
Hamidi et al.

SHORT REPORT

W ⇤
d -test: Robust Distance-Based Multivariate

Analysis of Variance
Bashir Hamidi1,2, Kristin Wallace3, Chenthamarakshan Vasu4 and Alexander V. Alekseyenko1,2,3,5*

*Correspondence:
alekseye@musc.edu
1Program for Human Microbiome
Research, Medical University of
South Carolina, 135 Cannon
Street MSC 200, 29425
Charleston, SC, USA
Full list of author information is
available at the end of the article

Abstract

Background: Community-wide analyses provide an essential means for
evaluation of the e↵ect of interventions or design variables on the composition of
the microbiome. Applications of these analyses are omnipresent in microbiome
literature, yet some of their statistical properties have not been tested for
robustness towards common features of microbiome data. Recently, it has been
reported that PERMANOVA can yield wrong results in the presence of
heteroscedasticity and unbalanced sample sizes.

Findings: We develop a method for multivariate analysis of variance, W ⇤
d , based

on Welch MANOVA that is robust to heteroscedasticity in the data. We do so by
extending a previously reported method that does the same for two-level
independent factor variables. Our approach can accommodate multi-level factors,
stratification, and multiple post hoc testing scenarios. An R language
implementation of the method is available at
https://github.com/alekseyenko/WdStar.

Conclusion: Our method resolves potential for confounding of location and
dispersion e↵ects in multivariate analyses by explicitly accounting for the
di↵erences in multivariate dispersion in the data tested. The methods based on
W ⇤

d have general applicability in microbiome and other ‘omics data analyses.

Keywords: Welch MANOVA; distance MANOVA; heteroscedastic test

1 Introduction
Beta diversity analyses or community-wide ecological analyses are important tools

for understanding the di↵erentiation of the entire microbiome between experimental

conditions, environments, and treatments. For these analyses, specialized distance

metrics are used to capture the multivariate relationships between each pair of sam-

ples in the dataset. Analysis of variance-like techniques, such as PERMANOVA [1],

may then be used to determine if an overall di↵erence exists between conditions. The

distances use all of the measured taxa information simultaneously without the need

to explicitly estimate individual covariances. The utility of these methods is hard

to underestimate as virtually every recent major microbiome report has used some

form of a community-wide association analysis. On many occasions the comparison

reveals major di↵erences between the groups. However, one is not guaranteed to

find one. For example, in Redel et al. [2] the authors have found that there are

significant di↵erences in cutaneous microbiota in diabetic vs. non-diabetic subject

feet, but not on their hands (see figure 5). This lack of di↵erence is an important

indicator about the potential pathobiological processes that lead to diabetic foot

ulcers. Therefore, getting the correct result in such comparisons is important.
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From the statistical stand point, community-wide analyses test the hypothesis

that the data from two or more conditions share the location parameter (cen-

troid or multivariate mean). Caution, however, needs to be taken to ensure that

potential violations of assumptions do not lead to adverse statistical behavior of

PERMANOVA. Two such assumptions that are commonly violated are the mul-

tivariate uniformity of variability (homoscedasticity) and sample size balance. We

have previously shown that simultaneous violation of both assumptions leads to

PERMANOVA analysis with indiscriminate rejection and type I error inflation or

to significant loss of power up to inability to make any rejections at all [3]. Unfortu-

nately, heteroscedasticity across conditions is a very common feature of microbiome

data. Thus new robust methods are needed to ensure correct data analysis.

We have previously described a T 2
w test, which presents a robust solution for com-

paring two groups of microbiome samples [3]. The two-sample scenario is common,

but not universally satisfying as many study designs often include many di↵erent

sample types, e.g. from a↵ected and una↵ected sites of a study subject and from

a matched healthy control [4]. Here we describe a further extension of T 2
w to allow

for arbitrary number of groups with possibly di↵erent within group variability to

be compared using an omnibus test for equality of means. Our method presents an

advance to the state-of-the-art by introducing a way to compare data from multiple

conditions where heteroscedasticity is a nuisance and only the di↵erences between

location of the data are important.

2 Univariate Welch MANOVA
Univariate solutions for a heteroscedastic test to compare k-means deal with finding

asymptotic distributions for
P

wj(x̄j�µ̂)2, as defined later in equations (2) and (3).

Welch’s solution [5] is perhaps the most known and well adopted in statistical

literature. Next we briefly describe it, as we will build on extending this statistic to

multivariate data.

Suppose we observe data from k populations xj = (x(1)
j , . . . , x

(nj)
j ) with poten-

tially unequal number of observations, nj for j = 1, . . . , k, in each. Let x̄j and s2j
denote the means and variances for each sample. The Welch ANOVA statistic is

W ⇤ =

P
wj(x̄j � µ̂)2/(k � 1)

1 + [2(k � 2)/(k2 � 1)]
P

hj
, (1)

where

wj = nj/s
2
j , (2)

µ̂ =
X

wj x̄j/W, (3)

W =
X

wj , and (4)

hj = (1� wj/W )2/(nj � 1). (5)

The Welch test uses F (k � 1, f), for f = (k2 � 1)/(3/
P

hj) distribution to draw

inference with W ⇤[5].
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3 Calculation of multivariate Welch W-statistic on distances
To derive a Welch W ⇤ statistic suitable for analysis of microbiome data, W ⇤

d , we

follow the same approach as we did in our derivation of T 2
w. We first demonstrate

that in the univariate case W ⇤
d can be expressed in terms of sums of pairwise square

di↵erences. Next we observe that these sums represent the squares of the univariate

Euclidean distances, which allows for a direct extension of the W ⇤
d statistic com-

putation for multivariate Euclidean distances and in fact any arbitrary distance or

dissimilarity metric. The derivation of the statistic in terms of dissimilarities makes

it suitable for analysis of microbiome data via a permutation test.

We have previously shown [3] that the sample variances can be written as

s2j =
1

nj (nj � 1)

njX

p<q
p,q=1

⇣
x(p)
j � x(q)

j

⌘2
=

1

nj (nj � 1)

njX

p<q
p,q=1

d(j)pq

2
, (6)

where x(p)
j and x(q)

j denote p-th and q-th observations in the j-th level, d(j)pq is

distance between them. Hence,

wj = nj/s
2
j = (nj � 1)n2

j

 
X

p<q

d(j)pq

2

!�1

. (7)

Now consider,

kX

j=1

wj(x̄j � µ̂)2 =
kX

j=1

wj(x̄j �
kX

i=1

wix̄i/W )2 (8)

=
kX

j=1

wj

W 2

 
Wx̄j �

kX

i=1

wix̄i

!2

(9)

=
kX

j=1

wj

W 2

0

@W 2x̄2
j � 2Wx̄j

kX

i=1

wix̄i +

"
kX

i=1

wix̄i

#21

A (10)

=
kX

j=1

wj x̄
2
j �

2

W

kX

i,j=1

wiwj x̄ix̄j +
kX

j=1

wj

W 2

"
kX

i=1

wix̄i

#2
(11)

=
kX

j=1

wj x̄
2
j �

2

W

kX

i,j=1

wiwj x̄ix̄j +
kX

j=1

1

W

kX

i,j=1

wiwj x̄ix̄j(12)

=
1

2W

0

@2W
kX

j=1

wj x̄
2
j � 2

kX

i,j=1

wiwj x̄ix̄j

1

A (13)

=
1

2W

0

@
kX

i,j=1

wiwj x̄
2
j � 2

kX

i,j=1

wiwj x̄ix̄j +
kX

i,j=1

wiwj x̄
2
i

1

A(14)

=
1

2W

kX

i,j=1

wiwj(x̄i � x̄j)
2 (15)

=
1

W

X

i<j

wiwj(x̄i � x̄j)
2. (16)
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Equation (16) means that
P

j wj(x̄j � µ̂)2 can be expressed as weighted sum of

squares of pairwise inter-group mean di↵erences, which makes for a convenient

expression to compute. Finally, we have previously shown that squares of mean

di↵erences can be expressed in terms of squares of pairwise sample di↵erences [3],

i.e.

(x̄i � x̄j)
2 =

ni + nj

ninj

2

664
1

ni + nj

ni+njX

i<j
i,j=1

(z(i,j)i � z(i,j)j )2 (17)

�

0

B@
1

ni

niX

p<q
p,q=1

(x(p)
i � x(q)

i )2 +
1

nj

njX

p<q
p,q=1

(x(p)
j � x(q)

j )2

1

CA

3

75 , (18)

where z(i,j) =
⇣
z(i,j)1 , . . . , z(i,j)ni+nj

⌘
=
⇣
x(1)
i , . . . , x(ni)

i , x(1)
j , . . . , x

(nj)
j

⌘
. The squares

of the pairwise di↵erences under the summations in equation (18) can be thought of

as the squares of the pairwise Euclidean distances in one dimension. This allows us

to generalize the univariate Euclidean Welch ANOVA to MANOVA with arbitrary

distances, where the distances can be suitably defined for the data at hand, including

all of common distances used with microbiome data.

Note that in contrast to the PERMANOVA statistic, the distance-based T 2
w and

W ⇤
d explicitly account for potentially unbalanced number of observations and di↵er-

ences in multivariate spread in the two samples. Finally, observe that W ⇤
d reduces

to T 2
w when k = 2, as W ⇤ reduces to Welch t-statistic.

As with T 2
w, the exact distribution of the multivariate distance-based W ⇤

d statistic

is dependent on many factors, such as the dimensionality of underlying data, dis-

tributions of the random variables comprising the data, the exact distance metric

used, and the number of groups compared k. To make a practical general test, we

use permutation testing to establish the significance. To do so, we compute W ⇤
d (i)

on m permutations of the original data, for i = 1, . . . ,m, and estimate the signifi-

cance as the fraction of times the permuted statistic is greater than or equal to Wd,

i.e. p =
1

m

mX

i

(W ⇤
d  W ⇤

d (i)). Here (.) designates the indicator function.

Confounder modeling and repeated measures are often key elements of microbiome

study design. These can be accounted for in permutation testing procedures using re-

stricted permutation. For example, the e↵ect of a discrete valued confounder can be

removed from the P-value calculation by restricting permutations to only within the

levels of the confounding variable. This amounts to an application of stratified analy-

sis of variance. Similarly, restricting permutations to within individual subjects only,

results in a repeated measures analysis. Notice that the test statistic under restricted

permutations remains the same, but the null distribution is changed to reflect the

desired comparison. Methods for W ⇤
d and these restricted permutation methods are

implemented in our software, available at https://github.com/alekseyenko/WdStar.

When multiple means are compared with W ⇤
d , a statistically significant result

may prompt the question about attribution of the di↵erences to a specific group or

groups. Post hoc testing procedures are used to perform that kind of analysis. There

are many possible ways to design the post hoc testing procedures, but the guiding
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principle due to potential for loss of power to multiple testing should be to minimize

the number of tests performed. For this reason, in addition to all possible pairwise

(one versus one) tests, it may be interesting and relevant to test one group versus

all others. In this scenario, samples from one experimental group are compared to

pooled samples from the remaining groups. The statistical test for this comparison

can equivalently be either T 2
w or W ⇤

d on two level factors. We illustrate the use of one

versus all post hoc procedure in our application example in section 5 and provide

corresponding computation routines in our software.

4 Empirical evaluation of W ⇤
d type I error

The principal evaluation that is required to assure statistical properties of W ⇤
d is

demonstration of appropriate type I error control. For this purpose, we consider

the univariate heteroscedastic case with 3 groups,
n
x(k1)
1

o
,
n
x(k2)
2

o
,
n
x(k3)
3

o
, k1 =

1 . . . , n1, k2 = 1 . . . , n2, and k3 = 1 . . . , n3, of samples to compare, where n1, n2, n3

are the numbers of observations in each group. We let x(k1)
1

i.i.d.⇠ N (0, 1) be the

reference group, and x(k2)
2

i.i.d.⇠ N (0, s2) and x(k3)
3

i.i.d.⇠ N (0, s4) be the groups with

di↵erent variance s2 and s4, respectively, to introduce heteroscedasticity. In our

simulation, we let s2 = {1, 0.8, 0.2} to control the degree of heteroscedasticity in

the range from none to large. Finally, we let the sample sizes n1, n2, and n3 take

values of 5, 10, 20, or 40 to generate data with varying total sample size and degree

of balance. For each combination of sample sizes and variance we have performed

1,000 simulations of the data for a total of 192,000 datasets. Each dataset has

been analyzed using our reference implementation of W ⇤
d , PERMANOVA (adonis

function in R library vegan), and univariate Welch ANOVA (oneway.test in R library

stats). For distance-based methods, Euclidean distances have been used. Details of

simulation are available as a knitted R Markdown file in Additional File 1.

The simulation results comprise the fraction of rejected null hypotheses at ↵ =

0.05 by each test (Figure 1A). A test properly controlling the type I error is expected

to have the fraction of rejections equal to the nominal error rate (0.05). Notice that

the proposed W ⇤
d test, in fact, produces the expected error rates over the entire

range of simulation parameters. Similarly to our previous observations in the two-

sample case, PERMANOVA is not robust to heteroscedasticity when sample size

imbalance is present. Observe that whenever the number of observations in the

reference group (the one with variance equal to 1) is smaller than that in the less

dispersed groups the fraction of rejections is overly inflated, resulting in higher type

I error. Also notice that when there are more observations in the reference group

than in others (e.g. n1 = 40, n2, n3 < 40) it is hard for PERMANOVA to make the

rejections, resulting in approximately zero type I error.

Interestingly, when we compare the raw p-values obtained from W ⇤
d to those from

the distribution based asymptotic Welch test, we see a good concordance between

the two (Figure 1B). The variability around the trendline is most likely due to

Monte Carlo error associated with permutation testing and small sample size. On

the contrary, when PERMANOVA is compared to the distribution-based asymptotic

test the fit is clearly much noisier (Figure 1C). The concordance is much smaller

for tests involving groups with larger degree of heteroscedasticity. The code used to

produce the plots in Figure 1 is available as Additional File 2.
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Finally, given the equivalence of the W ⇤
d to T 2

w for k = 2, and the fact that the

two-level test is powered similarly to PERMANOVA, we expect the test described

in this paper to be of similar power for k > 2 as well. The full empirical evaluation of

power characteristics for k > 2 is hard to achieve in non-superficial setups as most

realistic simulation scenarios present an infinite universe for choice of parameters.

5 Application example: Colorectal cancer disparity and
microbiome

Extensive scientific literature suggests and important, yet not fully understood role

of the intestinal microbiome in the development, progression, and treatment of col-

orectal cancers (CRC). Several genus level bacterial taxa have been associated with

CRC [6] but the role of personal characteristics in influencing the presence of CRC-

associated bacteria is not well understood. A few studies have noted marked di↵er-

ences in the microbial environment in the gut of AAs versus others [6, 7, 8, 9, 10]

and suggested di↵erences in microbial composition among those with and without

colorectal polyps and cancer. Others found distinct di↵erences in the microbes pop-

ulating the proximal and distal colo-rectum [11, 12]. Lower socioeconomic status

and western diet have been associated with a lower microbial diversity, especially in

the distal colon [13, 14]. Microbial signature approaches have been used for devel-

opment of diagnostic biomarkers [8, 15, 16, 17] or assessing di↵erences in immune

gene expression [12] – highlighting the increasing importance of statistical methods

to analyze clusters of microbes-genes while also taking into account patient level

variables. The role of the gut microbiome in CRC disparities is likewise poorly un-

derstood [18]. Here we use a pilot CRC dataset to demonstrate the utility of W ⇤
d in

uncovering signals potentially missed due to heteroscedasticity.

The Medical University of South Carolina (MUSC) Institutional Review Board

approved all study activities. The Cancer Registry at Hollings Cancer Center (HCC)

at MUSC was used to identify all cases of CRC. The study population was com-

prised of a sample of histologically-confirmed cases diagnosed between January

1, 2000 and June 30, 2015. Patients were of either AA or CA descent. We ab-

stracted data on demographic characteristics, clinical and pathological variables

at diagnosis, treatment received, and patient outcome from the cancer registry.

For each case, we also obtained a formalin-fixed, para�n-embedded tissue blocks

from the MUSC Department of Pathology and Laboratory Medicine. DNA was

extracted following standard protocols in the laboratory. Briefly, the colonic tis-

sue was transferred to a tube containing lysis bu↵er (1% SDS, 1 mg/ml Pro-

teinase K, LTE pH 8.0). The solution was incubated at 50�C for 1 hour, fol-

lowed by phenol/chloroform extraction and ethanol precipitation. The quantity

and quality of DNA was then determined by running a small aliquot on a 1%

agarose gel and comparing it to a set of DNA standards. The extracted DNA was

stored at �80�C. V3 and V4 regions of the 16S rRNA gene have been amplified

using 16S Amplicon PCR Forward Primer = 5’ TCGTCGGCAGCGTCAGAT-

GTGTATAAGAGACAGCCTACGGGNGGCWGCAG 16S Amplicon PCR Re-

verse Primer = 5’ GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGAC-

TACHVGGGTATCTAATCC using KAPA HiFi enzyme. The library has been pre-

pared using Nextera XT index kits, and sequenced using MiSeq Reagent Kit v3
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in a Miseq instrument. Taxonomic assignments have been generated using QIIME

preprocessing application of Illumina Basespace platform with default parameters.

Using genus level data restricted to genera previously reported in a systematic re-

view to be associated with CRC [19], Jensen-Shannon Divergence distances have

been computed between the subjects of Caucasian and African American races with

cancers in distal and proximal locations of their colons (Table 1). See Additional

file 4 for the list of 14 genera retained for this analysis.

We selected a convenience sample from our MUSC cancer cohort of 20 patients

(10 AAs, 10 CAs) which we matched on colonic location (proximal, distal) and sex.

Of the 20 cases, 6 have been removed due to low sequence count (< 100) within the

genera of interest. Due to extremely small pilot-scale sample size, the group unbal-

ance and potential for heteroscedasticity prompt caution with using PERMANOVA

for these comparisons (Figure 2). Indeed, the race and location interaction model

achieves significance (P < 0.05) with W ⇤
d test, while the PERMANOVA result is

insignificant (P = 0.28) (Table 2). Likewise, there is a discrepancy in test results

for the primary e↵ect of the race at 0.05 significance threshold.

Significance of the interaction term may dictate additional questions about, which

groups di↵er from the rest. We demonstrate the use of one versus all post hoc testing

by comparing each group with the rest of the samples (Table 3). As expected, these

indicate a significant di↵erence (P < 0.05) in the microbiome of the African Amer-

ican distal CRC samples from the rest, and a trend for di↵erence of the Caucasian

distal samples. Note that the interpretations of these results might di↵er if multiple

comparison issues are taken into account. Due to the pilot nature of these data, we

do not perform any formal corrections, as our goal is to determine the plausibility

of significant di↵erences, which are to be evaluated in appropriately sized datasets

where power is not a concern.

The data and R Markdown for this application is included in Additional file 4.

6 Discussion and Conclusion
Community-wide analyses where the entire microbiome is modelled as a response

variable of one or more factors has become a standard first-line of analysis technique

in the field. These techniques address the question of overall aggregate changes in

the microbiome in response to explanatory variables without the need to model

each individual microbiome constituent. PERMANOVA [1] has been one of the most

dominant tools for such analyses, although the potential for confounding of location

and dispersion e↵ects has been recognized for a long time [20, 21]. The W ⇤
d method

closes the gap by explicitly accounting for the di↵erences in multivariate dispersion

in the data tested, which has been shown to be associated with adverse statistical

properties in PERMANOVA [3]. Current heteroscedasticity-aware methodologies

allow for modeling multi-level factors, stratification, and multiple post hoc testing

scenarios.

Although originally developed for discrete-valued covariates, PERMANOVA re-

mains a viable analysis option for continuous covariates as well when multivariate

regression-like formula are utilized [22]. However, the e↵ect of heteroscedasticity

has not been rigorously evaluated or addressed for such analyses. To be fair, het-

eroscedasticity with continuous covariates is an issue that does not have a generic
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statistical solution applicable in most cases. A more cautious analysis involving con-

tinuous covariates may require corroboration with discretized independent variables

by W ⇤
d , but has to also account for potential statistical power issues pertaining to

discretization.

A major limitation of most community-wide analyses is that those often do not

yield a natural unified framework for evaluation of taxon-level e↵ects. Currently,

methods that have this unifying ability are emerging [23]. None of these, however,

are evaluated for robustness with heteroscedastic data yet.
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Figures

Figure 1 Evaluation of type I errors of W ⇤
d and PERMANOVA permutation tests Simulation

under the null hypothesis results for comparison of W ⇤
d (Wstar), PERMANOVA (Permanova) and

distribution-based Welch ANOVA F (WelchF) tests are presented. In panel A, we evaluate the
fraction of null hypotheses that have been rejected by each test at ↵ = 0.05. The subpanels of A,
correspond to simulated datasets with corresponding number of samples in the non-reference
groups, with columns corresponding to the least dispersed and rows corresponding to the most
dispersed sample. In panel B, the raw p-values from W ⇤

d test are plotted against those for the
same data with Welch ANOVA F-test. In panel C, we do the same for PERMANOVA p-values and
color the points by respective degree of heteroscedasticity in the simulated dataset.

Figure 2 PCoA plot of the JSD distances between CRC microbiome samples. African American
distal (red) samples appear to be separated on PC1 from the samples in the proximal AA (black)
and Caucasian (gray) and Caucasian distal (orange) samples. Likewise, the plot suggest that the
multivariate spread may di↵er dramatically in the compared groups with AA distal samples being
most concentrated relative to the other groups.
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Tables

Table 1 Number of the subjects in the colorectal cancer example analysis.

Race Cancer Location N
African American distal 2

proximal 3
Caucasian distal 5

proximal 4

Table 2 Significance of the primary and interaction e↵ects by PERMANOVA and W ⇤
d tests.

Covariate PERMANOVA P-value W ⇤
d P-value

Race 0.064 0.047
Location 0.907 0.908

Race & Location 0.282 0.037

Table 3 One versus all post hoc comparisons of the interaction terms.

Group T 2
w statistic W ⇤

d P-value
AA distal 8.88 0.039
CA distal 1.93 0.075

AA proximal 0.36 0.936
CA proximal 0.70 0.665

Additional Files
Additional file 1 — Test Wstar simulation.html
Knitted HTML R Markdown document detailing the steps of producing the simulation datasets and running each
test to evaluate the Type I error performance of W⇤

d relative to PERMANOVA and asymptotic Welch F test.

Additional file 2 — plot Wstar.html
Knitted HTML R Markdown document containing the code used to produce Figure 1.

Additional file 3 — MUSC CRC.RData
R Data file containing the R package phyloseq object with data for the application example. The object includes the
genus level abundance tables, sample data containing designations of the race and CRC location, and taxonomic
table for the data.

Additional file 4 — 16S alone taxa of interest.html
Knitted HTML R Markdown document detailing application example analyses.

Availability of data and materials

All data, software and other materials are available at https://github.com/alekseyenko/WdStar.
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