
elPrep 4: A multithreaded framework for sequence analysis

Charlotte Herzeel1Y*, Pascal Costanza1Y, Dries Decap1,2, Jan Fostier1,2, Wilfried
Verachtert1

1 ExaScience Life Lab, imec, Leuven, Belgium
2 Department of Information Technology, Ghent University - imec, Ghent, Belgium

YThese authors contributed equally to this work.
* Charlotte.Herzeel@imec.be

Abstract

We present elPrep 4, a reimplementation from scratch of the elPrep framework for
processing sequence alignment map files in the Go programming language. elPrep 4
includes multiple new features allowing us to process all of the preparation steps defined
by the GATK Best Practice pipelines for variant calling. This includes new and
improved functionality for sorting, (optical) duplicate marking, base quality score
recalibration, BED and VCF parsing, and various filtering options. The
implementations of these options in elPrep 4 faithfully reproduce the outcomes of their
counterparts in GATK 4, SAMtools, and Picard, even though the underlying algorithms
are redesigned to take advantage of elPrep’s parallel execution framework to vastly
improve the runtime and resource use compared to these tools. Our benchmarks show
that elPrep executes the preparation steps of the GATK Best Practices up to 13x faster
on WES data, and up to 7.4x faster for WGS data compared to running the same
pipeline with GATK 4, while utilizing fewer compute resources.

Introduction 1

elPrep 4 is a vastly extended reimplementation of elPrep [1], a multithreaded tool for 2

preparing sequence alignment/map files (SAM/BAM) [2] for variant calling in DNA 3

sequencing pipelines. Which preparation steps are used in a pipeline depends on the 4

application, but, in general, they prepare the aligned read data in some way for 5

statistical analysis, and they may include steps for filtering out unmapped reads or 6

reads based on genomic regions of interest, sorting reads for coordinate order, marking 7

the reads that are optical or PCR duplicates, calculating and applying base quality 8

score recalibration, and so on. The GATK Best Practices [3] for example define a 4-step 9

pipeline –and a couple of variations– for preparing data for variant calling with 10

GATK [4], one of the most widely used variant callers. 11

elPrep differs from other tools for processing SAM/BAM files such as SAMtools [5], 12

Picard, and GATK 4 [4]1 in terms of its software architecture that allows executing 13

sequencing pipelines by making only a single pass through the data, independent of the 14

number of steps specified in the pipeline description. This software architecture is 15

designed to avoid repeated file I/O by keeping data as long as possible in memory 16

during execution, to merge the computations of different preparation steps, and to avoid 17

1The recent release of GATK 4 contains preparation tools subsuming the Picard software.

November 22, 2018 1/15

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492249doi: bioRxiv preprint

https://doi.org/10.1101/492249
http://creativecommons.org/licenses/by/4.0/

unnecessary synchronization while parallelizing execution, all of which significantly 18

reduce the time needed to execute a sequencing pipeline [1]. 19

elPrep 4 is a complete redesign and reimplementation of elPrep [1] in Go, an 20

open-source programming language developed by Google. Go is a statically typed, 21

compiled language featuring memory safety, parallel garbage collection, type inferencing, 22

and support for concurrency utilizing multiple cores, which gives us access to new 23

software optimization strategies to further improve the performance of elPrep. The 24

original implementation of elPrep was written in Common Lisp, a language with good 25

support for low-level performance optimizations thanks to optional type declarations, 26

code inlining, stack-based memory allocation, and multithreading features. 27

One aspect specific to a sequencing application such as elPrep is that it needs to 28

process hundreds of gigabytes of data, putting a tremendous pressure on memory 29

management [6]. Common Lisp uses a stop-and-copy, stop-the-world garbage collector, 30

which we needed to turn off because it interfered too much with the multithreaded 31

execution of elPrep as it frequently pauses the program. Without garbage collection, we 32

needed to employ a rigid programming style where we reuse memory and avoid 33

unnecessary memory allocation as much as possible, increasing the complexity for 34

programming and maintaining elPrep. Go comes with a concurrent, parallel garbage 35

collector which solves this problem [6]. Other advantages of switching to Go include its 36

portable, free compiler and modern language features such as type inferencing, UTF8 by 37

default, escape analysis by the compiler, and so on. 38

The new elPrep 4 framework also allows us to more easily add new functionalities, 39

and to implement all of the preparation steps described by the GATK Best Practices [3]. 40

Two key contributions include algorithms for optical duplicate marking and base quality 41

score recalibration, both optimized for efficient parallel execution in the elPrep 42

framework, while producing the same results compared to their respective 43

implementations in Picard and GATK 4. This involves a non-trivial reformulation of 44

these algorithms that, compared to the original algorithms in Picard and GATK 4, 45

avoid the use of intermediate files, avoid multiple iteration loops over the data, and are 46

parallel. 47

We show that elPrep 4 drastically reduces the runtime and resource cost for running 48

sequencing pipelines by benchmarking a 4-step pipeline from the GATK Best Practices 49

in elPrep and comparing it to both the GATK 3.8 and GATK 4 runtimes. We also 50

discuss a scaling experiment on Amazon Web Services (AWS) that compares the dollar 51

cost of running elPrep 4 versus GATK 4 to process both whole-exome and 52

whole-genome data. 53

Implementation 54

elPrep is developed at the ExaScience Life Lab (http://www.exascience.com) for the 55

Linux operating system. elPrep 4 is written in Go, a programming language developed 56

by Google. Source code and documentation are available at 57

http://github.com/ExaScience/elprep under the terms of the GNU Affero General 58

Public License version 3 as published by the Free Software Foundation, with Additional 59

Terms. Demos and test data can be downloaded from our Github repository at 60

http://github.com/ExaScience/elprep/tree/master/demo. 61

Materials and methods 62

elPrep 4 extends and improves on the original elPrep [1] functionality. For example, 63

with elPrep 4 it is possible to execute all preparation steps recommended by the GATK 64

November 22, 2018 2/15

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492249doi: bioRxiv preprint

https://doi.org/10.1101/492249
http://creativecommons.org/licenses/by/4.0/

Best Practices [3] for variant calling, but it can also be used for implementing other 65

types of pipelines [7]. We present an overview of the newly added functionality, as well 66

as the non-trivial algorithms we designed to implement this. 67

elPrep 4 overview 68

elPrep 4 introduces the following new features: 69

1. Base quality score recalibration (BQSR): We added an option (–bqsr) to perform 70

BQSR. This option essentially combines the semantics of the GATK 4 commands 71

BaseRecalibrator and ApplyBQSR, producing identical results. 72

2. Optical duplicate marking: We added an option (–mark-optical-duplicates) to 73

perform optical duplicate marking. The Picard/GATK 4 option for duplicate 74

marking (MarkDuplicates) automatically performs optical duplicate marking after 75

a generic duplicate marking phase based on adapted mapping positions of reads. 76

The optical duplicate marking phase is used to generate metrics to distinguish 77

between PCR and optical duplicates. The –mark-optical-duplicates option tells 78

elPrep 4 to do the same. 79

3. Metrics: elPrep now generates metrics files that contain statistics about the 80

number of unmapped reads, secondary reads, read duplicates, base quality scores, 81

etc. It has the option to output the same metrics as the .metrics and .recal 82

metrics generated by Picard/GATK 4. The format of the elPrep metrics files is 83

identical to those from Picard/GATK 4 and are compatible with MultiQC [8] for 84

visualization. 85

4. BAM parsing: elPrep 4 previously relied on calling SAMtools for BAM parsing, 86

but now implements BAM parsing itself using the built-in gzip compression 87

library of Go. The compression is now more efficient in terms of runtime. 88

5. VCF parsing: elPrep 4 provides VCF parsing. This was implemented to handle 89

the known sites (cf. dbsnp files) for base quality score recalibration, but can be 90

used to implement other tools. 91

6. Filtering reads based on genomic regions specified by a BED file: This is an 92

option similar to the -L options in SAMtools/Picard/GATK. We added BED file 93

parsing to elPrep to support this. 94

7. Integrated split-filter-merge (sfm) mode: elPrep offers two execution modes, 95

namely a mode that operates entirely in RAM, and a mode that splits data using 96

genomic regions for processing (sfm). This was previously implemented using 97

Python scripts, but these are now replaced by an sfm subcommand implemented 98

in Go as well, making elPrep both easier to install and use. 99

In addition to these new features, various performance improvements decreasing 100

both runtime and memory use are implemented in elPrep 4, as shown by our 101

experiments in the Benchmarks section. 102

Command-line interface 103

The elPrep 4 software is distributed as a single binary file for Linux. A pipeline 104

description in elPrep consists of a single command-line invocation. For example, the 105

preparation pipeline recommended by the GATK Best Practices may look like the 106

elPrep command shown in Listing 1. 107

November 22, 2018 3/15

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492249doi: bioRxiv preprint

https://doi.org/10.1101/492249
http://creativecommons.org/licenses/by/4.0/

e lp r ep sfm input .bam output . bam 108

−−mark−dup l i c a t e s −−mark−op t i c a l−dup l i c a t e s output . met r i c s 109

−−so r t ing−order coo rd inate 110

−−bqsr output . r e c a l 111

−−known−s i t e s dbsnp 138 . hg38 . e l s i t e s 112

−−bqsr−r e f e r e n c e hg38 . e l f a s t a 113

Listing 1. elPrep command for executing a GATK Best Practices preparation pipeline.

This elPrep command executes a pipeline that takes as input a BAM file and 114

performs (optical) duplicate marking, generates metrics, sorts the input by coordinate 115

order, and applies base quality score recalibration, producing a single output BAM file. 116

It is possible to specify further parameters for each option, but they are not listed here. 117

The order in which the steps are specified is irrelevant: The elPrep implementation 118

internally takes care of ordering the execution of the steps correctly, while also merging 119

and parallelizing their execution. Note that the VCF and FASTA files need to be 120

converted to an internal format beforehand, cf. the .elsites and .elfasta files in the 121

command. These can be generated by separate elPrep commands once from the original 122

FASTA and VCF files. The .elsites and .elfasta formats can be parsed significantly more 123

efficiently than the VCF and FASTA formats. For more details, please consult our 124

extensive documentation online (http://github.com/ExaScience/elprep). 125

The elPrep 4 framework 126

elPrep, from the beginning, has been designed as a modular plug-in architecture where 127

the implementation of SAM/BAM tools is separated from the engine that parallelizes 128

and merges their execution [1]. While many of the core ideas from the original elPrep 129

architecture remain unchanged, the elPrep 4 framework introduces a number of changes 130

that make it easier to implement more complex SAM/BAM tools. 131

A phased, filtering architecture 132

A key idea in elPrep is to distinguish between SAM/BAM tools that can be expressed 133

as operations on individual reads or filters, and operations such as sorting that operate 134

on the whole set of reads [1]. Examples of filters include operations to remove 135

unmapped reads, or remove reads based on genomic regions, but we have also shown 136

that more complex operations such as duplicate marking can be expressed as filters [1]. 137

Conceptually, elPrep distinguishes between three phases when executing pipelines: 138

1. Phase 1: parse the reads from file into memory while applying a first set of filters. 139

This phase also collects all reads that are not removed by the filters into a data 140

structure representing a SAM/BAM file; 141

2. Phase 2: consecutively execute all operations that use the whole set of reads. 142

These operations can access the reads via the data structure produced in phase 1; 143

3. Phase 3: output the reads from memory to file while applying a final set of filters. 144

The elPrep 4 framework now provides hooks to extend each of these phases to execute 145

additional operations. The main interfaces for implementing new operations are a filter 146

interface based on higher-order functions, and the SAM data structure for representing 147

a SAM/BAM file in memory.2 148

2The original elPrep framework only makes it easy to add new filter operations. Sorting was the
only whole-set operation, and its implementation was integrated with the elPrep framework.

November 22, 2018 4/15

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492249doi: bioRxiv preprint

https://doi.org/10.1101/492249
http://creativecommons.org/licenses/by/4.0/

A modular plug-in architecture 149

The elPrep execution engine is designed as a collection of higher-order functions and 150

filters that are implemented using lambda expressions [1]. Lambda expressions are 151

anonymous, first-class functions, which allow functions to be treated as values that can 152

be used as input values to other functions or can be used as return values. This 153

mechanism is available in languages such as Common Lisp, C++11, Java 8, and our 154

implementation language Go. 155

Concretely, elPrep models filters using two layers of filtering functions (Listing 2). 156

The top level function receives a representation of the SAM header as an argument, so 157

one can modify it there. This function returns another function that has a single 158

alignment object as an argument. Code to inspect or modify an individual read goes 159

there. The function also returns a boolean to indicate if the alignment needs to be kept 160

in the final result output or should be removed.3 161

func myFi lter (header ∗Header) Al ignmentFi l t e r { 162

. . . 163

return func (a ln ∗Alignment) bool { 164

. . . 165

return true or fa l se 166

} 167

} 168

Listing 2. Skeleton structure of an elPrep filter definition.

Next to the filter interface, one can also define tools that operate on the whole set of 169

reads. The elPrep framework provides a Sam data structure that represents a 170

SAM/BAM file in memory (Listing 3). The data structure provides access to the reads 171

from the SAM file in the form of an array (cf. Alignments), so that whole-set operations 172

can be expressed as parallel loops over that alignment array. We developed the 173

Pargo [9] library for parallel programming in Go for this. 174

type Sam struct { 175

Header ∗Header 176

Alignments [] ∗ Alignment 177

. . . 178

} 179

Listing 3. elPrep in memory representation of a SAM/BAM file.

A parallel architecture 180

elPrep is a parallel architecture designed to take advantage of multithreading. elPrep 181

relies on the (statically linked) Pargo library for parallel programming in Go that we 182

developed independently [9]. The Pargo library provides various data structures for 183

expressing parallel algorithms. Specifically, we use the following Pargo packages: 184

• pargo/pipeline: This package provides functions and data structures to construct 185

and execute parallel pipelines. We use this to implement the execution of the 186

SAM/BAM tools expressed as filters (cf. phase 1 and 3). 187

• pargo/sort: We use the parallel merge sort for implementing the algorithm for 188

sorting reads by coordinate. 189

3The original elPrep interface for defining filters in the Common Lisp implementation had three
layers of functions. In between the header and alignment filter, there was a function for thread-local
storage, but this works differently in Go.

November 22, 2018 5/15

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492249doi: bioRxiv preprint

https://doi.org/10.1101/492249
http://creativecommons.org/licenses/by/4.0/

• pargo/sync: This package provides a parallel hash table. We use this in the 190

implementation of various complex SAM/BAM tools such as duplicate marking, 191

base quality score recalibration, optical duplicate marking, etc. 192

• pargo/parallel: This package provides various functions for parallel range-reduce 193

operations. We use this for implementing various algorithms that operate on the 194

whole set of reads (phase 2). 195

Expressing optical duplicate marking and BQSR in elPrep 4 196

We added optical duplicate marking and base quality score recalibration in elPrep 4, 197

both of which required developing new parallel algorithms that fit in the elPrep 4 198

framework, yet produce the same results as their counterparts in Picard/GATK 4. In 199

the S1 Appendix, we discuss our parallel algorithm for optical duplicate marking. 200

Similarly, in the S2 Appendix, we discuss our parallel algorithm for base quality score 201

recalibration and application in elPrep 4. 202

Results 203

To assess the efficiency of elPrep 4, we set up three different benchmarks where we 204

execute a 4-step preparation pipeline specified by the GATK Best Practices [3]. We 205

discuss raw performance by comparing the runtime and resource use of elPrep 4 versus 206

GATK 4 and GATK 3.8. Subsequently, we discuss a scaling experiment on Amazon 207

Web Services to compare the dollar cost of using elPrep 4 versus GATK 4. 208

Benchmarks comparing elPrep 4 and GATK 4 209

The pipeline we benchmark contains the following steps (as specified by the GATK Best 210

Practices [3]). We list the GATK 4 tool name for each step between brackets: 211

1. Sorting the BAM for coordinate order (SortSam); 212

2. Marking the read duplicates (MarkDuplicates); 213

3. Base quality score recalibration (BaseRecalibrator); 214

4. Applying base quality score recalibration (ApplyBQSR). 215

Data sets 216

We execute our benchmarks for both a whole-exome and whole-genome sequencing of 217

NA12878. We downloaded the FASTQ files from their respective public 218

repositories [10,11] and aligned them using BWA mem [5]. The whole-exome sample 219

was aligned using hg194 and the whole-genome sample using hg38. The pipelines we 220

created for both samples differ in terms of parameters used to take into account the 221

target reference, or in case of the whole-exome sample, to use the BED file with 222

captured regions. 223

4We use hg19 for the genome-in-a-bottle whole-exome sample so that we can use the hg19-compatible
BED file with captured regions that comes with the sample.

November 22, 2018 6/15

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492249doi: bioRxiv preprint

https://doi.org/10.1101/492249
http://creativecommons.org/licenses/by/4.0/

Server and software versions 224

We ran our benchmarks on a 36-core server, consisting of two 18-core Intel Xeon 225

E5-2699v3 Haswell processors clocked at 2.3GHz, allowing the simultaneous execution of 226

up to 72 hyper-threads. The server is equipped with 256GB RAM and 2x400GB SSD 227

disks for storing intermediate data. The machine runs Ubuntu 14.04.5 LTS. We used 228

elPrep 4.0.0 compiled with go1.10.3, gatk-4-0.8.1 using Java 1.8.0 144, and bwa-0.7.17. 229

Whole-exome results 230

The benchmark results for the whole-exome data are shown in Fig. 1. There are three 231

graphs, comparing the runtime, RAM use and disk use5 for GATK 4 and elPrep 4 232

respectively. The runtime graph shows the runtimes for each individual step in case of 233

GATK 4 (top) versus the runtime of the merged steps in elPrep 4 for filter mode and sfm 234

mode (bottom). The filter mode in elPrep 4 executes entirely in RAM, while the sfm 235

mode favours disk use for intermediate results by splitting up the data by chromosomal 236

regions for processing. The final outcomes, meaning the produced BAM, metrics and 237

recalibration files, are the same for GATK 4 and elPrep 4 (both filter and sfm mode). 238

Fig 1. WES benchmarks. Runtime, RAM use, and disk use in GATK 4 vs. elPrep 4
(filter mode) vs. elPrep 4 (sfm mode). We see 5.4-13x speedup for 0.7-2.6x RAM use
and 0.6-0.2x disk use when comparing elPrep 4 filter/sfm to GATK 4. The results, i.e.
final BAM, metrics and recalibration files, are the same for all runs.

The runtime for GATK 4 is the runtimes of the individual pipeline steps added up, 239

as the execution of these steps effectively coincide with seperate GATK 4 command-line 240

invocations. In contrast, the results for elPrep 4 do not differentiate between the steps, 241

as the execution of all steps is merged. The minimum RAM use of GATK 4 is 242

determined by the peak RAM use of the individual steps, which is recorded here for the 243

MarkDuplicates step. The minimum disk use for GATK 4 is determined by looking at 244

the disk use of the individual steps and combining the two subsequent steps that 245

produce the largest sum. This is a good estimate of the minimum disk space since the 246

intermediate BAM files produced by the individual steps can be deleted once they have 247

been processed by the next step, but not before. Here we get a peak disk use for 248

combining the SortSam and MarkDuplicates steps. 249

We see that elPrep 4 (filter mode) is 13x faster, uses 2.6x more RAM, and uses only 250

0.15x of the disk space compared to GATK 4. Using elPrep 4 (sfm mode) we see that 251

elPrep 4 is 5.4x faster than GATK 4, using only 0.7x the RAM and 0.6x the peak disk 252

space that GATK 4 uses. Concretely, we go from a runtime of 58m31s using 31GB of 253

RAM and 26.34GB of disk in GATK 4 to a runtime of 4m35s using 80GB RAM and 254

4GB of disk for the elPrep 4 filter mode, or a runtime of 10m57s using 22GB RAM and 255

15.5GB of disk for the elPrep 4 sfm mode. 256

Overall, elPrep 4 executes the pipeline faster, while making more efficient use of the 257

compute resources (RAM/disk/threads) than GATK 4, in both filter and sfm modes. 258

Whole-genome results 259

The results for our whole-genome benchmark are shown in Fig. 2, comparing runtimes, 260

RAM use and disk use for GATK 4 and elPrep 4 (sfm mode). We see that elPrep 4 261

executes the pipeline 7.4x faster than GATK 4, while using 0.84x of the RAM and just 262

0.7x of the disk space. The runtime goes down from almost 27h in GATK 4 to roughly 263

3h37m in elPrep 4, while RAM use goes down from roughly 229GB in GATK 4 to 264

5Disk use refers to the number of GBs written to disk while executing the pipeline steps.

November 22, 2018 7/15

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492249doi: bioRxiv preprint

https://doi.org/10.1101/492249
http://creativecommons.org/licenses/by/4.0/

192GB in elPrep 4, and the peak disk use goes down from 520GB in GATK 4 to 346GB 265

in elPrep 4. Again, elPrep 4 achieves these speedups while producing the same results 266

compared to the GATK 4 run. 267

Fig 2. WGS benchmarks. Runtime, RAM use, and disk use in GATK 4 vs. elPrep 4
(sfm mode). elPrep 4 executes the pipeline 7.4x faster than GATK 4, using 0.84x of the
RAM, and only 0.7x of the disk space. The final BAM, metrics, and recalibration files
are the same for both runs.

Comparison of outputs elPrep 4 and GATK 4 268

elPrep 4 produces the same output as GATK 4. When we reimplement a tool from 269

GATK 4, Picard, or SAMtools, our goal is to come up with a new algorithm that takes 270

advantage of elPrep’s parallel architecture, yet does not change the semantics of the 271

original algorithm. This means that we try to respect the heuristics, execution order, 272

etc. of the original algorithms as much as possible, so that the outcomes are the same. 273

One challenge is that many of the algorithms are non-deterministic. For example, 274

the GATK 4/Picard mark duplicate algorithm compares reads for duplicate marking by 275

comparing the adapted mapping positions and adapted quality scores. When two reads 276

have the same adapted mapping position, the idea is to mark the read with the worse 277

adapted quality score as a duplicate. It may however occur that two reads have the 278

exact same mapping position and the exact same quality score. In this case, which read 279

is marked as the duplicate, conceptually does not matter, and in Picard and GATK 4, 280

which one is marked will just depend on the order of the reads in the input file. Since 281

elPrep parallelizes the processing of reads, they are not always examined in the same 282

order of the input file. Because of this, there may be small differences when comparing 283

BAMs, albeit not meaningful differences. In previous work we discussed how to run 284

elPrep in a deterministic mode for duplicate marking to compare BAMs between GATK 285

4/Picard and elPrep exactly using Unix diff [1]. One can now in addition compare the 286

metrics files that are generated with optical duplicate marking using Unix diff or 287

MultiQC. 288

Similarly, we can show that the base quality score recalibration (BQSR) algorithm in 289

elPrep 4 produces the exact same result as GATK 4. We can verify this by comparing 290

the .recal files that contain the BQSR statistics and are generated by both tools using 291

Unix diff or MultiQC. The BQSR algorithm takes into account duplicated reads for 292

calculating these statistics, and since duplicate marking is non-deterministic, an exact 293

comparison between GATK 4 and elPrep 4 only makes sense when they are passed the 294

exact same input BAM for BQSR calculation. So when we call GATK 4 and elPrep 4 295

with a BAM file that is already coordinate sorted and marked for duplicates, we see 296

that the .recal files that are produced by both tools when performing BQSR are exactly 297

the same when doing a Unix diff command. We can also compare the BAMs produced 298

by GATK 4 and elPrep 4 using Unix diff, but it is important to first sort the optional 299

fields in each read, and sort the files using Unix sort. The latter are needed to handle 300

the non-deterministic order of the optional fields on the one hand (see SAM/BAM 301

specification [2]), and the non-determinism of sorting for coordinate order –when 302

multiple reads have the same mapping positions. A recipe for comparing the execution 303

of GATK 4 and elPrep 4 is given below: 304

1. Sort input BAM by query name to handle non-determinism of the coordinate sort 305

in the next step; 306

2. Sort + mark the input BAM for duplicates (using elPrep or GATK/Picard); 307

November 22, 2018 8/15

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492249doi: bioRxiv preprint

https://doi.org/10.1101/492249
http://creativecommons.org/licenses/by/4.0/

3. Run elPrep with –bqsr and –deterministic mode on the BAM from step 2; 308

4. Run GATK with BaseRecalibrator and ApplyBQSR on the BAM from step 2; 309

5. Perform a Unix diff on .recal files created by elPrep and GATK runs; 310

6. Remove PG tag and sort optional fields of elPrep and GATK output BAMs (using 311

biobambam [14]); 312

7. Unix sort elPrep and GATK SAMs; 313

8. Perform Unix diff on elPrep and GATK SAMs. 314

The restrictions that are needed for introducing determinism in the pipeline 315

executions for exact comparisons are in general not recommended when using elPrep 4. 316

They create performance bottlenecks without providing any interesting additional 317

information, and are only useful for verifying elPrep 4’s equivalence to GATK 4. 318

Benchmarks comparing elPrep 4 and GATK 3.8 319

The pipeline we benchmark for comparing the performance of elPrep 4 and GATK 3.8 is 320

the same pipeline as the one used for the comparison with GATK 4, but the difference 321

is that Picard tools are used for some of the steps. The functionality of Picard tools and 322

GATK is merged in GATK 4, but for earlier versions of GATK, Picard tools is the 323

standard tool for implementing some of the pipeline steps [3]. 324

Below we list the pipeline steps and the tool that is recommended for processing 325

them in the GATK Best Practices [3] for GATK versions predating GATK 4: 326

1. Sorting the BAM for coordinate order (SortSam from Picard); 327

2. Marking the read duplicates (MarkDuplicates from Picard); 328

3. Base quality score recalibration (BaseRecalibrator from GATK); 329

4. Applying base quality score recalibration (PrintReads from GATK). 330

Data sets 331

We benchmark the same whole-genome data set that we use in our benchmarks for 332

GATK 4, namely the Illumina Platinum whole-genome sequencing of NA12878 [11]. We 333

created the aligned BAM file from the original FASTQ files by aligning the data against 334

hg38 using bwa mem. 335

Server and software versions 336

We ran our benchmarks on the same 36-core server we use for our GATK 4 benchmarks. 337

We used elPrep 4.0.0 compiled with go1.10.3, gatk-3.8.0 using Java 1.8.0 144, 338

picard-tools-2.9.2, and bwa-0.7.17. 339

Whole-genome results 340

The benchmark results comparing GATK 3.8 and elPrep 4 are shown in Fig. 3. They 341

compare runtime, RAM, and disk use. elPrep 4 executes the pipeline more than 18x 342

faster than GATK 3.8, while using only 0.85x of the peak RAM and 0.8x of the peak 343

disk space that GATK 3.8 uses. Concretely, the runtime goes down from almost 65h to 344

roughly 3h40m, while peak RAM use goes down from 225GB to 192GB, and peak disk 345

use from 442GB to 350GB. Note that the total runtime for GATK 3.8 is the sum of the 346

November 22, 2018 9/15

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492249doi: bioRxiv preprint

https://doi.org/10.1101/492249
http://creativecommons.org/licenses/by/4.0/

runtimes of the individual steps. The peak RAM use for GATK 3.8 is the largest RAM 347

use of the individual steps. The peak disk use of the GATK 3.8 run is calculated as the 348

sum of the disk use for the SortSAM and MarkDuplicates steps. For elPrep 4, all of the 349

pipeline steps are merged and consequently so are the results presented in the figures. 350

Note that we only compare the raw performance of elPrep 4 and GATK 3.8. The 351

algorithms and outcome of the BQSR tools in GATK 4 changed compared to GATK 3.8. 352

Since elPrep 4 implements the GATK 4 algorithm, an exact comparison of outcomes 353

between elPrep 4 and GATK 3.8 is not possible, as is the case when comparing the 354

outcomes of GATK 4 and GATK 3.8. 355

Fig 3. WGS benchmarks. Runtime, RAM use, and disk use in GATK 3.8 vs. elPrep
4 (sfm mode). elPrep 4 executes the pipeline 18.2x faster than GATK 3.8, using 0.85x
of the RAM, and only 0.8x of the disk space.

Scaling experiment on Amazon Web Services 356

We set up a scaling experiment on Amazon Web Services (AWS) cloud servers (EC2) 357

that uses the same 4-step pipeline (sorting, duplicate marking, base quality score 358

recalibration and application) that is used for comparing the raw performance of GATK 359

4 and elPrep 4 in the previous sections. In this experiment, we measure the runtime on 360

a wide range of EC2 instances with different numbers of CPUs and amounts of RAM, 361

which allows us to assess the scaling behavior of GATK 4 and elPrep 4. We also 362

calculate the cost of running the benchmark on each instance based on Amazon EC2 363

on-demand pricing. We show that elPrep scales better and therefore has a stable cost 364

across different configurations, whereas the cost to speed up GATK 4 by allocating 365

more compute resources increases rapidly. 366

Data sets 367

We use the same whole-exome and whole-genome data sets that we use in the rest of the 368

benchmarks for comparing GATK 4 and elPrep 4. Hence, we use the genome-in-a-bottle 369

whole-exome for NA12878 aligned against hg19 [10], and the Illumina Platinum 370

whole-genome for NA12878 aligned against hg38 [11]. 371

Server and software versions 372

We ran the pipeline for both whole-exome and whole-genome data sets on a wide range 373

of Amazon instances, as listed in Table 1. The table lists the name of the instance, 374

followed by the number of virtual CPUs, the amount of virtual RAM, and the dollar 375

cost per hour6 to rent such an instance. All of the Amazon instances run Amazon Linux 376

2. We additionally installed elPrep 4.0.0 compiled with go1.10.3, gatk-4-0.8.1 using Java 377

1.8.0 144, and bwa-0.7.17 for running the benchmarks. 378

Whole-exome results 379

The results for running our whole-exome benchmark on AWS are shown in Fig. 4. The 380

figure shows both the dollar cost and runtime for comparing the GATK 4 and elPrep 4 381

runs on Amazon instances ranging from m5.large to m5.24xlarge. The dollar cost is 382

calculated per run by multiplying its runtime by the dollar cost per hour7 for each 383

6On-demand pricing in EU (Frankfurt) as of October 2018.
7In practice, on AWS, the cost is rounded up for each hour started, but we did no rounding in our

calculations.

November 22, 2018 10/15

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492249doi: bioRxiv preprint

https://doi.org/10.1101/492249
http://creativecommons.org/licenses/by/4.0/

Table 1. AWS instances used in our benchmarks. Prices for EU (Frankfurt) Oct. 2018.

Instance vCPU Memory (GiB) Cost
m5.large 2 8 0.115$/hour
m5.xlarge 4 16 0.23$/hour
m5.2xlarge 8 31 0.46$/hour
m5.4xlarge 16 64 0.92$/hour
m5.12xlarge 48 192 2.76$/hour
m5.24xlarge 96 384 5.52$/hour

Amazon instance type, as listed in Table 1. While the GATK 4 runtime scales 384

somewhat with using a larger instance, the scaling for elPrep 4 is much better, as the 385

runtime is nearly halved with each instance increase. The dollar cost goes up steeply for 386

GATK 4 with each instance increase. In contrast, because elPrep 4 scales so well with 387

the increase of compute resources, the dollar cost per run only increases slightly for each 388

instance increase. 389

Fig 4. AWS WES benchmarks. The dollar cost and runtime on Amazon Web
Services for running a 4-step pipeline on a whole exome using GATK 4 versus elPrep 4
(filter and sfm modes). The runtime of elPrep 4 scales linearly with the increase of
compute resources, while GATK 4 shows only limited improvements. The dollar cost
per run increases steeply with GATK 4 for little performance improvements, while the
dollar cost with elPrep 4 remains mostly stable across all Amazon instances.

The cheapest run of the whole exome is observed for GATK 4 on instance m5.large, 390

where it runs for 69m34s for 0.13$. The cheapest run with elPrep 4 is on instance 391

m5.2xlarge with a runtime of 31m38s for 0.24$ using the elPrep sfm mode. This means 392

the cheapest elPrep 4 run is roughly 2x faster for roughly 2x the cost of the cheapest 393

GATK 4 run. The fastest run of the benchmark is with elPrep filter mode on instance 394

m5.24xlarge, taking 3m25s and costing 0.31$. The fastest run with GATK 4 uses 395

instance m5.12xlarge and takes 50m6s, costing 2.30$. Hence the fastest elPrep 4 run is 396

almost 15x faster than the fastest GATK 4 run, and costs 7.5x less. 397

Whole-genome results 398

The AWS benchmark results for our whole-genome sample are shown in Fig. 5. Both 399

the dollar cost and runtime for GATK 4 and elPrep 4 runs are shown for different 400

Amazon instances. The elPrep 4 benchmark was only run on instance m5.24xlarge, 401

because it is the only instance that satisfies the elPrep memory requirements for this 402

particular whole-genome data set. In contrast, the GATK 4 runs are able to execute on 403

Amazon instances ranging from m5.large to m5.24xlarge. 404

Fig 5. AWS WGS benchmarks. The dollar cost and runtime on Amazon Web
Services for running a 4-step pipeline on a whole genome using GATK 4 versus elPrep 4.
While GATK 4 is able to run on a wider range of Amazon instances, the overall runtime
is much larger compared to elPrep 4. The fastest run with GATK 4 takes over 17.5
hours on m5.12xlarge and costs 48.71$, whereas the elPrep 4 run takes a bit less than 3
hours and costs only 16.25$ on m5.24xlarge, being almost 6x faster for 3x less money.

Similar to the whole-exome results, the overall cheapest run is for GATK 4 on 405

m5.large, costing 2.68$, but taking 23h17m. The elPrep 4 run on m5.24xlarge costs 406

November 22, 2018 11/15

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492249doi: bioRxiv preprint

https://doi.org/10.1101/492249
http://creativecommons.org/licenses/by/4.0/

16.25$, but only takes 2h57s. So the elPrep 4 run is almost 8x faster and costs only 6x 407

more. The fastest GATK 4 run is recorded on instance m5.12x large and takes 17h39m 408

at a cost of 48.71$. This means the elPrep 4 run is almost 6x faster and 3x cheaper 409

than the fastest GATK 4 run. 410

Related Work 411

There is a large body of related work to speed up DNA sequencing pipelines. First of all, 412

the GATK 4 team at Broad Institute is also developing an alternative implementation 413

of GATK 4 in Spark [12]. While GATK 3.8 and earlier versions had options for 414

configuring multithreading, these are mostly removed from the standard GATK 4 415

implementation.8 Instead, the idea is to use the GATK 4 Spark implementation in place 416

of GATK 4 for coarse-grained parallelization. Whereas elPrep focuses on single-node 417

optimizations through multithreaded programming, Spark is optimized for 418

parallelization on a compute cluster [12]. The GATK 4 Spark implementation is 419

currently only available as a beta release, and initial tests show results that differ from 420

the reference GATK 4 implementation, making it difficult to compare to elPrep. Also, 421

the general strategy behind the GATK 4 Spark implementation is to parallelize the 422

individual Spark GATK 4 tools, whereas elPrep combines and merges the execution of 423

several tools, which we have shown to be more scalable and efficient [1]. 424

Similarly, there are many tools such as bamUtil [13], biobambam [14], and 425

Sambamba [15] that focus on optimizing individual pipeline steps, but do not combine 426

the execution of multiple steps, overall yielding a worse performance than elPrep or 427

producing different results [1]. A more recent approach is Sentieon, which promises a 428

10-fold speedup compared to GATK variant calling while producing identical 429

results [16]. They offer a reimplementation of the GATK 3.5 variant caller that is 430

optimized for multithreading, but this implementation is closed source. 431

We previously discussed related work that focuses on optimizing the whole 432

sequencing pipeline by stepping away from community-defined standards such as the 433

SAM/BAM format to define their own data formats and new algorithms for processing 434

them [1]. Examples we previously discussed [1] include ISAAC [17] and BALSA [18] for 435

GPUs, and more recent approaches such as Dragen [19] and Genalice [20] that promise 436

considerable speedups compared to standard tools. Both Dragen and Genalice are 437

commercial tools that implement their own patented algorithms for implementing a full 438

variant calling pipeline. The outcomes therefore differ from the community-defined 439

reference pipelines such those based on the GATK Best Practices. Dragen additionally 440

requires specialized hardware in the form of FPGAs to run. In contrast, elPrep is an 441

open-source implementation that focuses on supporting the community-based standards 442

such as SAM/BAM/VCF/BED, offers the flexibility to configure the pipelines, and 443

targets multicore servers as generally available in, for example, cloud services. 444

Conclusions 445

elPrep 4 is a reimplementation of the elPrep framework [1] for processing sequence 446

alignment map files (SAM/BAM) in the Go programming language. It introduces new 447

and improved functionality for sorting, optical duplicate marking, base quality score 448

recalibration, MultiQC-compatible metrics, and various filtering options. This allows 449

elPrep to process most of the preparation pipelines defined by the GATK Best 450

Practices [3], but also other types of pipelines [7]. For this, we developed new parallel 451

8GATK 4 still relies on multithreading for libraries that implement compute-intensive kernels (e.g.
PairHMM), as well as the multithreading used by the JVM (e.g. for garbage collection).

November 22, 2018 12/15

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492249doi: bioRxiv preprint

https://doi.org/10.1101/492249
http://creativecommons.org/licenses/by/4.0/

algorithms that reimplement the GATK 4 tools for optical duplicate marking and base 452

quality score recalibration in the elPrep 4 framework, greatly speeding up the execution 453

of these steps compared to GATK 4, while producing the same results. 454

In our benchmarks, we compare the raw performance of elPrep 4 to GATK 4 and 455

GATK 3.8, on both a whole-exome and whole-genome data sample of NA12878 456

(Genome in a bottle/Illumina Platinum genome). Compared to GATK 4, elPrep 4 457

executes a 4-step pipeline consisting of sorting, duplicate marking, base quality score 458

recalibration and application, 7.4x faster, while using less RAM and disk space. 459

Similarly, elPrep 4 executes the same pipeline more than 18x faster than GATK 3.8, 460

using fewer RAM and disk resources. We ran a scaling experiment on Amazon Web 461

Services (AWS) to compare the runtime and dollar costs of running the 4-step pipeline 462

on a wide range of Amazon compute instances using elPrep 4 and GATK 4. elPrep 4 463

makes better use of the available compute resources such as CPUs and RAM than 464

GATK 4. The cost of using elPrep 4 on AWS more or less remains stable when using a 465

more expensive AWS instance because of the good scaling. Concretely, the fastest 466

elPrep 4 run of the 4-step pipeline on WES data is 15x faster (3m25s vs 50m6s) and 467

7.5x cheaper (0.31$ vs. 2.30$) than the fastest GATK 4 run. The overall cheapest run is 468

for GATK 4, costing 0.13$, but also taking around 70m. Similarly, the fastest elPrep 4 469

run on AWS for WGS data is 6x faster (less than 3 hours versus 17.5 hours) than the 470

fastest GATK 4 run, costing 3x less (16.25$ vs. 48.71$). Again, overall the cheapest run 471

is recorded for GATK 4 at 2.68$, but it then takes almost 24 hours. 472

elPrep 4 differs from related work in its approach to optimizing sequencing pipelines. 473

Rather than optimizing individual tools, the elPrep 4 framework executes a pipeline by 474

defining an optimal ordering of the steps, and merges and parallelizes their execution, 475

which overall yields a better speedup. elPrep 4 achieves its speedups while offering the 476

flexibility to freely plug pipeline steps in or out, and producing the same results as 477

reference implementations of these steps in GATK 4, Picard, and SAMtools. elPrep 4 478

works with community-defined standards such as SAM/BAM/VCF/BED rather than 479

defining its own formats for achieving its speedups, making elPrep 4 (backwards) 480

compatible with other standard tools and workflows [7, 21,22]. 481

Supporting information 482

S1 Appendix. Expressing optical duplicate marking in elPrep 4. We 483

describe how to express the optical duplicate marking algorithm from Picard/GATK 4 484

as a parallel, single-pass algorithm in the new elPrep 4 framework. 485

S2 Appendix. Expressing base quality score recalibration (BQSR) in 486

elPrep 4. We explain how to express the base quality score recalibration and 487

application algorithms (BQSR) from GATK 4 as a parallel, map-reduce algorithm in 488

the new elPrep 4 framework. 489

References

1. Herzeel C, Costanza P, Decap D, Fostier J, Reumers J. elPrep: High-Performance
Preparation of Sequence Alignment/Map Files for Variant Calling. PLoS ONE.
2015;10(7). doi:10.137/journal.pone.0138868.

2. Li H, Hansaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079.
doi:10.1093/bioinformatics/btp352.

November 22, 2018 13/15

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492249doi: bioRxiv preprint

https://doi.org/10.1101/492249
http://creativecommons.org/licenses/by/4.0/

3. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G,
Levy-Moonshine A, et al. From FastQ Data to High-Confidence Variant Calls:
The Genome Analysis Toolkit Best Practices Pipeline. Curr Protoc Bioinform.
2013;43(1):11.10.1–11.10.33. doi:10.1002/0471250953.bi1110s43.

4. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A
framework for variation discovery and genotyping using next-generation DNA
sequencing data. Nature Genetics. 2011;43:491–498. doi:10.1038/ng.806.

5. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics. 2009;25(14):1754–1760.
doi:10.1093/bioinformatics/btp324.

6. Costanza P. DNA sequencing performance in Go, C++, and Java. FOSDEM
2018, Brussels, Belgium, February 3-4, 2018.

7. Palmeira L, Philippart R, Karssen LC, Herzeel C, Costanza P, Virgilii C.
Hardware and Software Optimizations In Routine NIPT Diagnostics Running On
HPC. The Epigenome in Development and Disease, 18th Annual Meeting of the
Belgian Society of Human Genetics (BeSHG), February 16, 2018, Ghent, Belgium.

8. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis
results for multiple tools and samples in a single report. Bioinformatics.
2016;32(19):3047–3048. doi:10.1093/bioinformatics/btw354.

9. Costanza P. pargo - A library for parallel programming in Go; 2017. Available
from: https://github.com/exascience/pargo [cited September 26, 2018].

10. Icahn School of Medicine at Mount Sinai. High-coverage whole exome sequencing
of CEPH/UTAH female individual (HapMap: NA12878); 2012. Available from:
https://www.ncbi.nlm.nih.gov/sra/SRX731649 [cited September 26, 2018].

11. Illumina Cambridge Ltd . Study: PRJEB3381; 2012. Available from:
https://www.ebi.ac.uk/ena/data/view/PRJEB3381 [cited September 26,
2018].

12. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: Cluster
Computing with Working Sets. In: 2nd USENIX Workshop on Hot Topics in
Cloud Computing; 2010. Available from:
https://www.usenix.org/legacy/events/hotcloud10/tech/ [cited
September 26, 2018].

13. Jun G, Wing MK, Abecasis GR, Kang HM. An efficient and scalable analysis
framework for variant extraction and refinement from population-scale DNA
sequence data. Genome Res. 2015;25:918–925. doi:10.1101/gr.176552.114.

14. Tischler G, Leonard S. biobambam: tools for read pair collation based algorithms
on BAM files. Source Code for Biology and Medicine. 2014;9(13).
doi:10.1186/1751-0473-9-13.

15. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast
processing of NGS alignment. Bioinformatics. 2015;31(12):2032–2034.
doi:10.1093/bioinformatics/btv098.

16. Freed DN, Aldana R, Weber JA, Edwards JS. The Sentieon Genomics Tools - A
fast and accurate solution to variant calling from next-generation sequence data.
bioRxiv. 2017;doi:10.1101/115717.

November 22, 2018 14/15

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492249doi: bioRxiv preprint

https://doi.org/10.1101/492249
http://creativecommons.org/licenses/by/4.0/

17. Raczy C, Petrovski R, Saunders CT, Chorny I, Kruglyak S, Margulies EH, et al.
Isaac: ultra-fast whole-genome secondary analysis on Illumina sequencing
platforms. Bioinformatics. 2013;29(16):2014–2043.
doi:10.1093/bioinformatics/btt314.

18. Luo R, Wong YL, Law WC, Lee LK, Cheung J, Liu CM, et al. BALSA:
integrated secondary analysis for whole-genome and whole-exome sequencing,
accelerated by GPU. PeerJ. 2014;doi:10.7717/peerj.421.

19. DRAGEN Onsite Solutions. Available from:
https://edicogenome.com/dragen-bioit-platform/ [cited September 26,
2018].

20. Plüss M, Kopps AM, Keller I, Meienberg J, Caspar SM, Dubacher N, et al. Need
for speed in accurate whole-genome data analysis: GENALICE MAP challenges
BWA/GATK more than PEMapper/PECaller and Isaac. PNAS.
2017;114(40):E8320–8322. doi:10.1073/pnas.1713830114.

21. Decap D, Reumers J, Herzeel C, Costanza P, Fostier J. Halvade: scalable
sequence analysis with MapReduce. Bioinformatics. 2015;31(15):2482–2488.
doi:10.1093/bioinformatics/btv179.

22. Deng L, Huang G, Zhuang Y, Wei J, Yan Y. HiGene: A high-performance
platform for genomic data analysis. In: 2016 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM); 2016. p. 576–583.

November 22, 2018 15/15

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492249doi: bioRxiv preprint

https://doi.org/10.1101/492249
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492249doi: bioRxiv preprint

https://doi.org/10.1101/492249
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492249doi: bioRxiv preprint

https://doi.org/10.1101/492249
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492249doi: bioRxiv preprint

https://doi.org/10.1101/492249
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492249doi: bioRxiv preprint

https://doi.org/10.1101/492249
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/492249doi: bioRxiv preprint

https://doi.org/10.1101/492249
http://creativecommons.org/licenses/by/4.0/

