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Summary 

Repetitive sequences are hotspots of evolution at multiple levels. However, due to technical 

difficulties involved in their assembly and analysis, the role of repeats in tumor evolution is 

poorly understood. We developed a rigorous motif-based methodology to quantify variations 

in the repeat content of proteomes and genomes, directly from proteomic and genomic raw 

sequence data, and applied it to analyze a wide range of tumors and normal tissues. We 

identify high similarity between the repeat-instability in tumors and their patient-matched 

normal tissues, but also tumor-specific signatures, both in protein expression and in the 

genome, that strongly correlate with cancer progression and robustly predict the tumorigenic 

state. In a patient, the hierarchy of genomic repeat instability signatures accurately 

reconstructs tumor evolution, with primary tumors differentiated from metastases. We find an 

inverse relationship between repeat-instability and point mutation load, within and across 

patients, and independently of other somatic aberrations. Thus, repeat-instability is a distinct, 

transient and compensatory adaptive mechanism in tumor evolution. 
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Introduction 

Cancer clonal evolution (Cairns, 1975; Nowell, 1976) is marked by a wide range of genomic 

instabilities and somatic aberrations which lead to intratumor heterogeneity and eventually enable 

tumor cells to proliferate and metastasize (Stratton et al., 2009; Greaves & Maley, 2012; Yates & 

Campbell, 2012; Burrell et al., 2013). These aberrations include substantial, complex structural 

variation on every scale, as exemplified by the prevalence of aneuploidy (Gordon et al., 2012) and 

chromosomal instability (Lengauer et al., 1998; Bakum & Compton, 2012), hypermutation (Roberts 

& Gordenin, 2014; Campbell et al., 2017) and microsatellite instability (Wooster et al., 1994; Popat et 

al., 2005; Hause et al., 2016), complex short insertions and deletions (Ye et al., 2016), as well as large 

complex genomic rearrangements, such as chromothripsis (Stephens et al., 2011) and chromoplexy 

(Baca et al., 2013). Elucidating the relationship between different mutational classes is critical for 

inferring the exact clonal composition and phylogeny of tumors (Prandi et al. 2014; Beerenwinkel et 

al., 2015, Jiang et al., 2016), and subsequently, to determine how different aberrations affect clinical 

outcome (Birkbak et al., 2011; Andor et al., 2016; Hause et al., 2016) and which of these are involved 

in resistance to treatment and metastases formation (Naxerova & Jain, 2015; Beltran et al., 2016; 

Faltas et al., 2016). 

Notwithstanding recent advances, identification of structural variations of short repeats in protein 

sequences remains elusive. This is the case because of the general difficulty to identify diverse types 

of repeats in sequences which vary in length, level of divergence and periodicity, and because of the 

relatively short length of reads obtained with next generation sequencing (NGS), which creates major 

difficulties for the current assembly techniques (Treangen & Salzberg, 2011; El-Metwally et al., 

2013; Nagarajan & Pop, 2013), exacerbated by various causes of sequencing errors and DNA damage 

(Chen et al, 2017). Consequently, variations in the compositional order of proteins (Marcotte et al., 

1999; Persi & Horn, 2013), a large class of mutations, which includes runs of amino-acids, short 

tandem repeats, interspersed repeats, repetitive domains, and more generally, over-representation of 

motifs in low complexity regions (hereafter, collectively denoted Repeats) has not been 

systematically characterized in cancer. To date, microsatellites, a relatively minor subclass of 

repetitive sequences, comprised of tandem repeats of 1-5bp units, represent the only well-studied case 

(Wooster et al., 1994; Popat et al., 2005; Hause et al., 2016; Campbell et al., 2017). 

Repeats in proteins are hotspots of protein and species evolution that emerge through replication 

slippage and recombination (Levinson & Gutman 1987; Charlesworth et al., 1994; Paques et al., 

1998). Repetitive domains are building blocks of key macromolecular complexes, (e.g., nuclear pores 

(Hoelz et al, 2011) and proteasomes (Pick et al., 2009)), and play essential roles in a variety of 

biological processes, notably, transcription regulation, protein-protein interaction and immunity, as 

exemplified by the enormous variety of Zinc-finger (Klug & Rhodes, 1987), Ankyrin (Mosavi et al., 
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2004), WD40 (Neer et al., 1994) and Leucine-rich (Bell et al., 2003) repeats in animal proteins. 

Variations in the number of repeat units have been associated with acquisition of new functions and 

rapid evolution of complex phenotypic traits in diverse life forms (Fondon & Garner, 2004; 

Verstrepen et al., 2005; Kashi & King 2006; Gemayel et al., 2010; Chavali et al., 2017). This fast 

evolution of repeats comes at the cost of promoting genetic diseases, in particular, cancer and 

neurodegeneration (Karlin et al., 2002; Gatchel & Zoghbi, 2005; La Spada & Taylor, 2010), where 

repeat dynamics (mostly, expansion but in some cases, contraction) often correlates with disease 

severity (Pearson et al., 2005; López Castel et al., 2010). Evolution of new repeats is markedly 

accelerated following duplication and is largely driven by positive selection, highlighting their 

potential role as disease drivers in somatic evolution (Persi et al., 2016). 

In light of the importance of repeats in rapid evolutionary processes, coupled with their demonstrated 

involvement in human pathology, we hypothesized that repeat dynamics might play a more important 

role in tumor evolution than presently realized, especially, given that, in tumors, repeat generation is 

likely to be enhanced due to impaired DNA replication (Loeb et al., 1974; Tomasetti et al., 2017) and 

repair (Duval & Hamelin, 2002). To test this hypothesis, we generalized the quantification of 

repetitive motifs beyond microsatellites, and developed a rigorous methodology to systematically 

quantify variations in the repeat content (repeat-instability) of genomes (bypassing difficulties 

associated with assembly) and in the expression of repeat-containing proteins, directly from genomic 

and proteomic sequence raw data. 

 

We applied the developed methodology to a collection of diverse datasets (Table 1), including (i) a 

proteomic dataset of breast cancer patients, (ii) genomic datasets of prostate cancer patients, including 

an original cohort of benign tissues, serving as a non-cancerous control, (iii) genomic pan-cancer 

cohorts from The Cancer Genome Atlas (TCGA) which include a tumor sample, an adjacent 

matched-normal control and a blood sample from each individual, providing for a comparison 

between tissues, and (iv) samples from patients with metastatic spread which allowed analysis of 

repeat-instability during the evolution from the primary tumor to the metastatic state. We demonstrate 

the utility of the methodology for identifying tissue-specific and tumor-specific repeat-instability 

signatures in cancer and normal tissues, and elucidate the dynamics and role of repeat-instability in 

tumor evolution. 
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Results 

Measuring repeat-instability in amino-acid and nucleotide sequences  

To measure the repetitiveness of motifs (k-mers) in a set of sequences, we define the compositional 

order ratio (CR) of a motif, as the total number of the motif recurrences divided by the total number 

of sequences in which the given motif appears (Figure 1a and Methods). The CR is high when a 

motif recurs multiple times in a sequence. Sequences in which motifs are highly recurrent are 

regarded as compositionally ordered. The CR signal tested on the human proteome strongly departs 

from the random expectation (Figure 1b), and furthermore, CR is substantially more robust for repeat 

identification than alternative measures of repetitiveness, such as the frequency of a motif or its 

fraction in the proteome (Figure S1). 

The CR can be directly estimated from both proteomic and genomic raw data (Figure 1a). In 

proteomic data, CR is evaluated from a list of ~100K measured peptides (typically 10-30 amino-acids 

long) and their abundances; the abundance values are used to estimate the effective number of 

sequences. We used triplets (k=3, 8000 amino-acid triplets) to measure CR in proteomic data, which 

is the optimal choice of motif length to characterize protein repeats (Persi & Horn, 2013). In whole 

exome sequencing (WES) data (coverage depth 100X), CR is computed from a list of ~100-200M 

short DNA reads (typically, 50-150 base-pairs long), using hexamers (k=6, 4096 nucleotide 

hexamers), such that the proteomic and genomic motif spaces have comparable sizes. The choice of 

k=6, a shorter unit length than the naïve choice of k=9 which translates into an amino-acid triplet, is 

also justified by the occurrence of synonymous substitutions that do not change the amino-acid 

composition (Methods). For CR evaluation, motifs can overlap and do not need to recur in tandem, 

such that all types of repeats, both pure and diverged, from runs to repetitive domains, that are shorter 

than half of the short-read length, can be identified (Methods). Several examples of repeats in 

proteins and their respective coding nucleotide repeats, identified in our analysis, are shown below, 

emphasizing the diversity of repeats that can be captured. Analysis of genomic data demonstrates that 

CR is a stable measure, which saturates at a low coverage depth (Figure S2) and is unbiased with 

respect to the sample size (Figure S3). 

We define the repeat-instability signature (RIS=∆CR) of a sample as the sum of the CR percentage 

changes for all motifs compared to a control sample (Methods). In a patient, the somatic signature of 

a tumor is computed relative to a control sample, taken either from an adjacent matched-normal tissue 

or from the blood. Figure 1c-d shows examples of typical tumor signatures in proteomic and 

genomic data. Because repeats can expand or contract in a given genome, we evaluate the overall 

repeat-instability by the sum over the absolute value of the signatures of all motifs (ORI=∑|∆CR|). 

Importantly, proteomic signatures reflect the compound effect of somatic genome instability and 
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differential expression of repeat-containing peptides, whereas genomic signatures reflect genome 

instability alone. We applied this methodology to analyze peptide sequences in the proteomic dataset 

and short-read nucleotide sequences in the genomic (WES) datasets (Table 1). 

 

Proteomic repeat-instability reflects breast cancer tumor progression 

We first applied the repeat analysis methodology to the proteomic dataset from 21 breast cancer 

patients (Pozniak et al., 2016) (Methods and Table1). We found that the CR of motifs (amino-acid 

triplets) tends to increase in tumors relative to matched-normal tissues, as measured by the average 

signature of triplets across patients (Figure 2a). To ensure that this trend was not a consequence of 

large variations of CR in a few patients, we assessed the frequency of variation in the CR among the 

patients. The histogram of the frequencies is bimodal, with CR consistently increasing for many 

triplets and consistently decreasing for a few triplets among the patients (Figure 2b). The remarkable 

shift to high frequency that was observed for strongly altered (>1%) triplets confirms that CR-

increase is the dominant phenomenon and CR can be used to characterize tumors. Principal 

component analysis (PCA) of the CR estimates (52 samples x 1229 triplets) shows clear separation of 

matched-normal samples from tumor samples in the first 2 principal components (Figure 2c). This 

separation was captured in two experimental pools (Table 1 and Methods), indicating that the tumor 

vs normal segregation is robust. The PCA analysis also suggests that the dimensionality of 

discrimination is low, such that classifiers can be built using a small number of discriminative 

features (i.e., triplets). Examples of discriminative triplets (e.g., PVP, APV, APA, YGY, DVL, 

TAA) are shown in Figure S4. 

To further test the predictive signal of repeat-instability signatures, we built binary classifiers that 

discriminate between normal and tumor samples, using support vector machine (SVM) with a linear 

kernel, and examined various feature-selection criteria in a standard leave-one-out analysis (Methods, 

Table S1). Every tested selection criterion (Kolmogorov-Smirnov test, Fisher-score and CR-based 

criteria) achieved classification accuracy >80% with a small set of triplets (~10-30). We further 

inspected the simplest criterion for selecting triplets with high CR, i.e. those that frequently recur in 

the list of identified peptides. This approach achieved a maximum accuracy of 89% with only 36 

selected triplets (Table S1) that are frequently and significantly altered among the patients (Figure 

S4). To ensure that the classifier performance is not sensitive to the small number of samples, we also 

tested its performance as a function of the number of samples, and found that it improves as more 

samples are included, testifying to the generality and robustness of this simple approach for 

discriminating between tumor and normal samples (Figure 2d). 

Although good performance was achieved in discriminating tumor from normal samples, metastases 

do not appear to be well separated from primary tumors (Figure 2c). Nonetheless, we noticed that 
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several triplets displayed consistent variation from normal to primary tumor to metastases (e.g., the 

triplet TAA in Figure S4). Thus, to test for signatures correlated with cancer progression, we selected 

triplets with the strongest average signature in the metastases (relative to matched-normal), and tested 

whether their signatures varied from stage II to stage III. This particular comparison was performed 

because selection of triplets with strong signatures in the metastases statistically selects weaker 

signatures in stages II and III, but differences between stage II and stage III are not expected to be 

affected (Figure S5). As implied by the tendency of CR-increase in tumors, we found more triplets 

with average signatures increased from stage II to stage III (Figure 2e) than triplets for which the 

average signatures decreased (Figure 2f). These trends were robust to the choice of the threshold 

used to select triplets with strong signatures in metastases (Figure S5). Notably, a weaker variation 

between stage III and metastases was observed, suggesting that the differential expression of repeats 

is especially important at early stages of tumor evolution. Mapping all discriminative triplets to 

proteins and identifying repeat-unstable proteins (Methods) indicated that the proteins with high 

repeat-instability are enriched among the proteins encoded by known cancer genes (Figure S6) which 

is compatible with a role of repeat instability in oncogenesis. 

 

The proteomic CR signatures reflect changes in expression levels of repeat-containing proteins and, 

accordingly, do not directly convey any information on genomic somatic variation in the repeat 

content in protein-coding DNA. Hence, to explore the role of repeat-instability in somatic evolution, 

we turn to the analysis of genomic data. Hereafter, we analyze short reads of nucleotide sequences 

obtained from WES data (Table 1). 

 

Genomic repeat-instability discriminates between healthy and cancerous prostate 

tissues 

We explored genomic repeat-instability in prostates, the tissue type with the richest dataset among the 

ones examined, which includes samples from both healthy individuals and cancer patients (Table1). 

We analyzed the TCGA dataset of prostate cancer patients (Cancer Genome Atlas Research Network, 

2015), focusing on cases for which a primary tumor sample and two control samples, from blood and 

from an adjacent matched-normal tissue, were collected. In each patient (n=41), we computed the CR 

signatures of the tumor and of the adjacent normal samples relative to blood. In most of the patients, 

the signatures of tumor and adjacent normal samples were closely similar, displaying strong positive 

correlation (Figure 3a and Figure S7). This correlation was independent of the shape of the 

signatures (i.e., expansion-dominated or contraction-dominated), implying that the signatures are 

primarily tissue-specific (Figure S7). Furthermore, high similarity between tumors and normal 

samples is also observed across patients, as demonstrated by the bimodal distribution of the pairwise 

correlations (Figure S7), which reflects the prevalence of positive or negative correlation between the 
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signatures from different patients, a consequence of the dominance of either repeat expansion or 

contraction, in a given genome. 

 

To determine whether these repeat-instability signatures include tumor-specific characteristics, we 

compared them to signatures of benign prostate hyperplasia (BPH) from healthy individuals not 

affected by prostate cancer (n=15, here referred to as healthy individuals) that were computed relative 

to matched blood (Table 1). Superposition of tumor and benign signatures (Figure 3a, left panel) 

highlights strong similarity between prostate cancer and healthy tissues but the healthy signatures are 

weaker. This difference is recapitulated by the overall repeat-instability (ORI=∑|ΔCR|), which shows 

high similarity between tumor and adjacent normal tissues in cancer patients, but a lower instability 

of the benign prostates in healthy individuals (Figure 3a, right panel). However, these differences had 

limited statistical significance, emphasizing the strong tissue specificity of the signatures. Thus, to 

identify tumor-specific features, we trained SVM classifiers as in the proteomic case but, to account 

for the expansion-dominated and contraction-dominated genomic signatures; we considered the 

absolute value (|ΔCR|) in our analysis. Tumor tissues were robustly discriminated from benign ones 

(Table 2, task 1), and 154 discriminative motifs were identified using Kolmogorov-Smirnov test (P-

value < 0.001): 133 showed flat signatures and 21 exhibited strong contraction in benign tissues 

relative to tumors. The classifiers cannot distinguish between tumor and adjacent normal signatures 

when each is computed relative to blood, and no discriminative motifs were found (Table 2, task 2), 

as expected from their close similarity. Using adjacent normal tissues as a control in place of blood 

leads to significantly weaker signatures (Figure 3a). Nonetheless, these signatures contain tumor-

specific information as the identified discriminative motifs between these signatures and those of 

benign tissues largely overlap those that were identified in task 1 (Table 2, task 3). Therefore, this 

comparison yields an attenuated tumor signature. We used this signature when a blood sample was 

missing. 

To test the predictive power of the 154 discriminative motifs, we considered an independent dataset 

(Barbieri et al., 2012) of 111 prostate cancer patients (Table 1). The repeat-instabilities of the test and 

training sets showed remarkable similarity (Figure 3b). The similarity between tumor and adjacent 

matched-normal signatures, but not with healthy signatures, implies that the adjacent normal prostate 

tissues in cancer patients contain tumor-specific features, in the absence of histological evidence. We 

validated this prediction using various training-test sets, demonstrating that tumors are predicted with 

high accuracy (>90%), based on both tumor and adjacent normal signatures (Figure S8). 

To explore which genes were most affected by repeat-instability, we mapped the short reads 

encompassing repeats from the Barbieri dataset onto the human genome, and estimated repeat-

instability at the gene level (Methods). We found that the 10 most unstable motifs, with |∆CR|>5% in 

>80% of the patients (Figures 3a), were not discriminative and did not map to coding regions, but 
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rather to regulatory regions (Figure S9). Because these dominant signatures appear in all tissues, 

including benign prostates, it seems likely that they represent repeat hotspots in non-coding 

regulatory regions that might exert currently unknown effects on transcription regulation (Vinces et 

al., 2009). In contrast, discriminative motifs mapped to protein-coding regions (Figure S9). As in the 

proteomic case, the set of most repeat-unstable genes was significantly enriched in known cancer 

genes (Figure S10). We analyzed in detail the amino-acid and nucleotide compositions of the 

identified repeat-unstable genes. This analysis also emphasized the ability of our methodology to 

identify diverse types of repeats (Methods), from runs of amino-acids in proteins, as exemplified by 

the glutamine tracks in FOXP2 protein (Figure S11), to repetitive domains, as in the case of the 

Cysteine-rich PAK1 inhibitor CRIPAK (Figure S12), based on the recurrence of hexamers in the 

protein-coding DNA. 

Lastly, we explored the relationship between repeat-instability and other somatic aberrations by 

querying the Barbieri dataset. The overall repeat-instability of discriminative motifs was weakly 

inversely related to the non-silent point mutation load, but was independent of copy-number 

alterations (i.e., DNA burden) and aneuploidy status (Figure 3c). The apparent, even if weak, trade-

off between repeat-instability and the mutation load suggests that, in tumor evolution, repeat-

instability could be a compensatory mechanism for point mutations. To test this hypothesis, we 

performed a pan-cancer analysis, exploring a wider distribution of mutation loads. 

Genomic repeat-instability is inversely related to somatic point mutation load in the 

pan-cancer dataset 

In addition to the prostate adenocarcinoma analyzed above, 3 additional cancer types were selected 

from TCGA (Table 1), such that the selected cancers represent different point mutation load regimes: 

prostate and breast cancers have relatively low numbers of point mutations per sample, and bladder 

and lung cancer have comparatively high numbers of point mutations (Lawrence et al., 2013). As in 

prostate cancer, we focused our analysis on patients with available data from all three types of 

samples (tumor tissue, adjacent matched-normal tissue, blood), to measure the repeat-instability 

signatures of the primary tumor and its adjacent normal sample relative to the blood sample. Similarly 

to the observation on prostate cancer (Figure S7), normal and tumor signatures were highly 

correlated in individual patients across all cancer types (Figure S13). 

 

Across cancer types, we identified a consistent inverse relationship between the overall repeat-

instability and the number of non-silent point mutations, which was independent of the overall 

genomic burden (Figure 4a).  Despite the similarity between  adjacent normal and tumor signatures 

observed in each patient (Figure S13), patients with low mutational load cancers (i.e., breast) display 

higher repeat-instability in normal tissues when compared to the respective tumor signatures, whereas 
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for high mutational load cancers (bladder and lung), this trend is reversed. In prostate patients, the 

similarity between tumors and the normal tissues was the highest, explaining the difficulty in 

identifying tumor-specific features in this case, and the need for a non-cancerous control (cf. Figure 

3). Thus, repeat instability is high when the mutation load is low and low when the mutation load is 

high, and this effect is stronger for the signatures of adjacent normal tissues in the vicinity of tumors 

than for the tumor signatures themselves. The inverse relationship between the point mutation load 

and the overall repeat instability holds both for gain (expansion) and loss (contraction) of repeats, but 

is more pronounced for gain (Figure S14).  

 

Further, to elucidate the differences between cancer and adjacent normal genomes across tissues, we 

assessed the pairwise correlations among patients of both adjacent normal signatures and of the 

respective tumor signatures (Figure 4b). Adjacent normal tissue signatures display higher 

correlations across patients compared with the respective tumor signatures, that is, the normal 

signatures are more tissue-specific. This effect was more pronounced in patients with low mutational 

load cancers (breast and prostate) where the repeat-instability is high. The weaker tissue specificity of 

tumor signatures suggests that common mechanisms, such as impaired DNA replication and repair, 

similarly affect the repeat content of tumors across tissues and individuals, and consequently, blur the 

similarity between the same tissue samples across individuals, with a net effect of reduced tissue-

specificity. This effect conversely enhances the tumor-specific signal in tumor signatures, as we 

demonstrated in the case of prostate cancer (Figure 3 and Table 2), leading to a more homogenous 

structure of the pairwise correlations between tumor signatures, across patients and across different 

cancer types (Figure 4b). 

 

Genomic repeat-instability recapitulates tumor phylogeny within patients and 

correlates with metastatic spread 

 

To substantiate the role of repeat-instability as a distinct and compensatory mutation class in tumor 

evolution, we studied two patients with metastatic spread (Table 1). The two patients with the largest 

number of available sequenced samples from different anatomical sites were selected from two recent 

studies of metastatic prostate cancer (Beltran et al., 2016) (WCM0) and chemotherapy-resistant 

urothelial carcinoma (Faltas et al., 2016) (WCM117), respectively. The prostate cancer patient 

represents a case of a low mutation load cancer type, whereas the bladder cancer patient represents a 

case of high mutation load cancer type. 

 

The analysis of the repeat-instability signatures from different anatomical sites of the same patient, 

measured relative to blood, highlights a clear hierarchy based on the correlation between the 
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signatures, where primary tumors and metastases are well separated into two clusters, both in the 

prostate cancer patient (Figure 5a) and in the bladder cancer patient (Figure 5b). Further, we 

approximated the tumor phylogeny by similarity dendrograms, inferred from the repeat-instability 

pairwise correlation distance, and from the Hamming distances between mutated genes, using the 

simple unweighted pair group method with arithmetic mean (UPGMA) to link samples. The repeat-

instability and point mutation distance-based dendrograms were closely similar (Figure 5), and were 

weakly sensitive to the choice of either linkage (e.g., shortest distance or UPGMA) or distance 

methods (i.e., Hamming or Euclidian in the case of mutations, and Spearman or Pearson correlation in 

the case of repeat instability) (Figure S15). 

 

The tumor phylogeny inferred from repeat-instability was concordant with the detailed phylogeny 

that we have previously obtained by rigorous analysis of the clonal composition of samples and the 

tempo of somatic aberrations (Beltran et al., 2016; Faltas et al., 2016). Repeat-instability based 

phylogeny captures some fine details of the relationship among samples: (i) the prostate primary 

tumor sample with neuroendocrine features (Figure 5a) is close to the other primary tumor samples 

(Beltran et al., 2016), (ii) the metastatic pelvic lymph node in the bladder cancer patient that was 

surgically removed at the time of the cystectomy, is close to the bladder primary tumors (Figure 5b), 

in particular, to the untreated primary tumor (despite marked difference in the overall repeat-

instability between these samples), as previously inferred using independent techniques (Faltas et al., 

2016) and, (iii) metastases from the same anatomical site cluster together, with few differences. The 

finding that the repeat-instability approximated phylogenies are closely similar to the true 

phylogenies suggests that repeat-instability evolves by divergence, at clock-like rates. 

 

To test the hypothesis that repeat-instability is a compensatory adaptive path of tumor evolution, we 

compared the overall repeat-instability and the non-silent point mutation load in primary tumors and 

metastatic sites.  In both patients, repeat-instability was higher in primary tumors than in metastases, 

corroborating the inverse relationship between repeat-instability and the point mutation load (Figure 

5, right panels). These findings imply that repeat-instability is most pronounced at early stages of 

tumor progression, likely, acting as a transient genome alteration that compensates for the relatively 

low number of driver mutations in primary tumors, and is partially reversed as mutations accumulate 

and tumor cells adapt. 

 

Discussion 

The involvement of repeat-instability in human pathology is supported by ample evidence (Wooster 

et al., 1994; Karlin et al., 2002; Gatchel & Zoghbi, 2005; Popat et al., 2005; Pearson et al., 2005; La 
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Spada & Taylor, 2010; López Castel et al., 2010; Hause et al., 2016; Campbell et al., 2017, Chavali 

2017). However, the current understanding of the role of this phenomenon in somatic evolution is 

mostly limited to microsatellites. In this study, we describe a method that measures the repeat content 

in the genome and in the proteome, directly from proteomic peptide data and genomic short-reads. 

Our approach accounts for a wide range of repeats. Applying this approach to an array of studies 

allowed us to assess repeat-instability across many patients and in different tissue types, comparing 

tumors with normal tissues, yielding insights into its role in tumor evolution. 

 

Our analyses of genomic signatures show that, compared to blood, cancer and adjacent normal tissues 

often evolve similarly and manifest comparable repeat-instability signatures. Furthermore, such 

signatures are, to a large extent, tissue-specific, in accordance with previous studies of repeat-

instability in other disorders (Pearson et al., 2005; López Castel et al., 2010). However, we also 

identified significant tumor-specific signatures, which correlate with the course of tumor evolution 

and allow for discriminating healthy samples from cancers. Specifically, we found that repeat-

instability is inversely related to the point mutation load but is independent of aneuploidy and 

genomic burden of somatic gene copy number. This inverse relationship was observed between low 

mutational load cancers (prostate and breast) and high mutational load cancers (bladder and lung) 

primary tumors, and between primary tumors and metastases from the same patient. Given that 

repeat-instability includes microsatellites, our findings support and generalize the results of recent 

studies showing that microsatellite instability is prevalent across cancer types (Hause et al., 2016), but 

is consistently more pronounced in patients with low mutation loads compared to those with high 

mutation loads (Campbell et al., 2017). 

 

Given that about two-third of the mutations in cancer can be attributed to replication errors (Tomasetti 

et al., 2017), which promote repeat instability (Pearson et al., 2005; López Castel et al., 2010, 

Campbell et al., 2017) the observed tissue specificity of repeat-instability signatures could be 

explained, at least, in part, by the tissue-specific cell division rates. Because blood has a relatively 

high rate of cell divisions (Tomasetti C, & Vogelstein, 2015), it is substantially diverged from other 

tissues, and is therefore an adequate choice as an outgroup control for characterizing repeat-instability 

(and other somatic aberrations). Also, the effective population size of blood cells is likely large, so 

that purifying selection is highly efficient. Therefore, blood is likely to be largely free of deleterious 

mutations, and hence, an adequate control. Conversely, the relatively low rates of cell divisions in 

bladder and lung tissues likely contribute to the overall lower repeat-instability in these tissues. 

 

Collectively, these observations indicate that repeat-instability is a distinct adaptive path in tumor 

evolution. We propose a model of tumor evolution (Figure 6a) in which, at the initial phase of 

tumorigenesis (low mutational load cancers at the pan-cancer level, and primary tumors at the patient 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 9, 2018. ; https://doi.org/10.1101/491423doi: bioRxiv preprint 

https://doi.org/10.1101/491423
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

level), the number of cancer driver mutations is low, and repeat-instability is likely to serve as an 

additional, complementary mechanism, which increases (or maintains) the fitness of tumors. Later in 

tumor evolution, when metastases and/or high mutation load tumors accumulate more mutations and 

subsequently more drivers, repeat-instability is reduced as tumors adapt to their specific ecological 

niches. Specifically in high mutational load cancers, along with the accumulation of drivers, the 

number of deleterious passenger mutations substantially increases, imposing selective pressure (Bozic 

et al., 2010; McFarland et al., 2013) that could reduce repeat-instability. This theoretically predicted 

transition in evolutionary regime at high mutation load is also captured by the association of the point 

mutation load with clinical outcome (Persi et al., 2018). Thus, although most tumors evolve near 

neutrality (Williams et al., 2016; Weghorn & Sunyaev, 2017; Martincorena et al., 2017; Persi et al., 

2018), high mutational load (specifically during the transition to a metastatic state) leads to decreased 

fitness, both through intracellular mechanisms and through generation of neo-antigens which elicit 

immune response (Berraondo et al., 2016; Li et al., 2016; Mlecnik et al., 2016a; Yarchoan et al., 

2017a). The immune system, then, exercises purifying selection, thereby reducing repeat-instability in 

the tumor cell population. Those repeats that have been fixed in the cell population are likely 

beneficial, consistent with recent observation of microsatellite-unstable colon carcinomas, where 

strong purifying selection eliminates antigen-presenting tumors from the population (Mlecnik et al., 

2016a), whereas immune-adapted tumors metastasize (Mlecnik et al., 2016b). Hence, although the 

accumulation of diverse types of mutations represents vulnerability for cancer, eventually, mutations 

that confer selective advantage are fixed in a population of tumor cells whereas deleterious mutations 

are removed, such that cancer maintains its fitness. The observed sharp decrease in repeat-instability 

appears to be a consequence of the dynamic nature of repeat propagation, being fast and reversible, 

unlike accumulation of point mutations. Although a bad omen, this evolutionary race also opens new 

avenues for identifying neo-antigens and developing immunotherapies against immune-adapted 

tumors (Berraondo et al., 2016; Yarchoan et al., 2017b). 

 

According to our model, at the initial phase of tumor evolution, repeat-instability can compensate for 

the lack of sufficient number of cancer drivers and thus increase the tumor fitness, whereas later in 

evolution, high repeat-instability negatively affects tumor fitness and is selected against. A positive 

correlation between high microsatellite instability with better prognosis in cancer patients has been 

reported (Hause et al., 2016). In the context of our model, these findings are likely to reflect stages of 

tumor progression at which repeat-instability already exceeded the optimal value. The existence of 

compensatory adaptive paths, that is, point mutations vs. repeat-instability, suggests that, although the 

dynamic range of somatic aberrations in cancers is substantial, the fitness of tumors tends to be more 

stable over time and can be robust to environmental pressure. 
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Under this view of tumor evolution, adjacent normal tissues, residing in physical proximity to tumors, 

evolve under comparable selective pressures imposed by the microenvironment and therapy, so that 

they acquire tumor-specific signatures. Accordingly, analysis of these tissue samples should allow 

prediction of cancer breakout, prior to pathological evidence, as we demonstrated in the case of 

prostate cancer. This view is concordant with recent reports on significant similarities between the 

somatic signatures of cancers and normal tissues (Cooper et al., 2015, Martincorena et al., 2015). We 

hypothesize that repeat instability is low in healthy tissues, rapidly increases in tumors and adjacent 

normal tissues, and then is reduced as cancer progresses. This transient dynamics is partially captured 

by the single patient analysis, showing a large increase in the repeat-instability in the untreated 

primary tumor relative to WT, followed by a gradual reduction in the treated primary and metastatic 

tumors, and coupled to the increased point mutations (cf. Figure 5b). Such a compensatory transient 

mechanism of repeats in tumors is reminiscent of chromosomal duplications in Fungi (Yona et al., 

2012) and gene duplications in viruses (Cone et al., 2017), which appear to represent the first, rapid 

route of adaptation. Adjacent normal tissues seem to exhibit an even faster dynamics of transient 

repeat instability than tumors. Conceivably, the cells in these tissues start on the path of 

tumorigenesis, but fail to undergo neoplastic transformation, whereby repeat-instability is rapidly 

reduced (Figure 6a). This explains the differences between repeat instabilities of adjacent normal and 

of tumors across tissues, showing a faster transient-like effect in adjacent normal tissues as function 

of the mutation load across cancer types (cf. Figure 4). This dynamics, leading to the link between 

repeat instability and cancer progression, is also concordant with the somatic evolution of repeat 

instability in many neurological disorders (Pearson et al., 2005; López Castel et al., 2010). Taking 

into account also the observed connection between proteomic repeat-instability and cancer 

progression, we suggest that repeat instability signatures can serve as important diagnostic and 

prognostic markers that could be sensitive enough to detect cancer in early stages. 

 

In this work, we quantified and emphasized the importance of gain and loss of repeat units in tumor 

evolution. Similar to gene duplications (Lynch & Conery, 2000; Kondrashov et al., 2002), selective 

constraints are relaxed in new repeats following duplication (Persi et al., 2016), such that mutations 

can accumulate at higher rates and eventually lead to the acquisition of new functions. However, in 

contrast to gene duplicates, which evolve under only slightly relaxed purifying selection and mostly 

exhibit subfunctionalization of ancestral proteins (Kondrashov et al., 2002, Innan & Kondrashov, 

2010), new repeats evolve much faster, under strongly relaxed purifying selection and positive 

selection, such that neofunctionalization is likely to be the primary route of evolution (Persi et al., 

2016). Such rapid evolution of new repeats has been documented in colonic carcinogenesis (Ionov et 

al, 1993). Indeed, we observed that highly repeat-unstable genes were enriched among known cancer 

genes, both in genomic and proteomic data. This implies involvement of repeat-instability and, more 

specifically, fast-evolving new copies of repeats, in oncogenesis.  
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The microevolutionary dynamics of repeat instability in cancer (Figure 6a) is consistent with the 

evolution of repeats over long spans of evolution (Figure 6b). In diverse life forms, following the 

rapid evolution of new repeat copies (Persi et al., 2016), some repeats become conserved as they gain 

function (Schaper et al., 2014; Persi et al., 2016). The conservation of mutated repeats appears to 

eventually translate into an increase in the diversity of the repeat content of extant species proteomes, 

in a manner that correlates with the ordering of major clades by Ne x μ (effective population size, Ne, 

multiplied by the mutation rate, μ), that is, by the power of purifying selection (Lynch and Conery, 

2003; Persi et al., 2013) (Figure 6b). These parallels with findings on species evolution should 

inform the study of repeat instability in somatic evolution of cancer. 

 

Further integrated genomic-proteomic research is needed to study how somatic changes in the 

genomic DNA are translated into differential expression of repeat-containing peptides and how new 

copies diverge by accumulating mutations during tumor evolution. Such research could lead to the 

identification of new cancer drivers and the development of therapeutic strategies, in particular 

immunotherapies, which target this mutational class. Furthermore, given that our results indicate that 

repeat-instability is an adaptive mechanism that is important at the early stages of tumor evolution, 

we hypothesize that repeat instability signatures may be relevant for early cancer detection by cell-

free DNA and liquid biopsy analysis as well as other methods. The role of repeat instability in other 

pathologies and evolutionary scenarios has yet to be explored. 

 

Methods 

Measuring Repeat Instability in Genomes and Proteomes 

The extent of repetitiveness of a motif m, in a genome or proteome, is measured by its compositional 

order ratio (CR), as illustrated in Figure 1A, defined as the number of the motif recurrences in a set 

of sequences divided by the number of sequences in which it appears: 

𝐶𝑅𝑚 =
∑ 𝑤𝑖

𝑚𝑟𝑖
𝑚𝑁𝑠

𝑖

∑ 𝑤𝑖
𝑚𝛿𝑖

𝑚𝑁𝑠
𝑖

(1) 

where m = 1, …, Nm, and Nm = Ak is the number of searched k-long motifs over the alphabet A (e.g., 

Nm=203 for amino-acid triplets, Nm=46 for DNA hexamers). ri
m is the number of recurrences of motif 

m on sequence i. δi
m = 1 if ri

m
 > 0 and is zero otherwise. wi

m is a weight factor which measures the 

relative abundance of sequence i in a sample, particularly relevant for proteomic data described 

below. Ns is the number of sequences in the data. By definition CR is ≥ 1. 
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The existence of compositionally ordered sequences in a proteome is responsible for the fact that 

some motifs will tend to recur multiple times in a relatively small number of sequences, and will 

therefore have high CR. For proteomic data, we use amino-acid triplets (k=3, Nm=8000) which is the 

optimal motif length for characterizing protein repeats (Persi & Horn, 2013). The significance of CR 

evaluation is demonstrated in Figure S1, where we compare the SwissProt human reference proteome 

to random models (with identical length distribution of proteins), and compared CR with other 

measures such as the frequency of motifs or their fraction in the proteome (i.e., the number of 

sequences in which motifs appear). 

The variation in the repetitiveness of a motif m between two samples, in particular, between a tumor 

tissue and its matched-normal tissue or a blood sample, is measured in percentages by: 

𝛥𝐶𝑅𝑚 = 100𝑥
𝐶𝑅2

𝑚 − 𝐶𝑅1
𝑚

𝐶𝑅1
𝑚 (2) 

where CR1
m and CR2

m are the CR of motif m in samples 1 and 2, respectively. The repeat-instability 

signature is then expressed as the spectrum of ΔCR of all motifs, and the overall repeat-instability is 

given by the sum over the absolute values of motifs’ variations, ∑m|∆CRm|. 

To find an adequate motif length (i.e., k) for the analysis of genomic data, we first performed a 

systematic search of all DNA k-mers (with 3 ≤ k ≤ 9) on few patients. Variations in CR of motifs in 

DNA were not evident at k=3, whereas for large k (k>6), the vocabulary size is too large to allow a 

useful analysis. Hence, working with a motif vocabulary size comparable to that used in proteomic 

data, choosing k=6, such that Nm=4096, was sufficient for the identification and characterization of 

repeat content at the DNA level. The choice of k=6 represents a shorter unit length than the naïve 

choice of k=9, which translates into an amino-acid triplet. As nucleotide nonamers can harbor many 

synonymous substitutions that do not change the amino-acid composition, even a tandem array 

composed of exact copies of amino-acid triplets is not expected to be coded by exact copies of 

nucleotide nonamers. The lengths of recurring motifs at the DNA level are thus expected to be shorter 

than 9. Conversely, repetitive hexamers in the protein-coding DNA may identify repeats that are not 

observed in protein sequences, due to insertions and deletions.  

To validate that the identification of repetitive hexamers in nucleotide sequences significantly overlap 

the repeats in proteins (identified by repetitive triplets) we analyzed the repeat content of all human 

proteins. We employed the compositional order methodology (Persi & Horn, 2013) to both the 

amino-acid sequences using triplets and to the corresponding protein-coding DNA using hexamers. In 

random sequences, the probability of identifying a motif that recurs more than n time in a sequence of 

length L is determined by the Bernoulli distribution: 𝑃(𝐿, 𝑝; ≥ 𝑛) = ∑ (𝐿
𝑖
)𝑝𝑖(1 − 𝑝)𝐿−𝑖𝐿−𝑘+1

𝑖=𝑛 , where p 

is the probability of selecting a k-mer over an alphabet A, such that p=1/Ak (i.e., 1/8000 for amino-

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 9, 2018. ; https://doi.org/10.1101/491423doi: bioRxiv preprint 

https://doi.org/10.1101/491423
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

acids and 1/4096 for nucleotides). Hence, for a given k and A, n can be set to ensure a comparable 

statistical significance of identifying a recurrent element. By this consideration, we searched the 

human proteome for amino-acid triplets that recur at least 5 times in a protein, and nucleotide 

hexamers that recur at least 8 times in the respective protein-coding DNA. This analysis largely 

identified the same (~5000) repeat-containing proteins (Jaccard score 0.6). Hence, although there are 

obvious differences between the results of searching for repetitive triplets in amino-acid sequences 

and searching for repetitive hexamers in corresponding nucleotide sequences, basing the large-scale 

analysis in this study on k=3 and k=6, respectively, appears as a reasonable choice.  

Evaluation of the number of motif recurrences in sequences allows overlap, such that all types of 

repeats can be identified. For example, in the sequence AAAAAAAAA, the hexamer AAAAAA 

recurs 4 times, capturing runs of nucleotides. Consequently, in genomic data, runs of nucleotides 

shorter than 6 bp are discarded. Similarly, in the sequence ATATATATATA the dinucleotide tandem 

repeats are captured by the hexamers ATATAT and TATATA, each recurring 3 times. Because 

motifs need not recur in tandem and all short motifs over the alphabet are evaluated, all types of 

repeats are considered when evaluating CR, including highly diverged repeats and long motifs. Note 

that many short motifs (i.e., triplets and hexamers) will recur in sequences composed of longer 

repeats, and hence, long repeats are also captured. Obviously, the longest motif that can be identified 

is limited by half the short read length. For further details on how the developed procedure captures 

all types of repeats, from runs of amino-acids to long repetitive domains, in protein sequences, see 

(Persi & Horn, 2013). Examples of protein repeats and their corresponding coding DNA repeats, in 

repeat unstable genes identified in this study, are provided in Figures S11-S12.  

Importantly, other genomic aberrations, such as segmental duplication and gene copy-number 

alterations, can alter CR if they encompass compositionally ordered regions (in which motifs are 

recurrent within the short-read length). Therefore, CR should be interpreted as a global measure of the 

repeat content that weighs in the contribution of other somatic aberrations that involve repeat-

containing proteins. However, in this study, we have found that repeat-instability was independent of 

copy-number alterations or of ploidy (cf. Figures 3 and 5). Hence, in practice, CR is weakly sensitive 

to such changes in the analyzed datasets. 

Application of CR Analysis to Proteomic Datasets 

Proteomic data of tumor samples and their matched-normal samples were obtained from 21 breast 

cancer patients (Table 1). In 10 patients, both stage III and metastatic sites were obtained, with 52 

samples in total: 21 matched-normal, 11 stage II primary tumor, 10 stage III primary tumor and 10 

metastatic. Mass spectroscopy SILAC-based measurements were performed in 2 different 

experimental pools, of 11 and 10 patients respectively, where each pool included patients with 
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metastatic spread. The proteomic raw data for these two pools included ~120k and ~140 identified 

peptides, respectively. Peptide lengths typically vary between 10-30 amino-acids. We estimated the 

CR of each triplet m in each sample based on the list of identified peptides (i = 1…Ns), taking the 

normalized SILAC intensity ratio (i.e., relative to a reference sample) of peptide i as the weight, wi, in 

equation 1. 

Application of CR Analysis to Genomic Datasets 

To analyze the genomic datasets (Table 1), CR evaluation was applied directly to Fasta-q files of 

each sample, generated from BAM files using Samtool and Bedtool. In all datasets, the length of the 

DNA short reads was 76 base-pairs. We assumed no prior knowledge of the directionality such that 

the entire raw data, including unmapped reads, was considered for CR evaluation. In each short-read, 

a nucleotide that had a probability of error Perr > 0.05, as specified by its Phred-score, was labeled as 

‘N’. Then, a search for valid DNA k-mers (i.e., k-mers that do not contain N) was performed. The 

effective number of invalid short-reads in a sample, E, that is, the number of base-pairs with Perr > 

5% divided by 76, the short-read length, was of the order of 5-10% in these datasets. The length of 

short reads sets an upper bound on the possible number of recurrences within a short-read, and in turn 

on CR. Hence, for comparison across studies, it is essential that the short read length of NGS is 

identical. Further, we found that different sequencing kits affect CR evaluation. Thus, we performed 

all our analysis based on samples that where sequenced with the same kit (SureSelect).  

In all datasets, coverage depth was approximately x50-100. With such large coverage depth, CR is 

highly stable, as demonstrated by its saturation at very low coverage depths, and the fast convergence 

of the statistical errors of CR to a narrow distribution, as more and more data (i.e., short-reads) is 

considered for CR evaluation (Figure S2). These statistical errors may arise due to various effects, 

such as unequal sampling of genomic regions. Nonetheless, empirical estimation of the statistical 

error of CR shows that it is relatively small (mean and median ~ 10-4), and consequently, by 

propagation of errors, the statistical error of the repeat instability signature (ΔCR) is also of the order 

10-4 (that is, 0.01%). Note that a somatic change in the DNA (e.g., an expansion of a motif) will be 

sampled proportionally to the coverage depth and will therefore be identified, over the background of 

the statistical fluctuations.  

Benign Prostate Hyperplasia Dataset  

After informed consent, benign prostatic hyperplasia (BPH) tissue samples were collected from 

patients who underwent surgical resection due to symptomatic BPH.  Samples were examined and 

annotated by expert genitourinary pathologists. Tissue cores were taken for DNA extraction followed 

by whole exome or whole genome sequencing (>40X).  Matched blood samples were used as 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 9, 2018. ; https://doi.org/10.1101/491423doi: bioRxiv preprint 

https://doi.org/10.1101/491423
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

patients’ control samples. The study was approved by the Weill Cornell Medicine IRB. A manuscript 

on BPH comprehensive molecular characterization including this study data is in preparation [Liu D 

et al., in preperation]. 

Mapping Motifs to Genes and Estimating Repeat-Instability in Genes 

To map motifs to genes, we extracted from the raw data those sequences in which motifs are highly 

recurrent (≥2 in peptides, ≥4 in DNA short reads), and mapped them to the human genome/proteome. 

Evaluation of CR for genes is not practical because, unlike motifs, only a small fraction of the reads 

map to a given gene, resulting in significant noise in the estimates of CR at the gene level. 

Alternatively, we calculated the total number of recurrences of all motifs across all sequences mapped 

to a gene in tumor samples (Atumor) and in a reference tissues, either adjacent matched-normal tissue or 

blood (ARef). Then, we defined the repeat-instability of a gene by ∆A = Atumor – ARef, in a patient. ∆A 

signifies the difference in the actual number of recurrences of motifs in the sequences belonging to a 

gene, between the tumor and the reference tissue. To allow for a comparison between samples and 

patients, A, was always normalized by the number or total reads, as explained next. 

In genomic data, we mapped all compositionally ordered sequences to the human genome using 

BWA, assigning to each read the most likely gene to which it belongs. Then, for each gene, we 

estimated the total weighted recurrence in each sample as: A = Σh WRh, where Rh is the total number 

of recurrences of hexamer h in all the mapped sequences, and W = 1/(Nsr–E) is a constant weight 

factor of the relative abundance of short-reads in a sample: Nsr is the total number of short-reads in 

the entire sample, and E is the number of invalid short-reads, such that A is comparable between two 

samples of different size and across patients. The mapping of two sets of hexamers, the 154 

discriminative hexamers and dominant hexamers (cf. Table 2 and Figure 3) is shown in Figure S9. 

Then, we assessed ∆A for all genes containing discriminative hexamers. Genes that were identified as 

repeat-unstable in at least 75% of the patients in the Barbieri dataset (n=3321) were considered for 

enrichment analysis with known cancer genes (Figure S10). 

In proteomic data, mapping triplets is straightforward because the vast majority of triplets occur in 

only one or a few peptides, and each peptide is maps uniquely to one protein. This mapping is 

provided by the output of MaxQuant which compares the similarity of peptides to proteins in the 

UniProt database. A is weighted by the measured abundance intensities of each peptide, such that A = 

Σt WtRt, where Wt is the intensity of the peptides matched to a gene in which the triplet t recurs Rt 

times. Two maps for each experimental pool (described above) were built (for a set of discriminative 

triplets). We considered a valid mapping (triplets to peptides to genes) only if in both experimental 

pools a given triplet recurred in identical peptides (and thus genes). We mapped the discriminative 

triplets identified by Fisher-score and Kolmogorov-Smirnov tests, by CR-based criteria, or by their 
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association with cancer progression (Figure 2, and Table S1). For enrichment analysis, we selected 

those triplets that have consistent variation across patients (i.e., CR-increase in >70% of the patients 

or CR-decrease in >70% of the patients, as in Figure 3B). These triplets mapped to 491 proteins 

which are enriched with 63 known cancer genes (Figure S6). 

Statistical and Machine Learning Tools 

Principal component analysis (PCA) was applied to the matrix of CR evaluations, of patients 

(observations) x motifs (features). The CR matrix was standardized such that each column is 

normalized by its standard deviation across observations. Support vector machine (SVM) with linear 

Kernel function was used for the classification tasks in a standard leave-one out procedure. 
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Figures 

  

Figure 1: Methodology for estimating repeat-instability in genomic and proteomic sequence raw data. A) 

Illustration of the method for estimating the compositional order ratio (CR) of motifs (i.e., k-mers), using k=3 

(triplets) for proteomic data and k=6 (hexamers) for genomic data (Methods). The distribution of two motifs 

(blue and red) is illustrated on a list of input sequences, i=1…N. Input sequences can be either peptides (with 

abundances wi) obtained from proteomic MS or DNA short-reads obtained from NGS (with equal abundances, 

wi=1). CR evaluation of the red motif in the case of genomic data is shown in the table, where for each 

sequence i, ri is the number of red motif recurrences, δi=1 if the red motif exists or δi=0 if no red motif exists. 

B) Application of CR estimation to the 8000 amino-acid triplet motifs distributed in the human proteome (black 

curve) shown against two random proteomes (identical protein length distribution), (i) uniform: with uniform 

probability of amino-acid recurrence (red) and (ii) unigram: where the probability of amino acids recurrence is 

based on the human proteome (grey). C-D) Examples of the repeat instability signatures (RIS=∆CR) in tumors 

relative to their matched-normal tissue, of 3 patients (blue, red and green) in the breast cancer proteomic dataset 

(C) and in the genomic breast cancer dataset (D) (Table 1). 
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Figure 2: Analysis of tumor signatures in proteomic data from 21 breast cancer patients. A) Average 

repeat-instability in tumors, evaluated relative to the respective matched-normal (MN) tissue in each patient, 

demonstrates an overall tendency for CR increase. When two tumor tissues are sampled from the same patient 

(i.e., stage III and metastatic), the average signature is used. B) Histograms of the number of triplets vs. the 

number of patients in which the triplets’ CR increased (ΔCR>0), shown for all identified triplets (|<ΔCR>| > 

0%, n=1229, red) and for triplets with |<ΔCR>| > 1% (blue, n=157). Frequencies of positive variation of triplets 

are the x-axis values divided by 21. C) PCA analysis of the CR matrix (52 samples x 1229 triplets), indicating 

the separability between normal and tumor samples in the first two principal components. A grey solid line is 

superimposed for visual clarity of the discrimination. Perpendicular to it, the dashed grey line indicates the 

division between the two experimental pools (see Methods and Table 1). Seperability between tumor and 

normal tissues is robust. D) The effect of sample size on the SVM linear classifier, using the top high-CR 

triplets as features (n=36). Classification performance in a leave-one-out analysis improves with sample size. 

Error bars are estimated from 20 trials of random choice of samples at each point on the x-axis. E) Triplets 

(n=24) with increased average signature (<ΔCR> > 5%) in the metastatic samples (M) relative to matched-

normal (N) reveals that CR increases in the transition from stage II to stage III. F) Triplets with decreased 

signatures in the metastatic signature (<ΔCR> < -2%, n=23) tend to decrease from stage II to stage III. P-values 

correspond to the Kolmogorov-Smirnov test. Trends in (E) and (F) are not expected at random (Figure S5). 

Accuracy = percentage of correct classifications. Sensitivity = TP/(TP+FN). Specificity = TN/(TN+ FP). TP = 

true positives, TN = true negatives, FP = false positives, FN = false negatives.  
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Figure 3: Repeat-instability in prostate tissues. A) Repeat-instability signatures (RIS=∆CR) of all prostate 

datasets: Barbieri (n=111, black), TCGA (n=41, red) and Benign prostate hyperplasia (BPH, n=15, green) 

superimposed (Left). 10 most dominant hexamers are shown. The overall repeat instabilities (ORI=∑|∆CR|) 

distributions of tumors (T) and adjacent normal tissues (N), in the different prostate datasets (Right). In the 

Barbieri dataset, tumor signatures are estimated relative to blood (T-B, n=22) or to an adjacent tissue (T-N, 

n=89), respectively (1-2). In TCGA, signatures of tumors (T-B) and adjacent normal tissues (N-B) are 

computed relative to blood (3-4). BPH signature (B-B) is computed relative to blood (5). B) Heat map of the 

154 discriminative hexamers found in Table 2 (task 1) comparing RIS of tumors in the TCGA dataset with that 

of benign prostates, computed relative to the blood (Train). Test sets display similar characteristics to tumors of 

the train set (signatures ID as in A, right). Results of training-test sets are robust (Figure S8). Colors reflect 

∆CR values. Hexamers are ordered by their KS P-values, grouped into those that have higher |∆CR| in tumors 

and those with higher |∆CR| in the benign tissues within the train set. Patients are ordered by the portion of 

discriminative hexamers that increased in each signature. C) Relationship between ORI and different genomic 

variables in tumors. Each point represents a patient in the Barbieri dataset. ORI is estimated using the set of 154 

discriminative hexamers. 
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Figure 4: Pan-cancer analysis of repeat-instability in the TCGA datasets. A) The overall repeat-instability 

(ORI=∑|∆CR|, vs. blood) in tumors and corresponding adjacent matched-normal tissues (top; few outliers with 

ORI>2000 are omitted for clarity. See Figure S14). The mutation load, estimated by number of non-silent point 

mutations (middle) and the copy-number alterations (i.e., DNA burden) measured by the fraction of altered 

genes (gain or loss) in the proteome (bottom). An inverse relationship exists between repeat-instability and the 

point mutation load. In low mutational load cancer types repeat instability is larger in the adjacent normal 

tissues than in tumors, but this reverses in high mutational load cancers (*** indicates KS-test P-value < 0.01). 

A) Spearman correlation among patients of tumor signatures (top) and of adjacent matched-normal signatures 

(bottom) measured relative to the blood sample in each patient. 
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Figure 5: Analysis of multiple samples from two individuals with metastatic spread. A) Analysis of a 

prostate cancer patient, with the large metastatic spread and multiple available biopsies from [Beltran et al., 

2016]. Left panel, the repeat-instabilities signatures (RIS=∆CR) of different samples vs. blood is superimposed 

(top), and the heat map of the pairwise spearman correlations across samples (bottom). Middle panel, the 

dendrogram inferred by the correlations distance (1-ρ) among the RIS of samples (top), and the dendrogram 

inferred by the hamming distance between the non-silent point mutation of samples across genes (bottom). 

Dendrograms are estimated using unweighted pair group method with arithmetic mean (UPGMA). Primary 

tumor leafs are colored in blue, metastatic leafs in red, and connecting branches in black. Right panel depicts 

the inverse relationship between the overall repeat-instability (ORI=∑|∆CR|) (top) and the non-silent point 

mutation load (bottom). Averages values are depicted by dashed lines. B) Similar analysis of a bladder cancer 

patient, with the largest metastatic spread, following treatment, identified in [Faltas et al., 2016]. Untreated 

sample (#1) and a treated metastatic sample (Pelvic) which is the closest to the tumor ancestor wild-type (#6) 

are colored in green, and are not considered to estimate averages of repeat-instability and mutation load (dashed 

lines, right) of the treated samples. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 9, 2018. ; https://doi.org/10.1101/491423doi: bioRxiv preprint 

https://doi.org/10.1101/491423
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

 

Figure 6: Proposed Evolutionary model of repeat dynamics in cancer and normal tissues. A) In healthy 

tissues (e.g., benign) repeat-instability is low. At the initial phase of tumor evolution (e.g., primary and low ML 

cancer types), tumors harbor a small number of positively selected (S>0) drivers (D). Repeat instability acts to 

increase or maintain the fitness of tumors. Tissues in the vicinity of tumors (e.g., adjacent presumed normal 

tissues) react similarly to the selective pressures imposed by the microenvironment (and therapy, if applied). 

Because they lack mutations, repeat instability is even larger than that of the corresponding tumors (that already 

have adapted), but is also quickly reduced as the transition to a neoplastic state is not achieved and normal 

cellular function is retained. Later in evolution (i.e., metastases and high ML cancer types), the number of driver 

mutations increases, tumors are more adapted and repeat instability reduces. At least in high mutation load 

cancers, the accumulation of passenger mutations (P) outcompete the drivers (P>D); hence, cancers resort to 

purifying selection (S<0), which reduces the repeat-instability. Hence, repeat-instability acts as a transient, 

compensatory mechanism. The faster transient effect in adjacent normal tissues explains their higher repeat-

instability in low mutation load cancers and their lower repeat-instability in high mutation load cancers, relative 

to the respective tumors. B) Repeats content, measured as the vocabulary of amino-acid triplets that compose 

protein repeats, correlates with ordering of organisms by the product of effective population size and mutation 

rate (adapted from [Persi & Horn, 2013]). 
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Tables 

Table 1: Datasets analyzed in this study. 1) In the Proteomic dataset of 21 breast cancer patients [Pozniak et 

al, 2016], for each patient a matched-normal sample and a corresponding primary tumor (stage II or III) were 

measured. For 10 patients, with primary tumor stage III, a metastatic sample from the lymph nodes was also 

obtained. The 21 patients were obtained from two separate experimental pools of 10 and 11 patients each. Each 

pool contains patients from all stages (stage II, and stage III + metastases). 2) In Barbieri dataset [Barbieri et al, 

2012], for each of the 111 patients a tumor sample and a corresponding matched-normal sample, either blood or 

an adjacent tissue, were measured. 3) Dataset of a non-cancerous benign prostate hyperplasia (BPH) tissue. 4-7) 

pan-cancer TCGA datasets containing a primary tumor, an adjacent matched-normal and a blood sample from 

each patient. 8-9) Datasets of two individuals with the largest metastatic spread, identified in two previous 

studies [Beltran et al, 2016; Faltas et al, 2016]; 

  

Study/Tissue No. of 

patients  

Normal Samples Cancer Samples No. of 

Samples 

Notes Source / 

Ref Adjacent Blood Primary Met 

1) Proteomic/Breast 21 21  21 10 52 Two experimental pools of 10 and 

11 patients. Primary: stages II and 

III.  Metastases: Lymph nodes. 

Pozniak et 

al, 2016 

2) WES/Prostate 111 89 22 111  222  Barbieri et 

al, 2012 

3) WES/Prostate 15 15 15   30 Benign prostate hyperplasia (BPH) Liu D, in 

preparation 

4) WES/Prostate 41 41 41 41  123 Trio TCGA 

5) WES/Breast 13 13 13 13  39 Trio TCGA 

6) WES/Bladder 17 17 17 17  51 Trio TCGA 

7) WES/Lung 42 42 42 42  126 Trio TCGA 

8) WES/prostate 1  1 4 5 10 Individual with metastatic spread.   Beltran et 

al, 2016 

9) WES/Bladder 1  1 5 7 13 Individual with metastatic spread. Faltas et 

al, 2016 
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Task 
Comparison  

Group1 vs. Group2  

Linear SVM Classifier 

(Leave One Out) 

No. of Discriminative motifs 

(KS P-value < 0.001) 

  A)  

Datasets 

B)  

|∆CR| Signatures 

C) 

Accuracy 

D) 

Sensitivity 

E) 

Specificity 

F) 

Larger in 

Group 1 

G) 

Smaller in 

Group 1 

H) 

Tot 

1 TCGA 

BPH 

Tumor-Blood vs. 

Benign-Blood 
98% 1 0.93 133 21 154 

2 TCGA 

TCGA 

Tumor-Blood vs.  

Adjacent-Blood 
34% 0.31 0.38 0 0 0 

3 TCGA 

BPH 

Tumor-Adjacent 

Benign-Blood 
98% 1 0.93 79 17 96 

Table 2: Results of linear binary SVM classifiers, applied to the genomic prostate datasets. For each 

discrimination task (1-3) a standard leave-one-out test was performed. A-B) Datasets and the corresponding 

compared signatures (|∆CR|) of two groups of patients. C-E) SVM performance without feature selection (i.e., 

considering all 4096 hexamers). F-H) The number of discriminative hexamers found by Kolmogorov-Smirnov 

test comparing the distribution of |∆CR| between the two groups in each task using as selection criterion P-

value < 0.001. Hexamers are separated into those whose |∆CR| distribution is higher in the first group (i.e., the 

tumor signature) and those whose |∆CR| is smaller in the first group. 62 out of the 96 hexamers in task 3 

overlap the 154 hexamers identified in task 1. Accuracy = percentage of correct classifications; Sensitivity = 

TP/(TP+FN); Specificity = TN/(TN+ FP), where TP = true positives, TN = true negatives, FP = false positives, 

FN = false negatives. See Figure S9 for the predictive signal of the discriminative hexamers. 
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