypotheses on natural and 93 

anthropogenic factors driving leopard density at the landscape scale. Specifically, we aimed to 94 

determine the effects of habitat type, abundance of potential prey, distance to water source, 95 

distance to settlements and extent of protected habitat on leopard density. 96 

 97 

Material and Methods 98 

Study area 99 

The Udzungwa Mountains of south-central Tanzania (centred on 7◦46’ S, 36◦43’ E; elevation 100 

285-2600 m asl, 16,000 km2) are part of the Eastern Arc Mountains, a renowned biodiversity 101 

hotspot [32, 33]. The Udzungwas consist of closed forest blocks interspersed with drier 102 

habitats [34]. It is surrounded by subsistence farming to the north, west and south, and high 103 

intensity sugar cane farming to the east, without natural habitat connectivity to adjacent 104 

protected areas [35]. Within Africa, the area is known for its outstanding levels of mammalian 105 

richness and endemism [32, 36]. 106 

The northern portion of the Udzungwas is efficiently protected by the Udzungwa 107 

Mountains National Park (UMNP; 1990 km2). This is surrounded to the south and west by the 108 

Kilombero Nature Reserve (1345 km2) administered by Tanzania Forest Service, and receives 109 

less in situ protection. A strip of agriculture, in some places just 5 km wide, separates the 110 

Udzungwa Mountains National Park (UMNP) from the Selous Game Reserve to the east (Fig 111 

1).  112 

 113 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492462doi: bioRxiv preprint 

https://doi.org/10.1101/492462
http://creativecommons.org/licenses/by/4.0/


Figure 1. Map of the study area in the Udzungwa Mountains of south-central Tanzania. Six 114 

camera trap arrays were placed in the five major habitat types of the Udzungwa Mountains 115 

National Park and Kilombero Nature Reserve to detect leopards (Panthera pardus). Camera trap 116 

sites are indicated by yellow dot, with dot size indicating number of camera trap captures of 117 

leopards. Forested areas are indicated in green. Open habitat only has the elevation background. 118 

Map modified from Scharff, Rovero (37). 119 

 120 

We placed camera trap arrays in the five, major habitat types (Fig 1; S1 Table): (1) 121 

Lowland Afrotropical rainforest in the southern UMNP (300-800 m a.s.l.). (2) Dry grassy 122 

Acacia-Commiphora woodlands in the northern UMNP, buffered by dry baobab woodlands at 123 

low elevation and grasslands at high elevation (500-1900 m). (3) Grassy Miombo woodlands 124 

in the central valleys of the UMNP (300-500m asl). (4) Ndundulu forest, a block of 125 

Afromontane forest west of UMNP in the Kilombero Nature Reserve (1400-2200 m). (5) 126 

Mwanihana forest, a rainforest escarpment in the eastern part of UMNP (300-2100 m). 127 

 128 

Camera trapping 129 

Six camera trap arrays covering ~2500 km2 were sampled sequentially to cover the five 130 

habitats. Each array consisted of 25-34 pairs of traps (Fig 1) and was sampled once each. We 131 

sampled in the dry season from August to December 2013 and from June to December 2014. 132 

Each station of paired traps operated for an average of 31 days (minimum 12, maximum 49 133 

days; Table 1).  134 

135 
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Table 1. Summary of the encounter model selection for the 28 competing models. 136 

Model p0 
 

σ 
 

No. 

parameters 

Log. 

likelihood AIC 

AIC 

weight 

M3 Dist. river 
  

Trap array 
  

14 -1023.3 2074.69 0.3423 

M17 1 
  

Trap array 
  

13 -1025.4 2076.75 0.2628 

M27 Dist. river + Dist. boundary Trap array 
  

15 -1021.9 2073.75 0.2333 

M4 Dist. boundary 
  

Trap array 
  

14 -1024.8 2077.62 0.0791 

M8 Camera trap type 
  

Trap array 
  

14 -1025.2 2078.37 0.0544 

M39 Dist. to river 
  

Prey density 
  

10 -1033.2 2086.36 0.0136 

M42 Dist. river + Dist. boundary Prey density 
  

11 -1032.1 2086.22 0.0085 

M45 Distance to river 
  

Prey density + Dist. river 11 -1033.1 2088.10 0.0033 

M36 Dist. boundary 
  

Prey density 
  

10 -1034.8 2089.52 0.0028 

M15 Trap array 
  

Trap array + Dist. boundary 19 -1018.2 2074.34 0 

M47 Dist. boundary 
  

Prey density + Dist. river 11 -1033.9 2089.72 0 

M1 Trap array 
  

Trap array 
  

18 -1020.8 2077.62 0 

M49 Dist. boundary 
  

Prey density + Dist. boundary 11 -1034.3 2090.52 0 

M0 1 
  

1 
  

8 -1039.5 2094.99 0 

M19 Dist. river 
  

Dist. river 
  

10 -1036.9 2093.88 0 

M12 Trap array + Dist. boundary Trap array 
  

19 -1020.1 2078.19 0 

M11 Trap array + Dist. river Trap array 
  

19 -1020.1 2078.23 0 

M30 Dist. river + Dist. boundary Dist. river 
  

11 -1035.7 2093.42 0 

M32 Dist. river + Dist. boundary Dist. boundary 
  

11 -1036.0 2093.98 0 

M9 Trap array + Camera trap type Trap array 
  

19 -1020.8 2079.56 0 

M26 Trap array + Camera trap type Trap array 
  

19 -1020.8 2079.56 0 

M14 Trap array 
  

Trap array + Dist. river 19 -1020.8 2079.59 0 

M21 Dist. boundary 
  

Dist. river 
  

10 -1037.8 2095.57 0 

M33 Trap array 
  

Prey density 
  

14 -1032.0 2092.00 0 

M18 Dist. boundary 
  

Dist. boundary 
  

10 -1039.1 2098.13 0 

M16 Trap array 
  

1 
  

13 -1035.6 2097.18 0 

M6 Trap array 
  

Dist. river 
  

14 -1034.5 2097.07 0 

M7 Trap array 
  

Dist. boundary 
  

14 -1034.9 2097.73 0 

137 
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Camera traps were set following a protocol designed for studying leopards in African forests 138 

[38]. The average trap spacing was 1.6 km, following a regular spaced grid placed randomly 139 

over the study sites. At each camera trap site, the paired cameras were placed 3-4 m from the 140 

centre of an animal trail or track, facing each other at 30-40 cm above ground level. At least 141 

one camera-trap per station had a white Xenon flash Cuddeback Ambush (Cuddeback® Non 142 

Typical Inc., USA) and in 87 of 164 stations, one camera consisted of an infrared camera 143 

UOVision 565HD IR+ (UOVision Technology, Shenzhen, China) set on 15-second video 144 

recording mode.  145 

Leopards were identified by their unique spot-patterns across their body [39] by two 146 

independent observers (RWH and FR). Only individuals deemed adult and consistently 147 

captured alone were used for subsequent analyses, to avoid non-independence of individual 148 

activity centres, e.g. juveniles [22].  149 

 150 

Covariates of leopard density 151 

To model leopard density, we derived the following set of covariates across the areas covered by 152 

the six trap arrays. We first used Landsat TM and ETM+ satellite imagery to derive at 500 m 153 

resolution (1) distance from each cell centroid to the nearest river, (2) distance to the nearest 154 

protected area boundary (national park or nature reserve depending on arrays, see Fig 1). 155 

Elevation was recorded at each camera trap site using a Garmin GPS. Distance to protected area 156 

boundary correlated positively (r=0.65) with distance to the nearest human settlement from each 157 

camera trap, thus to avoid collinearity we only used distance to reserve border and considered it 158 

a proxy of both anthropogenic disturbance and extent of protected habitat. The 500 m resolution 159 

chosen for the covariates corresponds to the resolution of the state-space adopted in the spatial 160 

capture-recapture models (see below), which we defined after testing a range of resolution values 161 
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that yielded stable parameter estimates and reasonable computational time. We also derived (4) 162 

an index of prey abundance as the array-specific mean estimated occupancy probability of 18 163 

ground dwelling mammals detected by the camera traps [40]. These species were assumed to be 164 

potential leopard prey based on dietary studies [41]. In addition, 12 of these species were 165 

confirmed to be leopard prey in Udzungwa through DNA analysis of leopard scats (Havmøller 166 

(40); S2 Table). We estimated mean and array-specific occupancy probabilities (S3 Table) for 167 

the pool of potential prey by fitting a multi-species occupancy model [42] to prey species’ 168 

detection/nondetection data. This modelling approach accounts for imperfect detection and 169 

solves the ambiguity between species absence and non-detection. We therefore considered 170 

occupancy a better state variable for prey abundance than a crude index of captures, as this likely 171 

underestimate true abundance due to false negatives. In addition, as we set camera traps to target 172 

leopards, detectability of other mammals across sites may vary largely among species, likely 173 

resulting in variably biased detection rates; hence we considered it especially critical to use a 174 

state variable of abundance that is corrected by detectability [43]. We designed our community 175 

occupancy model to estimate array-specific mean occupancy values for the pool of prey species, 176 

as we assumed that the different habitat types sampled by arrays represent a relevant correlate of 177 

variation in the ‘abundance’ of prey species across the study area. However, given that we only 178 

had information on prey species at camera trap sites, we could not realistically model prey 179 

occupancy across the state-space. Specifically, we modelled the presence/absence zi,j of species i 180 

at sites j as a Bernoulli trial with array-specific (a) occupancy probability ψi,a(j): zi,j ~ Bern(ψi,a(j)). 181 

We constrained the species-specific parameters (i.e., the heterogeneity in occupancy and 182 

detection probability) by the assumption of a common normal prior distribution for their logits. 183 

For occupancy, we considered an array-specific hyperparameter: logit(ψi,a(j)) = βa with βa ~ 184 

Normal(µψ,a, σψ), where µψ,a is the mean (community) occupancy of prey species in each array, 185 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492462doi: bioRxiv preprint 

https://doi.org/10.1101/492462
http://creativecommons.org/licenses/by/4.0/


and σψ is the standard deviation. We organized daily detections into a species by sites matrix, 186 

with elements yi,j, and modelled detections as yi,j ~ Bin(kj, pi,j*zi,j) where kj are the sampling 187 

occasions per site and pi,j is the detection probability. As we were not interested in modelling 188 

array-specific detectability, we modelled detection probability as logit(pi,j) = αi with αi ~ 189 

Normal(µp, σp), where µp is the mean (community) detectability of prey species and σp is the 190 

standard deviation. We fitted the model using a Bayesian formulation, the Markov chain Monte 191 

Carlo, implemented using the program JAGS [44] and executed from R [45]. The model code is 192 

provided in S1 Appendix. Finally, given that leopard density resulted associated significantly 193 

with the distance to reserve border (see Results), we also checked whether our prey abundance 194 

index may also be associated with this variable, hence potentially confounding the interpretation 195 

of effects on leopard density. We therefore ran a second prey occupancy model where the linear 196 

predictor for occupancy included an effect of distance to reserve border on array-specific prey 197 

occupancy. We found that for all arrays prey occupancy was not significantly associated with 198 

this covariate, hence we could exclude that the effect of reserve border on density may also be 199 

related to collinear variation in prey occupancy (see also Discussion).  200 

 201 

Leopard density estimation 202 

We used spatial capture-recapture (SCR) models [22] to account for animal movement in 203 

density estimation, regarding array-specific data as samples of independent populations. This 204 

assumption is supported by the absence of individuals recorded in more than one trap array. 205 

SCR models allow study of the distribution of individuals (i.e. density) while accounting for 206 

encounter probability (p) that declines with distance between an individual activity centre (s) 207 

and a detector (x). We used a half-normal encounter model where detectability p is a function 208 

of the baseline encounter probability (p0) and the spatial scale parameter σ, which determines 209 
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how encounter probability decreases with an increase in the distance between trap j and 210 

activity centre si. 211 

Both homogeneous and inhomogeneous point process models were fitted to study the 212 

distribution of individual activity centres within a defined state-space S, depending on the 213 

absence or presence, respectively, of spatially explicit covariates on density. We fitted a 214 

stratified population model [22] to data grouped by trap array, where array-specific population 215 

size was assumed as Nr ~ Poisson(Λr), where Λr is the expected number of activity centres in 216 

the state-space, or region, surrounding array r, with r = 1, …, R = 6. We investigated the 217 

effects of covariates (‘COV’, see previous session for details) on leopard density and 218 

detectability by testing different hypotheses. First, we defined the best structure of the 219 

encounter model by assessing the effect of (i) trap array, as a proxy of habitat type and 220 

seasonality (i.e. temporal variation in sampling), (ii) distance of trap j to the nearest river, (iii) 221 

distance to reserve boundary, and (iv) camera trap type on the baseline encounter probability 222 

(p0). The same covariates, with an additional array-specific effect of prey abundance were 223 

used as competing predictors for modelling the scale parameter σ. The general formulation of 224 

the linear predictors for two parameters of the encounter model, for individual i in trap j of 225 

array r, was as follows: 226 

 227 

logit(p0, jr) = α0 + αCOV COVjr  eq. 1 228 

 229 

log(σjr) = δ0 + δCOV COVjr.  eq. 2 230 

 231 

See Table 1 for a full list of competing encounter models based on plausible combination of 232 

different covariates (‘COV’). Specifically, we expected encounter rate to decline (i) with 233 
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increasing distance to rivers, as waterways are frequently used as travelling routes and 234 

foraging areas [46, 47], and (ii) with increasing distance to reserve boundary, in relation to 235 

possible behavioural effects induced by an increase of anthropogenic disturbance close to the 236 

reserve boundary [12, 48]. We also expected leopards to move less (thus having smaller home 237 

range size), in dense versus open habitats, since the species has been found to prefer dense 238 

habitat for hunting and thus would have to travel smaller distances in search of optimal 239 

hunting grounds [12]. In addition, we expected leopard space usage to be (i) positively 240 

correlated with distance to the nearest river, as rivers may represent good hunting grounds 241 

[47], and (ii) positively correlated with distance from reserve boundary, where anthropogenic 242 

disturbance is higher. 243 

We were interested in modelling density as a function of spatially-varying covariates 244 

and used a discrete representation of the state space with the centre points of each pixel g(r) 245 

(with g(r) = 1, …, Gr) in the state-space (region) surrounding array r. The expected number of 246 

activity centres in the state-space surrounding array r was modelled in relation to (i) elevation, 247 

(ii) distance to the nearest river, (iii) distance to reserve boundary, (iv) prey abundance 248 

(occupancy probability of prey community; S3 and S4 Tables), and (vi) trap array (S1 Table). 249 

Distance to river was intended as a proxy to major traveling routes used by leopards [46, 47]. 250 

In addition, it may also indicate proximity to optimal hunting grounds. As elaborated above, 251 

we considered distance to reserve boundary a proxy for both reserve size (i.e. remoteness) and 252 

human disturbance; as settlements and farms occur right outside protected areas, we assumed 253 

human encroachment and other forms of disturbance to be more intense near boundaries [15, 254 

16, 49]. We expected density to be negatively correlated with elevation as higher-elevation 255 

habitats are mainly in montane forests which may hold sub-optimal prey diversity and 256 

abundance and is are limited. We hypothesised a negative correlation for density with 257 
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increasing distance to permanently flowing rivers as an indication of preferred hunting ground 258 

and travel routes [46]. We expected mean prey occupancy as proxy for prey abundance to be 259 

positively correlated with leopard density, matching evidence for other large carnivores and 260 

for leopards [50, 51]. We assumed leopard densities to be higher in habitats with closer, 261 

arboreal vegetation cover (montane rainforest and lowland close forest versus open woodland 262 

and wooded grassland) as these may represent more optimal foraging grounds [12]. Expected 263 

number of activity centres were modelled the in the state-space of array r in relation to the 264 

different covariates (‘COV’) as follows: 265 

 266 

log(Λg(r)) = β0 + βCOV COVg(r) + βCOV COVr   eq. 3 267 

 268 

where covariates can be either spatially explicit (i.e. rasterized, ‘COVg(r)’) or region (i.e. 269 

survey or array) specific (‘COVr’). We first defined the best structure for the encounter model 270 

(27 competing models, S5 Table), while considering survey-specific densities, and then tested 271 

hypotheses on the correlates of leopard density (12 competing models, S6 Table) while 272 

keeping the best encounter structure constant. We set a 6 km buffer around each trap array 273 

based on ridged density estimates descending from 30 km and based inference on maximum 274 

likelihood estimates for leopard density using the R package ‘secr’ [31]. In order to maximize 275 

statistical power for detecting factors affecting spatial variation of leopard density on a 276 

landscape level, we used a stratified population model where data for both sexes had to be 277 

pooled. Capture histories were based on daily sampling occasions. We calculated the Akaike 278 

Information Criterion (AIC) for each candidate model and used the difference among values 279 

(ΔAIC) to rank models. We derived model averaged parameter estimates and density surfaces 280 
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using model weights for those models that scored within two points of ΔAIC [52]. We also 281 

derived home range size estimates based on [22]. 282 

 283 

Results 284 

We accumulated a sampling effort of 5038 camera trap days and obtained 185 leopard events. 285 

Overall, 58 individuals were identified from all six surveys (median 10, minimum 5, 286 

maximum 15), excluding juveniles and sub-adults (Table 2).  287 

Table 2. Capture history and effort summary from camera trapping. 288 

Study site No. events No. individuals No. Individuals captured once Camera traps days Estimated leopard density / 100km2 

Ruipa 41 12 4 (33%) 775 5.91 

Idete 22 9 3 (33%) 744 3.69 

Mbatwa 22 6 2 (33%) 985 4.46 

Lumemo 53 15 4 (26%) 887 4.04 

Ndundulu-Luhomero 33 11 4 (36%) 774 5.35 

Mwanihana 14 5 1 (20%) 873 4.90 

Total 185 58 18 (31%) 5038 Average 3.84 

 289 

Leopards were captured in 48.6% of the 164 camera trap stations. Based on AIC, the most 290 

parsimonious encounter model included an effect of distance to the nearest river on the 291 

baseline encounter probability (p0) and array-specific scale parameter σ (ΔAIC = 2.06; Table 292 

1). Model-averaged estimates for the parameters of the encounter model suggest a negative 293 

relationship between the baseline encounter probability and distance of a trap to the nearest 294 

river (αd2river = -0.21, -0.42 ‒ -0.01, Table 3).  295 

296 
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Table 3. Model-averaged maximum likelihood estimates for leopard populations. Estimates were computed from 297 

the two most supported models within two AIC units of each other. Model averaged estimates are provided for 298 

the parameters present in both models. 299 

Parameter Description (scale) Mean SE Lower 95% CI Upper 95% CI 

β0 Intercept of density (log) -7.86 0.21 -8.28 -7.44 

βd2boundary Effect of distance to reserve boundary on density (log) 0.44 0.20 0.04 0.84 

α0 Intercept of baseline encounter probability p0 (logit) -3.39 0.13 -3.66 -3.13 

αd2river Effect of distance to river on the baseline encounter probability p0 (logit) -0.21 0.11 -0.42 -0.01 

δ0 Intercept of scale parameter σ of the encounter model (log) 7.54 0.15 7.24 7.84 

δLumemo Survey effect on the scale parameter σ (log) 0.27 0.19 -0.09 0.64 

δMbatwa Survey effect on the scale parameter σ (log) 0.01 0.18 -0.33 0.36 

δMwanihana Survey effect on the scale parameter σ (log) -0.50 0.21 -0.90 -0.09 

δNdundulu Survey effect on the scale parameter σ (log) -0.37 0.18 -0.73 -0.02 

δRuipa Survey effect on the scale parameter σ (log) 0.17 0.19 -0.20 0.54 

 300 

Baseline encounter probability (p0) thus decreased with increasing distance to rivers. Array-301 

specific estimates of the spatial scale parameter of the half-normal encounter model (S7 302 

Table) were used to derive array-specific estimates of 95% home range sizes, which varied 303 

from a minimum of 25 km2 in Mwanihana to a maximum of 115 km2 in Lumemo (mean 67 304 

km2) (S8 Table). 305 

Two models for density were most well supported based on AIC score, one including 306 

distance to reserve boundary, and a second with an additional effect of prey abundance (ΔAIC 307 

= 0.771; Table 4).  308 

309 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492462doi: bioRxiv preprint 

https://doi.org/10.1101/492462
http://creativecommons.org/licenses/by/4.0/


Table 4. Summary for the selection of the 12 competing models of leopard density. 310 

Model Density p0 σ 

No. 

parameters 

Log. 

likelihood AIC ΔAIC 

AIC 

weight 

Md7 Dist. boundary 
  

Dist. river Trap array 10 -1025.334 2070.668 0 0.423 

Md15 

Prey 

availability + 

Dist. 

boundary Dist. river Trap array 11 -1024.719 2071.439 0.771 0.167 

Md2 1 
  

Dist. river Trap array 9 -1027.797 2073.594 2.926 0.158 

Md9 Elevation 
  

Dist. river Trap array 10 -1027.029 2074.057 3.389 0.078 

Md23 

Prey 

availability 
  

Dist. river Trap array 10 -1027.25 2074.500 3.832 0.062 

Md8 Dist. river 
  

Dist. river Trap array 10 -1027.446 2074.891 4.223 0.051 

Md13 

Prey 

availability + Elevation Dist. river Trap array 11 -1026.575 2075.151 4.483 0.026 

Md14 

Prey 

availability + Dist. river Dist. river Trap array 11 -1026.66 2075.319 4.651 0.024 

Md4 Trap array + 

Dist. 

boundary Dist. river Trap array 15 -1020.902 2071.805 1.137 0.008 

Md1 Trap array 
  

Dist. river Trap array 14 -1023.343 2074.687 4.019 0.004 

Md5 Trap array + Dist. river Dist. river Trap array 15 -1022.447 2074.893 4.225 0 

Md6 Trap array + Elevation Dist. river Trap array 15 -1022.803 2075.605 4.937 0 

 311 

These two models had a cumulative AIC weight of 0.6 and suggested that leopard density was 312 

positively influenced by distance to reserve boundary, with a model-averaged βd2boundary = 0.44 313 

(95% CI = 0.04 ‒ 0.84) (Table 3, Fig 2).  314 

 315 

Figure 2. Expected leopard density (individuals/100 km2) in the Udzungwa mountains, Tanzania, 316 

as the predicted density surface for the state-space S superimposed over each trap array. 317 

Densities are scaled individually for each trap array with green colour indicating low densities, 318 

increasing to higher densities with warmer reddish colours. Camera trap sites are indicated as red 319 

crosses. 320 
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This effect translated into predicted densities that varied from approximately 2 321 

individuals/100 km2 along the reserve border to over 8 individuals/100 km2 in the reserve 322 

interior (Fig 2). Average predicted density per area was lowest in Idete (3.69 leopards per 100 323 

km2), largest in Ruipa (5.91/100 km2) and intermediate in the other areas (see Table 2). Mean 324 

density for the total area surveyed was estimated to be 3.84 individuals per 100 km2 (95% CI 325 

= 2.53 ‒ 5.85/100 km2). As mentioned, the effect of prey abundance on density was included 326 

only in one of the two most supported models, thus not allowing the derivation of a model-327 

averaged estimate. However, we note that despite the 95% CI of the estimated coefficient for 328 

prey occurrence included zero (mean = 0.093, 95% CI = -0.071 ‒ 0.258; model Md15 in 329 

Table 2) the CI mainly encompassed positive values, suggesting a weak positive correlation.  330 

 331 

Discussion 332 

Correlates of leopard density at the landscape level 333 

We analysed factors affecting the spatial variation of leopard density within a heterogeneous 334 

landscape and found that leopard density was primarily associated with distance to reserve 335 

boundary and secondarily with an index of prey abundance. We considered distance to 336 

reserve boundary a proxy for two major factors: extent of protected habitat and gradient in 337 

human disturbance. The Udzungwa Mountains National Park and adjacent Kilombero Nature 338 

Reserve form a relatively large area (3335 km2) of protected habitat. Concomitantly, 339 

increasing distance to reserve boundaries implies decreasing intensity of direct human 340 

disturbance from settlements [53], as indeed distance to settlements positively correlated with 341 

distance to reserve boundaries. Such heavier disturbance at reserve edges is in form of 342 

firewood collection, selective pole and timber logging, trails, poaching and charcoal 343 

production [40, 54]. Importantly, moreover, by assessing that prey abundance was not 344 
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associated with distance to reserve boundary (see Methods) we could exclude that increasing 345 

leopard density away from reserve borders is mediated by an effect of increasing prey 346 

abundance. 347 

 Our findings partially mirror those from a study in South Africa, where edge effects 348 

and higher mortality rates were associated with lowered densities of leopards outside the 349 

protected area relative to inside [15]. Our result also match those of a study from Thailand, in 350 

which leopards were reported to avoid roads and areas with high human activity compared to 351 

undisturbed areas and became more diurnal when human presence became limited [48]. In a 352 

broader perspective, the magnitude of the effect of distance to reserve boundary fits the 353 

known requirement of large carnivores, for large areas of protected habitat [55].  Our results 354 

also suggest a weak positive relationship between leopard density and an index of prey 355 

abundance. We elaborate in Methods the value of this metric of occurrence that accounts for 356 

imperfect detection, a consistent issue when sampling elusive mammals in dense habitats (e.g. 357 

Dorazio et al., 2006), and therefore standardizes occupancy estimation across arrays that 358 

differ markedly in habitat type and across species. We acknowledge that a limitation of this 359 

metric is that it does not measure actual prey abundance or biomass, and it may also under-360 

represent the full spectrum of prey species. Specifically, the species we considered did not 361 

include the arboreal primates and tree hyrax (Dendrohyrax validus), due to camera traps not 362 

detecting them adequately, even though for leopards occurring in the three rainforest blocks 363 

included in our landscape they seemingly represent an important prey resource [40]. Despite 364 

these limitations, we considered our metric to adequately reflect relative differences in prey 365 

abundance across our sampling arrays. Albeit we found that prey abundance had some effect 366 

on leopard density, our results in this regard partially mirror those of Balme, Hunter (12), that 367 
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did not find prey abundance to be the most important factor for a population of leopards in 368 

South African savannah woodland. 369 

We deployed six camera trap arrays covering five habitat types that differ markedly in 370 

vegetation cover, from montane to lowland rainforest, dry forest and wooded grassland (Fig 1; 371 

Table 1). However, we found that the mean density of leopards varied little across these 372 

habitats (3.69 – 5.91 individuals per 100 km2), and model selection indicates these estimates 373 

do not substantially differ. Therefore, we conclude that disturbance avoidance and, 374 

secondarily, prey abundance are more important factors than habitat type for leopards in our 375 

study landscape. This conclusion fits the notion of leopards being habitat generalists [56], and 376 

in our case study their apparent flexibility in respect to habitat may also be contributed by the 377 

fact that leopards are the most abundant large carnivore in Udzungwa (spotted hyenas 378 

[Crocuta crocuta] occur in lower density and lions [Panthera leo] are only occasionally 379 

recorded [40]), thus leopards are not constrained by interactions with other large carnivores. 380 

 We found that baseline encounter probability (p0) was positively correlated with 381 

proximity to rivers, while space-usage (σ) changed with habitat type. Higher encounter 382 

probability close to waterways may be related to habitat structure, with large and frequently 383 

used trails cutting across dense vegetation that may result in optimal detection of animals by 384 

camera traps, as opposed to less dense habitats. Travelling along rivers is also known to be 385 

more energy efficient and favoured places for scent marking and hunting [38, 46, 47]. Higher 386 

abundance close to rivers may increase encounter probability if the two variables are 387 

positively correlated. However, we did not find support for a significant relationship between 388 

density and distance to river.  389 

390 
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Conservation implications  391 

We considered a suite of natural and anthropogenic factors hypothesised to affect 392 

leopard densities in a complex landscape with different habitat types. We found that distance 393 

to protected area boundary, which was in turn correlated to distance to human settlements, 394 

was the single, most influential factor affecting leopard density. We also found that the 395 

importance of this factor overwhelmed the influence of prey abundance, which was retained 396 

in the second-best model, while habitat type did not have an effect. These results support the 397 

notion of high flexibility of the leopard with regards to prey and habitat preferences [41]. 398 

However, intriguingly we had no recaptures of individual leopards between the major habitat 399 

types despite their relative proximity. Our mean population density estimate of 3.84 400 

leopards/100km2 appears in the mid-range when compared to densities from comparable areas 401 

in Africa, where high density estimates of 12.03/100km2 are known from Kenya [29] and low 402 

estimates of 0.59/100km2 are known from Namibia [25]. In Udzungwa, leopards are reported 403 

as extremely rare or locally extinct in the least protected parts of the Kilombero Nature 404 

Reserve [57] and in smaller and poorly protected forests in the range, such as Uzungwa Scarp 405 

[58]. Indeed recent research shows that the reserves adjacent to UMNP have much lower 406 

mammalian abundance and species richness and that this is associated with their level of 407 

protection [54].  408 

Leopards disappearance has been attributed to direct hunting and prey depredation 409 

[59], mirroring findings from the Congo [60] and South Africa [15]. While our study shows 410 

populations in the protected area are in decent densities, the regional metapopulation could be 411 

at risk if they lose connectivity with the major adjacent ecosystems of Selous and Ruaha. Our 412 

findings carry important conservation implications, which are related to the need for 413 

maintaining large areas of continuous, well-protected habitat to preserve viable population of 414 
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large carnivores [13]. This becomes even more imperative given the ever increasing habitat 415 

fragmentation that terrestrial mammals face globally [61]. The establishment of buffer zones, 416 

for example in form of Wildlife Management Areas (WMAs), i.e., areas co-managed with 417 

local communities [62], may be a feasible option for the Udzungwa landscape. WMAs would 418 

ensure greater protection along the currently abrupt edges between reserves and human 419 

settlements [63].   420 
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