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Abstract 

Marine microeukaryotes express large and complex transcriptomes that often respond 
dynamically to environmental and physiological conditions. In parallel to developments in 
human disease research, the opportunity exists to employ transcriptomic features as 
“biomarkers” to understand and predict cellular and environmental states. Here, the 
prediction and classification of basic physiological and environmental states including light, 
growth phase and inorganic carbon status was explored for the model diatom T. 
pseudonana using publicly available data including 56 microarray and 316 mRNA-seq 
samples. Simple “machine learning” methods combined with integrative bootstrapped 
clustering were able to detect, recapitulate and expand biologically and environmentally 
relevant signals evident across hundreds of samples collected and processed 
independently by multiple laboratories. Agnostic, integrative and empirical “data-driven” 
approaches are likely applicable to modern questions in new environmental and 
experimental contexts. 
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Introduction 

Cells experience large changes in their environment, and operate complex evolutionarily 
successful programs accordingly to navigate these challenges. Marine microbes including 
diatoms thrive in oceanic environments, where conditions fluctuate and shelter is typically 
impossible (Armbrust 2009). The use of transcriptomics in environmental biology has 
focused on the identification of processes and genes that respond to controlled 
environmental shifts (Mock et al. 2008; Allen et al. 2008; Waldbauer et al. 2012; Shrestha 
et al. 2012; Hennon et al. 2015; Nymark et al. 2013). This has revealed dozens of 
intracellular programs and thousands of genes whose correlations with treatment 
conditions deepen knowledge of the internal biology, homeostasis and coping strategies of 
marine microbes. 

In medical fields, efficient molecular data collection has been further applied to the 
development of predictive molecular “biomarkers” that can predict and classify samples, 
cells, tissues and subjects, e.g. as “healthy” or “diseased” (Akbani et al. 2015). The 
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correlation of highly specific molecular readings, including transcript levels, with the 
biological state of test subjects allows the classification, diagnosis or corroboration of 
hypothetical or hidden conditions (Li et al. 2017). This may also be applicable to biological 
and environmental questions, wherein measurable molecular biomarkers can indicate the 
biological and environmental status of study areas (Saito et al. 2014). 

In a “forward transcriptomics” context, deliberate changes in environmental (laboratory) 
conditions are used to expose and identify specific transcripts whose expression levels are 
most significantly affected by these controlled dependent variables. These efforts employ 
powerful and highly refined statistical techniques that are primarily designed for this 
purpose (Ritchie et al. 2015; Robinson, McCarthy, and Smyth 2010). Conversely, a 
“reverse transcriptomics” approach would seek to predict and identify uncertain phenotypic 
and environmental conditions, based on learned information about relationships between 
transcriptional programs and intra- and extra-cellular environments. A convenient, agnostic 
and “model-free” approach to this is to apply basic “machine learning” tools to project 
learned associations onto unlabelled samples. Here we explored this purpose using a 
large public dataset of laboratory transcriptomic data for the diatom T. pseudonana (Tp). 

Light status, light harvesting programs, and growth 
constraints 

Photosynthetic organisms respond dynamically to light conditions, balancing light 
harvesting and the shuttling of electrons for energy acquisition against the damaging 
effects of overexposure (Demmig-Adams and Adams 1992). In diatoms, as in other algae 
and plants, this is evident in varying levels of photoproteins and photochemistry with 
respect to light exposure (Oeltjen, Krumbein, and Rhiel 2002) and the active relationship 
between light flux and photosynthetic rates (MacIntyre et al. 2002). 

The T. pseudonana draft genome (Armbrust et al. 2004) includes at least 37 putative light 
harvesting complex (Lhc) proteins, which are dynamically expressed and highly 
coordinated (Fig. 1). This apparent sensitivity of Lhc transcript levels to environmental 
status has presumably evolved as part of a system to tightly control light harvesting 
potential. Shifts in the levels of transcripts encoding Lhcs are among the largest and most 
significant differences observed in transcriptomic experiments (Ashworth et al. 2013; 
Nymark et al. 2013). 
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Figure 1. The coordinated expression patterns of transcripts encoding light harvesting complex 
(Lhc) proteins in the diatom T. pseudonana. The clustering of these 14 transcripts according to the 
similarity of their apparent expression levels over many conditions is highly reproducible (Ashworth 
et al. 2016; Ashworth and Ralph 2018). A) 316 public mRNA-seq samples, B) 56 public microarray 
samples. Gray bars indicate the range of minimum and maximum values occurring in each sample, 
and a dashed line indicates median normalized mRNA-seq transcript levels (A) or microarray 
expression changes (B) per sample. 

Can transcriptomic features predict light status? To answer this question, we fit simple 
linear multi-dimensional kernel models (a “support vector machine” or SVM included in the 
Python ‘scikit-learn’ package) to 52 samples grown under known and varying light levels. 
SVMs optimize multi-dimensional support vectors that divide data into groups according to 
labelled samples, and can also predict the classes of unlabelled samples for new data 
projected across trained (fit) models. Candidate biomarkers in this analysis included: 

i) the full complement of normally-observed T. pseudonana transcripts, 
ii) individual transcripts, and 
iii) bootstrap-supported clusters of transcripts whose similarity of expression was 

robust to noise simulated by empirical resampling (Ashworth and Ralph 2018; 
Suzuki and Shimodaira 2006). 

The features whose transcript levels most accurately recapitulated light conditions in these 
samples are shown in Table 1. While numerous features are available among the 11,221 
mRNA-seq transcripts that were observed in at least half of all samples, only 76 of tested 
features resulted in models that predicted >90% of samples with known light conditions 
(“light” or “dark”) correctly. These consisted of 35 single transcripts, 40 bootstrap clusters, 
and 1 feature consisting of the whole transcriptome. The vast majority were relatively 
uninformative, with a median cross-validated prediction accuracy of ~40% for single-
transcript features (Fig. 2). 
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Table 1. The 20 features whose transcript levels best predicted the light status of 52 
mRNA-seq samples with annotated light levels. 

Accuracy 
(Test Set) 
correct/all 

Feature 
Size 

Tp v.3 
IDs 

Annotation / Function 

0.961 8 [8 IDs] threonine synthase activity, transcription cofactor activity 
0.959 1 4202 (Tp_bHLH8_PAS) predicted pas-domain protein 
0.957 1 2892 EF_TS(3e-134), Mitochondrial translation elongation factor EF-Tsmt, catalyzes nucleotide 

exchange on EF-Tumt, tsf 
0.955 14 [14 IDs] membrane, photosynthesis (light harvesting)* 
0.955 12 [12 IDs] protein-methionine-S-oxide reductase activity, inositol or phosphatidylinositol 

phosphatase activity, inositol-1(or 4)-monophosphatase activity 
0.955 1 7940 [Unk.] 
0.952 1 1913 P-loop_NTPase(2e-21), AAA+-type ATPase, AAA 
0.952 18 [18 IDs] carbohydrate metabolism, NAD binding, ribose-5-phosphate isomerase activity, pentose-

phosphate shunt, non-oxidative branch, 3-oxoacyl-[acyl-carrier protein] reductase activity, 
phosphoglycerate kinase activity, phosphoglucomutase activity, ribulose-phosphate 3-
epimerase activity, intramolecular transferase activity, phosphotransferases 

0.952 13 [13 IDs] unfolded protein binding, chaperonin ATPase activity, electron transporter activity, 
electron transport, endoplasmic reticulum, protein disulfide isomerase activity, protein 
folding 

0.950 1 9689 Transcription factor CHX10 and related HOX domain proteins, (Tp_bZIP7b/PAS) 
predicted regulator [Rayko et al.] 

0.950 1 24507 Nuclear receptor coregulator SMRT/SMRTER, contains Myb-like domains; 
(Tp_bZIP5_PAS) predicted regulator [Rayko et al.] 

0.948 10 [10 IDs] D-xylose 1-dehydrogenase (NADP+) activity, caspase activity, guanosine tetraphosphate 
metabolism 

0.943 18 [18 IDs] uroporphyrinogen decarboxylase activity, protochlorophyllide reductase activity, trans-
9R,10R-dihydrodiolphenanthrene dehydrogenase activity, glucose-6-phosphate 
isomerase activity, cis-2,3-dihydrodiol DDT dehydrogenase activity, bacteriochlorophyll 
biosynthesis, gluconeogenesis, trans-1,2-dihydrodiolphenanthrene dehydrogenase 
activity, oxidoreductase activity, enoyl-[acyl-carrier protein] reductase activity 

0.941 9 [9 IDs] NAD(P)+ transhydrogenase (AB-specific) activity, phosphomannomutase activity, 
electron transport, intramolecular transferase activity, phosphotransferases, proton 
transport, FMN binding, NAD(P) transhydrogenase activity 

0.941 5 [5 IDs] dipeptidyl-peptidase IV activity, prolyl oligopeptidase activity, serine-type peptidase 
activity 

0.941 16 [16 IDs] ATP synthase activity, lipid biosynthesis, light-harvesting complex, chlorophyll binding, 
photosystem, chloroplast ribulose bisphosphate carboxylase complex, cyclopropane-
fatty-acyl-phospholipid synthase activity, carbon utilization by fixation of carbon dioxide, 
photosystem II stabilization, photosynthesis, light reaction, ribulose-bisphosphate 
carboxylase activity, electron transporter, photosynthetic electron transport chain, protein 
stabilization, photosystem II, photosystem I reaction center, photosynthesis 

0.939 8 [8 IDs] mRNA metabolism, aspartate oxidase activity, nucleotide kinase activity, phospholipid 
biosynthesis, inositol-3-phosphate synthase activity, nucleobase, nucleoside, nucleotide 
and nucleic acid metabolism, myo-inositol biosynthesis, adenylate kinase activity, L-
aspartate oxidase activity 

0.939 11221 * [Entire T. pseudonana transcriptome] 
0.936 1 11564 3.2.1.3, Chitinase 
0.936 7 [7 IDs] procollagen-proline, 2-oxoglutarate-4-dioxygenase complex, prolyl aminopeptidase 

activity, aminopeptidase activity, procollagen-proline 4-dioxygenase activity 
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Figure 2. Distributions of cross-validated prediction accuracy for light status on untrained samples 
for single- and multi-transcript SVM classifiers. 

Including 40-fold cross-validation, the information contained in the expression levels of 14 
Lhc transcripts (Table 1), ‘photosynthesis (light harvesting)’) correctly classified conditions 
as “light” or “dark” with 96.7%/95.5% accuracy (trained samples/untrained samples), 
performing well at predicting the light conditions of untrained samples as a model trained 
using a matrix of all 11,221 transcripts in this dataset (100%/93.9% accuracy). This finding 
is consistent with the theory that dynamic regulation of Lhcs balances the collection of 
photosynthetically active radiation (PAR) by antennae proteins, and is informative of the 
organism’s cellular state with respect to known (or unknown) light conditions. 

The most predictive single transcript feature (Tp v.3 4202) encodes a putatively light-
sensitive basic helix-turn-helix/PAS transcription factor domain (Rayko et al. 2010). The 
levels of this transcript increase ~20-fold in cells experiencing “dark” conditions. While this 
single-transcript feature may be highly predictive of light status across these samples, it is 
a low abundance transcript, which might be unobserved in new samples with low 
coverage. Across 316 public mRNA-seq samples for T. pseudonana, the median 
normalized read count (transcripts per million, TPM) for Tp 4202 is among the 2.7% least 
abundant transcripts, and it was not observed at all in 21 samples. The prospect of false 
negatives due to low transcript levels and/or coverage complicates, but does not preclude 
prediction/classification (Fig. 3A). 

Informative, coherent clusters transcripts may provide superior predictive biomarkers for 
light status in this species as compared to single transcripts or whole transcriptomes for 
multiple reasons: 
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i) the propensity for overfitting when using many more parameters (all transcripts) 
than classes (nsamples << ntranscripts),  

ii) the likelihood of encountering missing and/or excessively noisy individual 
transcripts in additional samples, and  

iii) unintended and orthogonal batch, study, inter-lab or inter-sample effects across 
many (or arbitrary) transcripts in aggregate, to which modern statistical 
prediction/classification approaches may be extremely sensitive. 

The use of data-supported co-expression clusters derived from all available public data 
incorporates information that is empirically reliable and generalizable over nearly all 
measured conditions, in contrast to top DE transcripts or clusters drawn solely from 
individual experimental series. The use of clustering for feature selection and prediction is 
common in prediction/classification and machine learning problems. 

Predictions for “unlabelled” samples. Applied to the full dataset, including an additional 
274 samples not labelled as “light” or “dark” collected across different labs using different 
platforms, the SVM model fit to 14 Lhcs predicted 78 samples consistent with “dark” 
conditions, and 238 samples consistent with “light” conditions (Fig. 3). While inaccuracy in 
these extended predictions is likely to be higher than in internally cross-validated test sets, 
plausible predictions of unknown condition states based on validated transcriptional 
patterns may greatly extend the biological and contextual understanding of samples for 
which conditions are uncertain, unmeasured, or not reported. 

Figure 3. The prediction of light status using trained transcript features across all 316 public 
mRNA-seq samples. A) The normalized transcript per million (TPM) levels of a single transcript 
encoding a putative bHLH/PAS light-sensitive transcription factor domain (Tp v.3 4202) easily 
distinguish “light” from “dark” samples. B) A model trained on transcript levels for 14 Lhc transcripts 
successfully distinguishes between nearly all “light” and “dark” samples. True sample labels are 
indicated by colored bars at the top. White triangles represent labelled training/testing data, 
colored lines represent all data, gray regions indicate probabilities of samples being collected 
under “dark” conditions, yellow regions indicate probabilities of samples being collected under 
“light” conditions, dashed lines indicate a prediction probability 0.5 (50%). 

Application to microarray fold-change data. Public microarray data including known 
changes in light status (Ashworth et al. 2016) may be also amenable to 
prediction/classification (Fig 4). While information about raw transcript abundance is 
typically not included or reliable in microarray studies, gene-wise expression fold-change 
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ratios to common references are informative of programmatic shifts in intracellular 
regulatory and physiological programs. Among 52 publicly available microarray samples 
for T. pseudonana (Ashworth et al. 2016), 35 were collected under known conditions of 
“light,” “dark,” or “excess” light. While the expression levels of Lhcs were able to classify 
light status in most samples (87.2%/69.3%; trained/test samples), the effect of growth 
phase on relative changes in Lhc expression appears to complicate these predictions (Fig. 
4B). Samples collected during timeseries experiments exhibited large phase-dependent 
shifts in Lhc expression (Ashworth et al. 2013). Microarray expression changes for the 
bHLH/PAS Tp v.3 4202 gene were completely uninformative of light status across these 
experiments, potentially due to loss of signal for this lowly-expressed gene (Fig. 4A). 

Among these microarray samples, Lhc transcript levels predicted growth phase with 
(97.5%/88.6%) accuracy, as Lhcs increased in expression during “early/exponential” 
growth and decreased in expression in “stationary/limited” cultures. This relationship 
between growth phase and relative Lhc expression appears to surpass the role of light 
levels. A departure from this relationship occurs in samples experiencing high light stress, 
where Lhc expression is down-regulated during all phases of growth (Fig. 4C). 
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Figure 4. The prediction of light status and growth phase using trained relative gene expression 
features across all 52 public microarray samples. True sample labels are indicated as colored 
boxes at the top of each plot. White boxes indicate “unlabelled” samples. Prediction accuracies are 
shown on the right (training/testing data). A) The Tp v.3 ID 4202 (putative bHLH/PAS) gene is not 
informative of light status in these microarray data, due potentially to its low expression level. B) 
Relative expression changes for a bootstrap-supported Lhc cluster of 14 genes successfully 
recapitulates light status in microarrays. Cross-classification to unlabelled samples known to be in 
stress conditions (“Stress”) is consistent with the results of previous specific stress-related 
experiments (Mock et al. 2008). White triangles represent labelled training/testing data, colored 
lines show all data. 
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Lhcs also successfully predicted growth phase in mRNA-seq data, predicting samples 
labelled as “early” or “late” growth phase with a high accuracy (94.4%/93.6%) comparable 
to that of the entire transcriptome (100%/92.3%). Out of 316 total samples, 262 samples 
were predicted to be in a “growing” state and 54 were predicted to be “stationary” based 
upon the expression levels of light harvesting complexes (Fig. 5). While thousands of 
changes occur inside diatoms during growth phase transitions (Ashworth et al. 2013; 
Valenzuela et al. 2018), the Lhcs may be convenient and effective “biomarkers” for the 
light and growth status of diatoms in uncertain samples or environments. 

 

Figure 5. The prediction of growth phase (green: early/growing/exponential; brown: 
late/limited/stationary) using a bootstrap cluster of transcripts encoding Lhcs as a predictive feature 
across 316 public mRNA-seq samples. True sample labels are indicated as colored boxes at the 
top of each plot. White/missing boxes indicate “unlabelled” samples. White triangles represent 
labelled training/testing data, colored lines show normalized TPM data. 

Inorganic carbon status 

Photosynthesis requires CO2 as a source of carbon atoms that can be reduced into higher-
energy organic molecules. In marine microalgae CO2 must be acquired in dissolved forms 
from the wet environment, and it is actively pumped into the cell across multiple 
membranes (Hopkinson et al. 2011; Hopkinson, Dupont, and Matsuda 2016; Shen, 
Dupont, and Hopkinson 2017). When experiencing dissolved inorganic carbon (DIC) levels 
below ~300-400 ppm CO2, diatoms including T. pseudonana up-regulate carbon-
concentration mechanisms (CCMs) in order to scavenge dissolved inorganic carbon. This 
situation should occur commonly in natural environments, blooms, and laboratory cultures, 
whenever photosynthesis outpaces DIC availability. 

The transcript levels of several CCM-related genes in T. pseudonana have been found to 
correlate strongly with the presence or absence of carbon limiting conditions (Hennon et 
al. 2015; Valenzuela et al. 2018). These transcripts in turn may be excellent biomarkers for 
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the prediction of carbon status in samples collected from conditions for which the inorganic 
carbon status not known, measured or reported. 

The performance of several CCM-related transcripts as predictive biomarkers across 149 
public mRNAseq samples (70 “low”/79 “high”) with known/labelled CO2 conditions is 
shown in Table 2. Predictive models fit on an eight-transcript CCM cluster identified in 
controlled chemostat experiments (Hennon et al. 2015) and confirmed in large-scale batch 
cultures (Valenzuela et al. 2018) are able to recapitulate the inorganic carbon status 
across these samples with 100% accuracy. Close behind are models based on single- or 
multi-transcript features including the most consistently up- or down-regulated transcripts 
across controlled experiments, including: 

i) a carbonic anhydrase (Tp v.3 233), 
ii) a lowly-expressed putative permease (Tp v.3 262258) that strongly increased in 

expression under “high” CO2 conditions (800 ppm), and  
iii) a pair of transcripts putatively encoding bestrophin domains (Tp v.3 4819, 4820). 

Table 2. Cross-validated accuracy of predictions for inorganic carbon status (“low”, “high”) 
for selected transcript features. 

Accuracy 
(Test Set) 
correct/all 

Median log10 
Fold Change 
(TPM) “high” 
vs. “low” CO2 

Feature Size IDs (Tp v.3) 

1.000 -0.4 “CCM” Cluster 8 233, 264181, 4819, 4820, 269696, 269699, 10360, 6529 
1.000 -0.4 “CCM” Cluster 

& Permease 
9 233, 264181, 4819, 4820, 269696, 269699, 10360, 6529, 

262258 
0.992 0 All transcripts 11221 [...] 
0.959 0.3 Permease & 

CdCA1 
2 262258, 233 

0.946 1.3 Permease 1 262258 
0.91 -0.7 CdCA1 1 233 
0.809 -0.4 Bestrophins 2 4819, 4820 

 

Treated as “biomarkers,” these transcripts result in the prediction of between 148 to 216 
“low” (≤ ~400 ppm) and 100 to 166 “high” (≥ ~400 ppm) samples. The most accurate 
cluster-based predictor (“CCM Cluster”) predicts 176 “low” and 140 “high” CO2 samples; 
the most conservative predictor (Permease + CdCA1) predicts 216 “low” and 100 “high” 
CO2 samples. These results are illustrated in Figure 6. 

While the putative permease Tp v.3 262258 is a highly informative biomarker for inorganic 
carbon status in this dataset, relative counts for this transcript are exceedingly low (or 
missing) in a large number of samples (122/316). Even when this transcript is observed, its 
median normalized TPM was among the lowest 4% of transcripts. While the absence of 
reads mapping to 262258 may be indicative of samples that are not experiencing higher 
than normal CO2 conditions, the use of this transcript as biomarker may be challenging 
due to the likelihood of false negatives in coverage-limited experiments. 

The carbonic anhydrase CdCA1 (Tp v.3 233), while only slightly less predictive of CO2 
status, in contrast was expressed in the 79th percentile among all transcripts. Reads 
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mapping to CdCA1 should be more reliably detected in new or low-coverage samples. A 
predictor based on the combination of these two candidate biomarkers outperformed 
either transcript alone (Table 2, Fig. 6, “233 & 262258”}). 

Figure 6. The prediction of inorganic carbon status (blue: “low” (≤ ~400ppm CO2), red: ”high” (≥ 
~400ppm CO2) using a cluster of transcripts encoding CCM-related functions (“CCM Cluster”), a 
carbonic anhydrase (Tp v.3 233), a putative permease (Tp v.3 262258) and a combination of 233 
& 262258. True sample labels are indicated as colored bars at the top of each plot. White/missing 
boxes indicate “unlabelled” samples. White triangles represent labelled training/testing data, 
colored lines show normalized TPM data. 

Nutrient status 

Diatoms also employ mechanisms to scavenge nutrients under conditions of depletion or 
scarcity, and are transcriptionally responsive to these conditions (Mock et al. 2008). The 
two principal known assimilation genes for silicate (SiO4) and nitrate (NO3) in T. 
pseudonana are SIT1 (Tp v.3 268895) and NRT1 (Tp v.3 27414). Predictive features 
based on the transcript levels of these genes, as well as combinations of gene pairs and 
corresponding bootstrap clusters are able to predict nutrient status (-Si, -N, replete) with 
high accuracy in a set of 42 training/testing samples for which nutrient status was 
annotated or fairly certain (Table 3). Combinations of SIT1 and NRT1 clusters performed 
more robustly than arbitrary features for the prediction of nutrient status, although multiple 
apparent cell signaling clusters that were able to separate these classes may also deserve 
further investigation (Fig. 7). 

Table 3. Cross-validated accuracy of predictions for nutrient status (-Si, -N, replete) for 
selected transcript features. 

Accuracy 
(Test Set) 
correct/all 

Size IDs (Tp v.3) Function 

1 9 23657, 24060, 25299, 269274, 27414 (NRT1), 3393, 
268895 (SIT1), 14322, 9619 

Silcate and nitrate 
assimilation 
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0.994 11221 [Whole transcriptome] 
 

0.994 2 268895 (SIT1), 27414 (NRT1) Silcate and nitrate 
assimilation 

0.947 9 15976, 2247, 26403, 268080, 33699, 36213, 8259, 
bd381, bd763 

Signalling 

0.944 10 [...] Signalling 
0.944 7 20569, 269557, 33407, 34738, 3517, 37054, 8675 Signalling 
… … … 

 

0.911 3 268895 (SIT1), 14322, 9619 Silicate assimilation 
… … … 

 

0.906 1 268895 (SIT1) Silicate assimilation 
… … … 

 

0.85 1 27414 (NRT1) Nitrate assimilation 
 

 

Figure 7. The prediction of nutrient status (blue: -Si, green: -N, gray: replete) using transcript 
features including A) combined SIT1- and NRT1-containing clusters, B) SIT1 and NRT1 in concert, 
C) an apparent signalling cluster of relatively unknown significance with high discriminatory ability. 
Known sample labels are indicated as colored bars at the top of each plot. White/missing boxes 
indicate “unlabelled” samples. White triangles represent labelled training/testing data, colored lines 
show normalized TPM data. 
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The real world? Limited references 

Modern efforts in biological oceanography include the application of genomics and 
transcriptomics to understand what is occurring at wild and diverse study sites (Marchetti 
et al. 2012). Outside of the laboratory and in contexts wherein cellular material and 
coverage are scarce, limitations on biomass or sequencing depth often preclude full or 
adequate coverage of species’ entire transcriptomes. Methods of inference may fail 
outside of controlled laboratory conditions due to new environments, data sparsity, and 
missing/non-uniform references or internal standards. 

To explore the issue of limited, missing or sparse reference transcripts, we re-fit models to 
data normalized to a limited but adequate array of ad hoc “stable” transcripts evident in all 
laboratory samples. These transcripts are evidently maintained at consistent levels across 
a range of conditional variation represented in the dozens of experiments, and could be 
considered “housekeeping genes” for the purposes of agnostic normalization (Glusman et 
al. 2013). The 20 least variant transcripts whose normalized read counts (TPM) were 
above the median across 316 samples are shown in Figure 8 and Table 4. 

Figure 8. Stable reference transcripts across many laboratory experiments. A) Lines indicate 
normalized transcript read count values (TPM) for each of the transcripts listed in Table {RefTx}. 
The gray region indicates the range of minimum and maximum values occurring in each sample. 
B) The distribution of standard deviations for above-median transcripts. The transcripts shown in 
(A) are represented to the left of the dashed line. 

Table 4. Identities of the 20 most stable reference transcripts with above-average median 
transcript levels in this dataset. 

Tp v.3 
ID 

median log10 
TPM 

Std. 
dev. 

Function/Annotation 

23748 1.49 0.081 Protein phosphatase 2A regulatory subunit A and related proteins 
21839 1.59 0.085 Symplekin_C(1e-53);mRNA cleavage and polyadenylation factor II complex, 

subunit PTA1;Symplekin_C 
24073 1.54 0.086 Bromodomain(7e-21);Transcription initiation factor TFIID, subunit BDF1 and 

related bromodomain proteins;BROMO 
24639 1.71 0.086 3.1.13.4;Synaptic vesicle protein EHS-1 and related EH domain proteins;EH 
24828 1.47 0.088 2.7.1.37;Cytoskeleton-associated protein and related proteins;CAP_GLY 
24795 1.49 0.089 SNF2_N(2e-53);3.6.1.-;Chromatin remodeling protein HARP/SMARCAL1, 

DEAD-box superfamily;HepA 
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268346 1.54 0.090 TPR_11(5e-21);TPR-containing nuclear phosphoprotein that regulates K(+) 
uptake 

21791 1.55 0.090 [Unk.] 
21751 1.54 0.092 DUF1336(2e-44);Junctional membrane complex protein Junctophilin and 

related MORN repeat proteins;DUF1336 superfamily 
22620 1.51 0.093 Predicted helicase;(Tp_AP2-EREBP1) regulator [Rayko] 
24616 1.53 0.093 [Unk.] 
7839 1.58 0.096 7tm_GPCRs(6e-35);GABA-B ion channel receptor subunit GABABR1 and 

related subunits, G-protein coupled receptor superfamily;7tm_3 
21334 1.6 0.097 Nucleolar GTPase/ATPase p130 
23753 1.6 0.098 [Unk.] 
12836 1.54 0.099 EEP(1e-149);3.1.3.36;Inositol polyphosphate 5-phosphatase and related 

proteins;EEP superfamily 
9449 1.64 0.100 [Unk.] 
23092 1.52 0.100 Halotolerance protein HAL3 (contains flavoprotein domain) 
36937 1.48 0.101 PKc_like(1e-178);2.7.1.137;Phosphatidylinositol 3-kinase VPS34, involved in 

signal transduction;PI3Kc_like superfamily 
23346 1.66 0.102 Translation initiation factor 5 (eIF-5) 
40925 1.85 0.103 RNA_pol_B_RPB2(0e+00);2.7.7.6;RNA polymerase II, second largest 

subunit;(RPB21) PRK08565 
[Unk.]: unknown 

As ratios to median values of empirically-derived reference transcripts, transcript levels of 
Lhcs continue to correctly predict “low” and “high” light conditions, as well as “exponential” 
and “stationary” growth phases, and CCM transcripts continue to predict inorganic carbon 
status (Table 5). More challenging normalization problems may draw upon various 
combinations of these or dozens of other apparent reference candidates according to their 
representation in new samples. 

Table 5. Re-classification of sample conditions based on ratios of biomarker transcripts to 
empirically-derived stable reference transcripts. 
Prediction: light conditions 

 

Accuracy (Test Set) 
correct/all 

Feature Size Tp v.3 IDs 

0.968 Carbohydrate metabolism 18 [...] 
0.945 Unknown function 8 1913, 20777, 21311, 24507, 24613, 268070, 2714, 4632 
0.941 bHLH/PAS 1 4202 
0.939 Light harvesting 14 [...] 
0.939 Whole transcriptome 11221 [...] 
  
Prediction: growth phase  
Accuracy (Test Set) 
correct/all 

Feature Size Tp v.3 IDs 

0.939 Light harvesting 14 […] 
0.930 Whole transcriptome 11221 […] 
  
Prediction: inorganic carbon conditions 

 

Accuracy (Test Set) 
correct/all 

Feature Size Tp v.3 IDs 

1.0 CCM 8 233, 264181, 4819, 4820, 269696, 269699, 10360, 6529 
1.0 CCM & permease 9 233, 264181, 4819, 4820, 269696, 269699, 10360, 6529, 262258 
0.992 Whole transcriptome 11221 [...] 
0.945 permease 1 262258 
0.944 Permease & CdCA1 2 262258, 233 
0.912 CdCA1 1 233 

Conclusion 

Transcriptomic biomarkers that can be trained and validated using large and sufficiently 
labelled data/sample sets may be useful for predicting the conditions of samples for which 
various parameters, environmental conditions or cellular states may be unknown or 
unmeasured. The elementary “machine learning” methods employed here are easily 
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adaptable to additional questions, and can likely be refined or improved to suit more 
specific needs or constraints. This may be useful for environmental studies of marine 
microbes using transcript data, and meta-studies that seek to predict and derive new 
information from large public datasets. Here we explored the basic utility of this approach 
using public data from a single diatom species, T. pseudonana. Extension to additional 
conditions, species or cross-species questions is likely also feasible. 

Caveats to this approach include the need for large numbers of labelled samples, and the 
propensity for purely “data-driven” models to be overfit to spurious or unreproducible 
signals. The added problems of non-uniform losses in read coverage, inadequate data to 
reliably calculate normalized read count values (e.g. TPM), and inabilities to adequately 
control for compositional biases of mixed populations of cells/species over space and time 
are outside of the scope of this analysis, but will no doubt complicate efforts to perform 
predictions for wild samples. 

Data and Methods 

The T. pseudonana mRNA-seq and microarray datasets used in this analysis consisted of 
publicly available data downloaded from the NCBI GEO (Barrett et al. 2013) and SRA 
(Leinonen, Sugawara, and Shumway 2011) databases as of mid-2018. Data integration, 
normalization and clustering are described in (Ashworth et al. 2016; Ashworth and Ralph 
2018). Prediction/classification was performed in Python (version 3.7.0; 
https://www.python.org/) using linear kernel support vector machine (SVM) tools from the 
scikit-learn package (version 0.20.1; https://scikit-learn.org). Reported “prediction 
accuracies (test set)” are the result of cross-validation wherein models were fit 40 times to 
randomly split training and testing samples (70%/30%); the correct recovery of untrained 
“test” samples was averaged over all untrained subsets. Figures were created using the 
Python matplotlib package (version 3.0.2; https://matplotlib.org/). 
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