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Abstract 29 

 The characterization of microbial communities by metagenomic approaches has been 30 

enhanced by recent improvements in short-read sequencing efficiency and assembly algorithms.  31 

We describe the results of adding long-read sequencing to the mix of technologies used to 32 

assemble a highly complex cattle rumen microbial community, and compare the assembly to 33 

current short read-based methods applied to the same sample.  Contigs in the long-read assembly 34 

were 7-fold longer on average, and contained 7-fold more complete open reading frames (ORF), 35 

than the short read assembly, despite having three-fold lower sequence depth.  The linkages 36 

between long-read contigs, provided by proximity ligation data, supported identification of 188 37 

novel viral-host associations in the rumen microbial community that suggest cross-species 38 

infectivity of specific viral strains.  The improved contiguity of the long-read assembly also 39 

identified 94 antimicrobial resistance genes, compared to only seven alleles identified in the 40 

short-read assembly.  Overall, we demonstrate a combination of experimental and computational 41 

methods that work synergistically to improve characterization of biological features in a highly 42 

complex rumen microbial community. 43 

Background 44 

 Microbial genome assembly from metagenomic sequence of complex communities 45 

produces large numbers of genome fragments, rather than complete circular genomes, despite 46 

continuous improvements in methodology (1,2).  Assembly is complicated by sequences that may 47 

occur repeatedly within strains (“repeats”) or shared among similar strains of bacterial and 48 

archaeal species, creating “branches” in the assembly graph that precludes accurate 49 

representation of individual component genomes, particularly when multiple closely-related 50 

strains of a species are present in the environment (3).  Repetitive content contributes to difficulty 51 

in multicellular Eukaryotic genome assembly as well (4), but the problem becomes more 52 

complicated in metagenome assembly (5) due to the wide range of abundance among bacterial 53 

species and strains, and the presence of other environmental DNA (e.g. plants, protists). 54 

         The application of long-read sequencing appears to be a potential solution to many of the 55 

difficulties inherent to metagenomic assembly. Read lengths that exceed the size of highly 56 

repetitive sequences, such as ribosomal RNA gene clusters, have been shown to improve contig 57 

lengths in the initial assembly (6,7). However, longer repetitive regions are only capable of being 58 
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completely resolved by long reads of equal or greater size to the repeat, which makes input DNA 59 

quality a priority in sequence library construction. This can present a problem in metagenomics 60 

samples as material-adherent bacterial populations produce tough extracellular capsules that 61 

require vigorous mechanical stress for lysis, resulting in substantial DNA fragmentation and 62 

single-strand nicks (8). Long-read sequencing technologies have been previously used in the 63 

assembly of the skin microbiome (9), several environmental metagenomes (10), and in the 64 

binning of contigs from a biogas reactor12; however, each of these projects has relied on 65 

additional coverage from short-read data to compensate for lower long-read coverage. 66 

Additionally, higher depths of coverage of long-reads from current generation sequencing 67 

technologies are necessary to overcome high, relative error rates that can impact assembly 68 

quality and influence functional genomic annotation (11). Still, there is substantial interest in 69 

generating assemblies derived from longer reads to enable better characterization of 70 

environmental and complex metagenomics communities (10). Metagenome WGS assemblies 71 

consisting entirely of long-reads have yet to be fully characterized, particularly those from 72 

complex, multi-kingdom symbiotic communities. 73 

The bovine rumen is an organ that serves as the site of symbiosis between the cow and 74 

microbial species from all three taxonomic Superkingdoms of life that are dedicated to the 75 

degradation of highly recalcitrant plant polymers (12). With efficiency unrivaled by most abiotic 76 

industrial processes, the protists, archaea, bacteria and fungi that make up the rumen microbial 77 

community are able to process cellulose and other plant biopolymers into byproducts, such as 78 

volatile fatty acids (VFA), that can be utilized by the host. This process is supplemented by 79 

relatively minimal energy inputs, such as the basal body temperature of the host cow and the 80 

energy-efficient mastication of digesting plant material. The presence of organisms from all 81 

major Superkingdoms in varying degrees of abundance makes the rumen an excellent model for 82 

a complex, partially-characterized metagenome system. Assessments of rumen microbial 83 

presence and abundance have generally been limited to 16S rRNA amplicon sequencing (13–15); 84 

however, recent genome assemblies of metagenomic samples (16,17) or isolates (18) derived 85 

from the rumen provide suitable standards for the comparison of new assembly methods and 86 

techniques. 87 
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 In this study, we compare and contrast several different technologies that are suitable for 88 

metagenome assembly and binning, and we highlight distinct biological features that each 89 

technology is able to best resolve. We show that contigs generated using longer-read sequencing 90 

tend to be larger than those generated by shorter-read sequencing methods; long-reads assemble 91 

more full-length genes and antimicrobial resistance gene alleles; and that long-reads can be 92 

suitable for identifying the host-specificity of assembled viruses/prophages in a metagenomics 93 

community. We also highlight novel host-viral associations and the potential horizontal transfer 94 

of antimicrobial resistance genes (ARG) in rumen microbial species using a combination of 95 

long-reads and Hi-C intercontig link data. Our data suggests that future metagenomics surveys 96 

should include a combination of different sequencing and conformational capture technologies in 97 

order to fully assess the diversity and biological functionality of a sample.  98 

 99 

Results 100 

Sample extraction quality and de novo genome assemblies 101 

 We extracted high molecular weight DNA from a combined rumen fluid and solid sample 102 

taken from a single, multiparous, cannulated cow and sequenced that sample using a short-read 103 

and a long-read DNA sequencing technology (see methods; Fig 1a). The short-read and long-104 

read data were assembled separately and generated de novo assemblies with contig N100K 105 

counts (the number of contigs with lengths greater than 100 kbp) of 88 and 384, respectively 106 

(Table 1). While the long-read assembly was mostly comprised of larger contigs, the short-read 107 

assembly contained five-fold more assembled bases (1.0 gigabases vs. 5.1 gigabases). We also 108 

observed a slight bias in the GC content of assembled contigs, with the short-read assembly 109 

having a larger sampling of different, average GC content tranches than the long-read assembly 110 

in observed, assembled contigs (Fig 1b). Interestingly, the average GC content of the error-111 

corrected long-reads indicated a bimodal distribution at the 0.5 and 0.25 ratios (Figure 1b) that is 112 

less pronounced in the GC statistics of the raw short-reads and both sets of assembly contigs. 113 

There are several possibilities for this discrepancy; however, it is possible that this lower GC 114 

content range belongs to unassembled protist or anaerobic fungi genomes which are known to be 115 

highly repetitive, and have low GC content (19,20).    116 
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We noticed a slight discrepancy in the Superkingdom-specific contig lengths that 117 

suggests that many of our contigs of potential Eukaryotic-origins are shorter than those of the 118 

Bacteria and Archaea, whichcoincided with our observation of GC content bias in the assembly 119 

(Fig 1c). To assess the bias in GC content in our assembly of the long-read data, we calculated 120 

the overlap of raw long-reads with our long-read assembly contigs. Density estimates of long-121 

reads that were not included in the long-read assembly (zero overlaps) mirrored the bimodal 122 

distribution of GC content in the raw long-reads previously observed, suggesting that a larger 123 

proportion of lower GC content reads had insufficient coverage to be assembled (Additional file 124 

1: Fig S1). Furthermore, we note that the error corrected long-reads were filtered based on intra-125 

dataset overlaps, resulting in a further reduction of bases compared with the starting, raw long-126 

reads. The correction step removed 10% of the total reads for being singleton observations (zero 127 

overlaps with any other read) and trimmed the ends of 26% of the reads for having less than 2 128 

overlaps. This may have also impacted the assembly of low abundance or highly complex 129 

genomes in the sample by removing rare observations of DNA sequence. We attempted to 130 

combine both the long-read and short-read datasets into a hybrid assembly; however, all attempts 131 

using currently available software were unsuccessful as currently available tools had prohibitive 132 

memory or runtime requirements due to the size of our input assemblies. We also investigated 133 

the use of long-reads in multiple-datasource scaffolding programs and found only minor 134 

improvements in assembly size that were achieved through the inclusion of a high number of 135 

ambiguous base pairs (Additional file 1: Supplementary Methods).  136 

Comparing binning performance and statistics 137 

 We applied computational (MetaBat) (21) and conformational capture methods 138 

(ProxiMeta  Hi-C) (22) in order to bin assembled contigs into clusters that closely resembled the 139 

actual genomic content of unique species of rumen microbes (Additional file 1: Supplementary 140 

Methods). The number of contigs per bin varied based on the binning method; however, the 141 

long-read assembly bins had nearly an order of magnitude fewer contigs per bin than the short-142 

read assembly regardless of method (Fig 2a). We also saw a clear discrepancy between binning 143 

methods, with ProxiMeta preferably binning smaller (< 2,500 bp) contigs with higher GC (> 144 

42%) than MetaBat (Chi-Squared test of independence p < 0.001; Additional file: Fig S2).   145 
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We further assessed bin quality and removed redundant contig-bin assignments between 146 

methods, using the single-copy gene (SCG) metrics of cluster contamination and completeness 147 

from the DAS_Tool (23) package (Fig 2c, d; Additional file 2, 3). We then sorted the revised 148 

DAS_Tool bins into a set of higher completion (HC) bins with less than 5% SCG redundancy 149 

and greater than 80% SCG completion, and a set of bins for analysis (AN) with less than 10% 150 

SCG redundancy (Fig 2b; Table 2). Since DAS_Tool assesses bin quality using bacterial and 151 

archaeal SCG metrics, we did not use a completion filter for the AN bin set as that would remove 152 

candidate high quality eukaryotic and viral bins from our analysis dataset. Our HC bin dataset 153 

contains 22 and 69 draft microbial genomes in the long-read and short-read datasets, 154 

respectively, with at least an 80% SCG completeness estimate and with less than 5% SCG 155 

redundancy (Fig 2e). The AN binset contained 1,028 and 3,757 long-read and short-read 156 

consolidated bins, respectively, which were used in subsequent analysis and characterization.  157 

Taxonomic classification reveals assembly bias 158 

 Taxonomic classification of the HC bin and AN binsets revealed a heavy preference 159 

towards the assembly of contigs of bacterial-origin vs archaeal- and eukaryotic-origin (Fig 3c; 160 

Additional file 1: Figures S3, S4). Both the short- and long-read HC bins contain only one bin, 161 

each consisting of Archaeal-origin sequence. The short-read archaeal HC bin was best classified 162 

as being a high quality draft from the Thermoplasmatales order; however, the long-read archaeal 163 

bin was identified as belonging to the genus Methanobrevibacter from the family 164 

Methanobacteriaceae. Contig taxonomic assignment generated by the BlobTools(24) workflow 165 

varied greatly among the short-read HC bins, with an average of 5 different phyla assignments 166 

per contig per bin (Additional files 4, 5). We identified 30 full-length (> 1,500 bp) predicted 16S 167 

rDNA genes in the HC bins, and only fragmentary (< 1,500 bp) 16S genes in the short-read 168 

assembly (Additional file 6). The long-read AN bins contained 239 full-length 16S genes, and all 169 

but 5 of the genes matched the original superkingdom taxonomic classification of the bin that 170 

contained the gene. Of these five discrepancies, three contigs were classified as “Eukaryotic” in 171 

origin, yet contained a predicted Archaeal 16S gene.  172 

Comparison to other datasets reveals novel sequence 173 

 Contig novelty was assessed via direct overlap with other rumen metagenomic 174 

assemblies and via alignment with WGS reads from other publically accessible sources (Fig 175 
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3a,3b). We identified many contigs in our short-read and long-read assemblies that did not have 176 

analogous alignments to the recently published Stewart et al. (17) and Hungate 1000(18) 177 

assemblies. From our HC bins, 3697 and 92 contigs from the short- and long-read assemblies, 178 

respectively, did not align to any sequence in these two datasets, consisting of 23.5 and 1.7 179 

megabases of assembled sequence that was missing from the previous, high quality, reference 180 

datasets for the rumen microbiome (Additional files 7, 8). Expanding the comparison to the AN 181 

binset, we identified 207,599 (669 Mbp) and 12,421 contigs (137 Mbp) in the short- and long-182 

read assemblies, respectively, that did not have analogs in the previous rumen datasets (Fig 3a, 183 

3b). From the AN bins with no alignments to other published datasets, we identified 152,739 and 184 

185 contigs in the short- and long-read AN binsets that did not have analogous alignments to the 185 

other respective dataset (e.g. short-read vs long-read). This represented 435 Mbp of exclusive 186 

sequence in the short-read dataset not contained in our long-read dataset. However, we also 187 

identified 1.18 Mbp that was novel to the long-read AN bins despite the coverage disparity 188 

between the two datasets. Contigs that were exclusive to the long-read dataset were primarily of 189 

Firmicutes-origin, and had a higher median GC% value than other contigs in the long-read 190 

dataset (Kolmogorov-Smirnov p = 4.12 x 10-5). 191 

 We wanted to compare the short-read sequence of our sample against other published 192 

rumen WGS datasets to see if there were differences in sample community composition that may 193 

have accounted for novel assembled sequence in our dataset. We aligned the WGS reads from 194 

each dataset to our assemblies (Additional file 1: Table S15), and we created a normalized read 195 

depth matrix from contigs from our short- and long-read datasets that had at least a Genus-level 196 

taxonomic assignment. We then counted the number of times per Genus where a contig had a 197 

higher mapping percentage in our sample compared to all other sampled WGS datasets and used 198 

a hypergeometric test to calculate the relative enrichment of observations per taxonomic group. 199 

In both the short-read and long-read datasets, six AN bins belonging to the Eukaryote 200 

superkingdom were significantly enriched (hypergeometric p value < 1 x 10-7 in all cases), 201 

suggesting that the WGS reads derived from the SRA datasets had lower coverage of these 202 

fungal and protist genomes than our WGS reads. In terms of assembly-specific enrichment, the 203 

short-read assembly had a larger proportion of Eukaryote-origin contigs that were found to be 204 

significantly enriched in coverage compared to the long-read assembly (Additional file 9). This 205 

may have resulted from the previously noted assembly discrepancy, where the short-read 206 
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assembly was far more likely than the long-read assembly to assemble low GC% Eukaryote 207 

contigs from lower coverage data despite sampling proportionally fewer reads from lower GC% 208 

tranches.  209 

Increased long-read contiguity results in more predicted ORFs per contig 210 

We sought to assess whether the increased contiguity of the long-read assembly contigs 211 

provided tangible benefits in the annotation and classification of open reading frames (ORFs) in 212 

our AN bin dataset. From prodigal (25) annotation of the AN bins from both assemblies, we 213 

identified 868,429 and 984,623 complete ORFs in the long-read and short-read assemblies, 214 

respectively (Additional files 10, 11). We found a lower fraction of identified partial ORFs in the 215 

long-read AN bins (55,002 partial ORFs; 6% of the complete ORF count) compared to the short-216 

read AN bins (365,281 partial; 37% of the complete ORF count). This would suggest that, 217 

despite a lower total count of total ORFs identified, the long-read bins more frequently contained 218 

complete ORFs than did the short-read bins. We also found a higher mean count of ORFs per 219 

contig in the long-read AN bins (mean: 15.79) than the short-read bins (mean: 2.69). This 220 

difference in average counts was found to be significant (Kolmogorov-Smirnov test p value < 221 

0.001 ) and may be due to the presence of longer contigs found in the long-read assembly dataset. 222 

The majority of partial ORF predictions occur within the first 50 bp of contigs in the long read 223 

(99.9%; Chi squared p < 0.001) and short read (95.2%; p < 0.001) AN bins, suggesting that 224 

ORFs were prematurely terminated by contig breaks. In the short read AN bins, a surprising 225 

proportion of ORFs missing both a start and stop codon (23,458 ORFs; 6.4% of the total count of 226 

partial ORFs) occur near the beginning of the contig compared to the long read bin set (56 227 

ORFs). However, we identified a slight discrepancy in ORF length between the long-read 228 

(median ORF length: 533 bp) and short-read (median: 584 bp) assemblies, with the later 229 

containing longer predicted ORFs than the long-read assembly.  230 

 We identified clear differences in gene content between the two assemblies that suggest a 231 

bias in functional ORF classification and discovery. Using cluster of orthologous group (COG) 232 

assignments to predicted ORFs in both assemblies, we identified a discrepancy in the 233 

proportional count of several major COG categories. The long-read Bacterial AN binset 234 

contained proportionally more L (Replication, recombination and repair), Q (Secondary 235 

metabolites), P (Inorganic ion transport) and H (Coenzyme transport/metabolism) COG ORFs 236 
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than the short-read bins, and proportionally less J (Translation) and M (Cell wall) COG ORFs 237 

(Additional file 1: Figure S5, Table S11) as determined by a Fisher’s exact test. Conversely, the 238 

long-read Archaeal AN bins contained more J and C (Energy production and conversion) COG 239 

ORFs than the short-read assembly, while still having proportionally fewer M COG ORFs. The 240 

V (Defense mechanisms) COG category was proportionally higher in the short-read assembly for 241 

both the Bacterial and Archaeal lineages, suggesting a higher proportion of defense-related ORFs 242 

were assembled in that dataset.  243 

Host-prophage association and CRISPR array identification 244 

 Longer reads have the potential to provide direct sequence-level confirmation of 245 

prophage insertion into assembled genomes by spanning direct repeats that typically flank 246 

insertion sites (26). To identify candidate host-specificity for assembled prophage genomes, we 247 

used a heuristic alignment strategy with our error corrected long-reads (Additional file 1 : 248 

Supplementary Methods) and Hi-C intercontig link density calculations. PacBio sequence data 249 

have a known propensity for chimerism(27); however, we assumed that identical, chimeric 250 

PacBio reads would be unlikely to be seen more than once in our dataset. Similarly, we filtered 251 

Hi-C read alignments to identify virus-host contig pairs with higher link counts to identify host-252 

viral associations in each assembly (Additional file 1 : Supplementary Methods). Several viral 253 

contigs in the long-read assembly had substantial associations with contig groups affiliated with 254 

more than one genus (a maximum of 11 distinct genus-level classifications for one viral contig 255 

from the Myoviridae), suggesting a wide host-specificity for these species (Fig 4a). Long-read 256 

assembly viral contigs with multiple candidate host associations were identified as belonging to 257 

the Podoviridae, Myoviridae and Siphoviridae families, which are viral families typically 258 

encountered in bovine rumen microbial samples (28).Viral contigs from the short-read assembly 259 

were associated with fewer candidate host genus OTUs (four distinct associations at maximum; 260 

Fig 4b). It is possible that the shorter length of Illumina assembly viral contigs (average size: 261 

4140 bp , standard deviation(sd): 5376 bp) compared with the long-read assembly contigs 262 

(average: 20,178bp, sd: 19,334 bp) may have reduced the ability to identify host-phage 263 

associations in this case. Having identified read alignments between viral contigs and non-viral 264 

contigs, we sought to leverage conformational capture via Hi-C to see if we could confirm the 265 

viral-host associations. 266 
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We found that our Hi-C link analysis and PacBio read alignment analysis had very little 267 

overlap; however, we identified a tendency for each method to favor a different class of virus-268 

host association which suggested that the methods were complementary rather than antagonistic 269 

(Additional file 12). Approximately 10% (long-read: 19 out of 188 pairs; short-read: 6 out of  270 

109) of the host-viral contig associations had supporting evidence from both PacBio read 271 

alignments and Hi-C intercontig links. In nearly all highly-connected viral contig pairs (greater 272 

than two additional contig associations) we observed evidence of host specificity from both 273 

methods even if it was for different host contigs. We also identified a bias in the host-viral family 274 

associations, where putative hosts for the Myoviridae were more likely to be identified via Hi-C 275 

than other viral families (Fig 4a). Myoviridae family viral specificity for the sulfur-reducing 276 

Desulfovibrio and the sulfur-oxidizing Sulfurovum genera were primarily identified through Hi-C 277 

contig links (Fig 4a, box: “Sulfur-degrading”). However, viral associations between the 278 

Sutterella and a previously unreported genera of rumen bacteria were primarily identified via 279 

PacBio read alignments and had little Hi-C intercontig link support.  280 

 We also tested the ability of longer read sequence data to resolve highly repetitive 281 

bacterial defense system target motif arrays, such as those produced by the CRISPR-Cas system, 282 

in our dataset. Despite having less than one third of the coverage of the short-read dataset, our 283 

long-read assembly contained two of the three large CRISPR arrays (consisting of 105 and 115 284 

spacers, respectively) in our combined assembly dataset (Fig 5a). The short-read dataset (597 285 

CRISPR arrays) contained approximately five-fold more identifiable CRISPR arrays than the 286 

long-read dataset (122 arrays), which is commensurate with the difference in the size of each 287 

assembly (5 Gbp vs 1 Gbp, respectively).  288 

Antimicrobial resistance gene detection 289 

Due to the frequent use of antibiotics in livestock production systems to treat disease and 290 

improve production, we wanted to assess the utility of longer-reads in detecting novel ARG 291 

alleles in assembled microbial genomes (Fig 5b). The long-read assembly (ARG allele count: 94) 292 

was found to contain over an order of magnitude more identifiable ARG alleles than the short-293 

read assembly (ARG allele count: 7), despite the major coverage discrepancies between the two 294 

datasets. The major contributor to this discrepancy was found in the Tetracycline resistance gene 295 

class, as the long-read assembly contained 80 ribosomal protection and 3 efflux ARGs that are 296 
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predicted to confer tetracycline resistance. By contrast, only 2 ribosomal and 2 efflux Tetracyline 297 

ARGs were identified in the short-read assembly. Using the contigs containing these ARG alleles 298 

as anchors in our alignment of Hi-C read pairs, we attempted to identify horizontal transfer of 299 

these alleles using Hi-C intercontig link signal (Additional file 1: Supplementary Methods).  We 300 

identified clusters of Prevotella bins, and clusters of bins from the Clostridiales and 301 

Bacteroidales that higher contig-link density with ARG allele contigs in our dataset (Additional 302 

file 1 : Figure S6; Additional file 13). These associations may represent potential horizontal 303 

transfer of these alleles; however, we note that inter-contig link density was relatively low in our 304 

comparisons (average alignments density was less than 2 reads per pair) and that ambiguous 305 

alignment to orthologous sequence could present false-positive signal in this analysis. 306 

Discussion 307 

 Whole metagenome shotgun sequencing and assembly has often relied exclusively on 308 

short-read technologies due to the cost-effectiveness of the methods and the higher throughput 309 

that they provide. While such strategies are often able to efficiently generate sufficient read 310 

depth coverage to assemble fragments of organisms in the community, we demonstrate that 311 

biases inherent in singular technologies suitable for metagenome assembly result in an 312 

incomplete assembly/binning of the actual community. For example, we exclusively assembled a 313 

member of the Archaeal order Thermoplasmatales in our short-read dataset and a member of the 314 

Archaeal genus Methanobrevibacter in the long-read assembly. Several taxonomic studies using 315 

short-read 16S-based methods have shown that the CO2-reducing Methanobrevibacter are one of 316 

the most abundant genera of methanogenic Archaea in the rumen (29), which was not reflected 317 

in our short-read assembly dataset despite higher depths of coverage. Conversely, we found that 318 

the short-read assembly was better at resolving genomic fragments of the Eukaryotic 319 

Superkingdom, which were relatively underrepresented in the long-read assembly. Given that we 320 

sequenced the same biological sample in all of our analyses, these discrepancies suggest that 321 

each technology samples different portions of the rumen microbial community. Our data suggest 322 

that each technology’s unique purview can be attributed to compositional differences of the 323 

genomes among taxonomic superkingdoms (Fig 1c), genomic GC% (Fig 1b), and the presence of 324 

mobile DNA (Fig 4, Additional file 1: Figure S6).  325 
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We identified a GC% bias in our short-read data relative to our long-read reads; however, 326 

this relative bias was reversed in comparisons of the GC content of the final assemblies, where 327 

our short-read assembly had more -- albeit shorter -- assembled contigs in lower GC% tranches 328 

(Fig 1b). These differences are most likely due to the different error rates and degrees of 329 

coverage of reads from the two sequencing technologies and the algorithms used by the different 330 

assembly programs to correct for errors. Paradoxically, the short-read assembly sampled 331 

proportionally fewer reads at higher and lower GC tranches, but was able to incorporate even 332 

fragmentary information from these tranches into smaller contigs. The long-read assembly, by 333 

contrast, required sufficient coverage of reads to appropriately correct for errors and this meant 334 

that many lower GC% reads were discarded due to assembly constraints, as we demonstrate in 335 

our read alignment overlap analysis (Additional file 1: Figure S1). Protists may represent a large 336 

proportion of this lower GC% community, and their genomes likely consist of highly repetitive 337 

sequence that would require higher depths of long-read coverage to sufficiently traverse (20). 338 

The use of improved error-correction methods or circular-consensus sequence reads (30,31) are 339 

likely to provide substantial benefits for downstream annotation and may enable the assembly of 340 

the low-abundance, low-GC% species that were poorly represented in our long-read assembly. 341 

Regardless, we found that even a lower depth of coverage of high error-rate long-reads better 342 

resolved biological features in the highly abundant strains than those detected in our short-read 343 

assembly. 344 

 We identified many biological features in our sample that would be missed if only a 345 

single technology/method was used for each step of the assembly, binning and analysis of our 346 

dataset. While differences in DNA sequencing technology represented a far smaller proportion of 347 

the total missing sequence (~ 0.5%) in our pairwise comparison, the missing fraction consisted of 348 

relatively large contigs with SCGs suitable for binning, as well as 7,886 complete ORFs. Larger 349 

contigs in the long-read dataset also resulted in a higher average count of annotated ORFs per 350 

contig than the short-read dataset by a factor of seven. This contiguity of gene regions is 351 

particularly important in bacterial classification, where functional genes of particular classes can 352 

be arranged in complete and phased operons. It is highly likely that this increase in contiguity 353 

contributed to the massive discrepancy in ARG allele identification between the two assemblies. 354 

We noted a significant increase in detected Tetracycline resistance alleles in our long-read 355 

assembly of a rumen metagenome from a concentrate-fed animal, which contradicts previous 356 
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work using short-read assemblies that found that animals fed concentrates should have few 357 

Tetracycline resistance alleles (32). Calves in the sampled research herd (UW-Madison, Dairy 358 

Forage Research Center) are given Chlortetracycline during inclement weather and Tetracycline 359 

is applied topically to heel warts on adult animals. It is possible that incidental/early exposure to 360 

this antibiotic has enabled the proliferation of tetracycline resistance alleles in the rumen 361 

community, and this proliferation was only detected in our long-read assembly. Previous studies 362 

have demonstrated the benefit of using longer reads in ARG allele –associated satellite DNA 363 

tracking (33) and ARG allele amplicon sequencing (34). To our knowledge, this is the first 364 

survey to identify the benefits of long-reads in de novo assembly of ARG alleles from a complex 365 

metagenomics sample.  366 

We also identified discrepancies between our selected computational (MetaBat) and 367 

proximity ligation (ProxiMeta Hi-C) binning methods that suggest that a combination of binning 368 

techniques are needed to identify all complete MAGs in a metagenomic sample. Contig binning 369 

comparisons suggest that MetaBat successfully binned contigs from the low-GC% contig 370 

tranches; however, it failed to incorporate the same proportion of smaller contigs in bins from the 371 

short-read (< 2,500 bp) or long-read (< 10,000 bp) assemblies as the ProxiMeta method. Smaller 372 

contigs most likely result from low-sequencing coverage regions or high copy orthologous 373 

genomic segments in a metagenomic sample. Both of these problems may have confounded the 374 

tetranucleotide frequency and coverage depth estimates used by MetaBat to bin our contigs, 375 

resulting in their lower frequencies in that binset. We did note some issues in DAS_tool 376 

dereplication of our dataset, where DAS_tool may have aggressively pruned contigs from 377 

MetaBat bins. However, our data suggests that MetaBat may have included far more 378 

contamination due to cross-Kingdom SCGs, thereby resulting in this aggressive filtration. 379 

In order to identify the horizontal transfer of mobile DNA in the rumen, we exploited two 380 

technologies to identify candidate hosts for transferred ARG alleles and assembled viral contigs. 381 

We observed inter-contig link associations between ARG allele contigs and bins that consisted of 382 

species from the Clostridiales and Bacteroidales. Evidence of identical ARG allele orthologs 383 

belonging to both classes was previously found in human colon samples (35); however, we note 384 

that our analysis shows only a precursory association of the context of identified ARG alleles 385 

and prospective host bins. We were unable to identify the exact vector that may enable the cross-386 
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species transfer of several of these alleles, but we suspect that lateral transfer of ARG alleles may 387 

be an adaptation of rumen bacterial species against antibiotic challenge as noted above. Direct 388 

evidence of the horizontal transfer of mobile elements was observed in identified novel host-viral 389 

associations that we detected by using a combination of PacBio long-read alignments and Hi-C 390 

intercontig link analysis. Proximity ligation has been previously used to detect host-virus 391 

associations (36); however, our combination of technologies potentially reveals new insights in 392 

the biology of the interaction between host and phage. We found a clear preference between the 393 

two methods in the detection of viral family classes, with Hi-C intercontig links preferring the 394 

Myoviridae viral family and our PacBio read alignments preferring all other viral families. This 395 

preference may reflect the nature of the activity of these viruses, as some genera of the 396 

Myoviridae family are known to have short lytic cycles (37) as opposed to long-term lysogenic 397 

life-cycles found in other viral families. We also identified viral-host association with several 398 

contigs within bins identified as belonging to the Desulfovibrio and Sulfurovum genera. Viral 399 

auxiliary metabolic genes related to sulfur metabolism were previously identified in assembly of 400 

rumen viral populations (28), and our study may provide a link to the putative origins of these 401 

auxiliary genes in host genomes that are known to metabolise sulfur compounds. We identified 402 

two ORFs annotated as 3'-Phosphoadenosine-5'-phosphosulfate (PAPS) genes in a viral contig in 403 

the long-read assembly that was associated with host contigs assigned to the Dehalococcoides. 404 

We did not detect any auxiliary metabolic genes in the short-read assembly. Additionally, the 405 

short-read assembly served as the basis of fewer host-viral contig associations in both Hi-C and 406 

PacBio read analyses, suggesting that assembled short-read viral contigs may have been too 407 

small or redundant to provide a useful foundation for alignment-based associations. 408 

We recommend that future surveys of complex metagenomic communities include a 409 

combination of different DNA sequencing technologies and conformational capture techniques 410 

(ie. Hi-C) in order to best resolve the unique biological features of the community. If our analysis 411 

was restricted to the use of the short-read WGS data and one computational binning technique 412 

(MetaBat), we would have missed 139 out of 250 of the top dereplicated DAS_Tool short-read 413 

bins contributed by ProxiMeta binning. Our long-read dataset further contributed 7,886 complete 414 

ORFS, 97 ARG alleles and 188 host-virus associations, with Hi-C signal providing further 415 

evidence of host-virus associations. We demonstrate that even a small proportion of long-reads 416 

can contribute high quality metagenome bins, and that the long-read data provided by the 417 
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technology is suitable for uncovering candidate mobile DNA in the sample. We also note that the 418 

inclusion of a computational binning method (Metabat) with a physical binning technique 419 

(ProxiMeta; Hi-C) further increased our count of high quality, DAS_Tool dereplicated bins, 420 

likely due to each method sampling a different pool of organisms. Therefore, the DAS_Tool 421 

dereplication of both sets of bins increased our final counts of high quality (> 80% completion) 422 

bins by 30-60% in the long-read and short-read assemblies. If a metagenomics WGS survey is 423 

cost-constrained, our data suggests that a computational method, such as MetaBat, currently 424 

cannot fully compensate for the GC% bias and repetitive, orthologous DNA issues that could 425 

reduce the completeness of a downstream short-read assembly. Still, we suspect that such 426 

projects will be able to assemble and characterize the abundant, moderate-GC portion of the 427 

metagenome community sufficiently for analysis. 428 

Further refinements could improve characterization of the rumen microbial community 429 

and other complex metagenomic communities in general. For example, microbes present in low 430 

abundance (or transient species) still represent a challenge to all of the technologies used in our 431 

survey. A sample fractionation method similar to one used by Solden et al. (38) would enable 432 

better, targeted coverage of these communities in future surveys while losing the ability to 433 

determine relative abundance estimates for strains. In the absence of targeted sample enrichment, 434 

co-assembly with other sampled datasets (17), low-error rate long-reads (31) or real-time, 435 

selective read sequencing (39) would enable sampling of lower abundant strains. Additionally, 436 

there is a need for a rigorous method to combine and/or scaffold metagenome assemblies with 437 

high-error long-reads. Our attempts to combine our short-read and long-read datasets using 438 

existing scaffolding and assembly software failed to produce a significant improvement in 439 

assembly contiguity and quality. The complexity of the data will likely require a specialized 440 

solution that can also resolve issues that result from excessive strain heterogeneity.  441 

Conclusions 442 

We demonstrate the benefits of using multiple sequencing technologies and proximity 443 

ligation in identifying unique biological facets of the cattle rumen metagenome and we present 444 

data that suggests that each has a unique niche in downstream analysis. Our comparison 445 

identified biases in the sampling of different portions of the community by each sequencing 446 

technology (e.g. bias in GC% representation), suggesting that a singular DNA sequencing 447 
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technology is insufficient to characterize complex metagenomic samples. Using a combination of 448 

long-read alignments and proximity ligation, we identified putative hosts for assembled 449 

bacteriophage at a resolution previously unreported in other rumen surveys. These host-phage 450 

assignments support previous work that revealed increased viral predation of sulfur-metabolising 451 

bacterial species; however, we were able to provide a higher resolution of this association, 452 

identify potential auxiliary metabolic genes related to sulfur metabolism, and identify phage that 453 

may target a diverse range of different bacterial species. Furthermore, we found evidence to 454 

support that these viruses have a lytic lifecycle due to a higher proportion of Hi-C inter-contig 455 

link association data in our analysis. Finally, it appears that there may be a high degree of mobile 456 

DNA that was heretofore uncharacterized in the rumen, and that this mobile DNA may be 457 

shuttling antimicrobial resistance gene alleles among distantly related species. These unique 458 

characteristics of the rumen microbial community would be difficult to detect without the use of 459 

several different methods and techniques that we have refined in this study, and we recommend 460 

that future surveys incorporate these techniques to further characterize complex metagenomic 461 

communities. 462 

  463 

Methods 464 

Sample selection, DNA extraction and Hi-C library preparation 465 

 Rumen contents from one multiparous Holstein cow housed at the University of 466 

Wisconsin, Madison, campus were sampled via rumen cannula as previously described (40). The 467 

sampled cow was in a later period of lactation and was being fed a total mixed ration. Rumen 468 

solids and liquids were combined in a 1:1 volume mix, and then were agitated using a blender 469 

with carbon dioxide gas infusion as previously described (40). DNA was extracted via the 470 

protocols of Yu and Morrison (41) albeit with several modifications to the protocol to increase 471 

yield. To improve DNA precipitation, an increased volume of 10 M ammonium acetate (20% of 472 

the supernatant volume) was added. Additionally, DNA pellets were not vacuum dried so as to 473 

reduce the potential for single-strand nicking due to dehydration. DNA quality was assessed via 474 

Fragment Analyzer spectra and spectrophotometric assays.  475 
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Different DNA extraction methods can result in substantial observed differences in 476 

strain- and species-level assignments depending on the recalcitrance of the cell wall of individual 477 

cells (8). However, contemporary long-read sequencing platforms require input DNA to be 478 

devoid of single-strand nicks in order to maximize sequence read lengths (42). Indeed, our 479 

observed, average subread length for the long-read dataset was almost half (7,957 ± 4,957 bp) 480 

the size of our original Fragment Analyzer spectra peaks (~ 14,651 bp), suggesting that the 481 

bacterial cell lysis still impacted DNA molecule integrity (Additional file 1 : Figure S8). 482 

Regardless, the average subread length was 9 kb and we were able to sequence a total of 52.92 483 

gigabases of raw PacBio data for our downstream analysis. . 484 

Portions of the rumen contents samples were fixed by a low concentration formaldehyde 485 

solution before DNA extraction as previously described (43). Fixed samples were subject to the 486 

same DNA extraction protocol as listed above, processed by Phase Genomics (Seattle, WA) and 487 

sequenced on a HiSeq 2000. 488 

Long-read and short-read DNA sequencing 489 

 Tru-seq libraries were created from whole DNA preps for the sample as previously 490 

described (44). Samples were run on a single Illumina NextSeq500 flowcell using a 300 cycle 491 

SBS kit to produce 150 bp by 150 bp paired-end reads.  492 

DNA samples from each cow were size selected to a 6 kb fragment length cutoff using a 493 

Blue Pippen (Sage Science; Beverly, MA). Libraries for SMRT sequencing were created as 494 

previously described (6) from the size-selected DNA samples. We generated 7.57 and 45.35 Gbp 495 

of PacBio uncorrected reads using the PacBio RSII (8 cells) and PacBio Sequel (21 cells), 496 

respectively. A total of 52.92 Gbp of subread bases with an average read length of 6623.33 bp 497 

were generated on all samples using PacBio sequencers (Additional file 1 : Table S14). 498 

Genome assembly and binning  499 

 PacBio raw reads were assembled by Canu v1.6+101 changes (r8513). We ran five 500 

rounds of correction to try to recover lower-coverage reads for assembly using the parameters “-501 

correct corMinCoverage=0 genomeSize=5m corOutCoverage=all corMhapSensitivity=high”. 502 

The input for each subsequent round were the corrected reads from the previous step.  Finally, 503 

the assembly was generated via the parameters “-trim-assemble genomeSize=5m 504 
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oeaMemory=32 redMemory=32 correctedErrorRate=0.035”.  The assembly was successively 505 

polished twice with Illumina data using Pilon restricted to fix indel errors using the “-fix indels” 506 

and “-nostrays” parameters. Pilon correction was automated using the 507 

slurmPilonCorrectionPipeline.py script available at the following repository: 508 

https://github.com/njdbickhart/RumenLongReadASM . We generated a second set of PacBio 509 

corrected reads for the viral-association and GC-read overlap analyses using the options “-correct 510 

corMinCoverage=0 genomeSize=5m corOutCoverage=all corMhapSensitivity=high 511 

corMaxEvidenceCoverageLocal=10 corMaxEvidenceCoverageGlobal=10” to restrict the global 512 

filter to avoid over-smashing similar sequences during correction. Illumina reads were assembled 513 

using MegaHit v1.1.2  using parameters --continue --kmin-1pass -m 15e+10 --presets meta-large 514 

--min-contig-len 1000 -t 16 and otherwise default settings.  515 

Reads from other rumen WGS datasets (Additional file 1 : Table S15) were aligned to 516 

assembled contigs from both assemblies with BWA MEM(45) and were used in Metabat2 517 

binning(21). Metabat2 was run with default settings using the coverage estimates from all rumen 518 

WGS datasets (Additional file 1 : Supplementary methods). Hi-C reads were aligned to 519 

assembled contigs from both assemblies using BWA MEM (45) with options -5S, and contigs 520 

were clustered using these alignments in the Phase Genomics ProxiMeta analysis suite(43). We 521 

noted a difference in bin contamination between the two methods, where Metabat tended to have 522 

more bins with greater than 10% CheckM(46) Contamination (76 out of 1347 short-read bins) 523 

compared to the ProxiMeta bins (29 out of 3,664 bins; Chi-Squared p < 0.001).  524 

Using the ProxiMeta and MetaBat bin assignments as a seed, we consolidated assembly 525 

bins for each assembly using the DAS_Tool pipeline (23). The dereplication algorithm of 526 

DAS_Tool modifies input bin composition in an iterative, but deterministic, fashion, so we also 527 

validated the quality of our input bins by using CheckM (46) quality metrics in addition to the 528 

DAS_Tool SCG metrics (Fig 2c, 2d). We noted some discrepancies in the CheckM quality 529 

metrics and those estimated by DAS_Tool for our input and dereplicated MetaBat bins, 530 

respectively (Additional file 1: Figure  S9, S10). CheckM tended to overestimate the quality of 531 

MetaBat input bins and dereplicated bins in each assembly, which may have due to the inclusion 532 

of proportionally more cross-Kingdom SCGs in the MetaBat bins as assessed by DAS_Tool. As 533 

a result, DAS_Tool dereplication was far more permissive at removing bins from our MetaBat 534 
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dataset (average 69 +/- 204 contigs removed per bin) than our ProxiMeta dataset (average 23 +/- 535 

30 contigs) in our short-read dataset. For further details on assembly binning and bin 536 

dereplication, please see Additional file 1: Supplementary Methods. 537 

Assembly statistics and contaminant identification 538 

 General contig classification and dataset statistics were assessed using the Blobtools 539 

pipeline (24). To generate read coverage data for contig classification, paired-end short read 540 

datasets from 16 SRA datasets and the Illumina sequence data from this study were aligned to 541 

each contig and used in subsequent binning and contaminant identification screens. For a full list 542 

of datasets and accessions used in the cross-genome comparison alignments, please see 543 

Additional file 1 : Table S15.  Assembly coverage and contig classifications were visually 544 

inspected using Blobtools (24).  Comparisons between assembled contigs and other cattle-545 

associated WGS metagenomics datasets were performed by using MASH (47) sketch profile 546 

operations and minimap2(48) alignments. Datasets were sketched in MASH by using a kmer size 547 

(-k) of 21 with a sketch size of 10,000 (-s). Minmap2 alignments were performed using the 548 

“asm5” preset configuration. DIAMOND (49) alignment using the Uniprot reference proteomes 549 

database (release: 2017_07) was used to identify potential taxonomic affiliation of contigs 550 

through the Blobtools metagenome analysis workflow (24). MAGpy (50) was also used to 551 

suggest putative names for the short and long read bins. CheckM (46) version 1.0.11 was used to 552 

assess bin contamination and completeness separately from the DAS_Tool SCG quality metrics. 553 

ORF prediction, gene annotation and taxonomic affiliation 554 

 Open reading frames were identified by Prodigal (25) (v 2.6.3) as part of the DAS_Tool 555 

pipeline. Gene ontology (GO) term assignment was performed using the Eggnog-mapper 556 

pipeline (51)  using the same Diamond input alignments used in the Blobtools analysis. 557 

Assembly bin functional classification was determined using the FAPROTAX workflow (52), 558 

using the Uniprot/Diamond/Blobtools-derived taxonomy of each contig. In order to deal with 559 

uncertain species-level classifications for previously unassembled strains, taxonomic affiliations 560 

were agglomerated at the genus level for dendrogram construction. The reference tree was 561 

created from NCBI Common Tree (https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi) and plotted 562 

in the R package ggtree (53). 563 
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Viral-host association prediction and Hi-C intercontig link analysis 564 

 In order to identify potential virus-host links, we used a direct long-read alignment 565 

strategy (PacBio alignment) and a Hi-C intercontig link analysis (Hi-C). Briefly, contigs 566 

identified as being primarily viral in-origin from the Blobtools workflow were isolated from the 567 

short-read and long-read assemblies. These contigs were then used as the references in an 568 

alignment of the error-corrected PacBio reads generated in our second round of Canu correction 569 

(please see the “Genome Assembly and Binning” section above). We used Minimap2 to align the 570 

PacBio dataset to the viral contigs from both datasets using the “map-pb” alignment preset. 571 

Resulting alignment files (“paf”) were subsequently filtered using the 572 

“selectLikelyViralOverhangs.pl” script, to selectively identify PacBio read alignments that 573 

extend beyond the contig’s borders. We then used the trimmed, unaligned portions of these reads 574 

in a second alignment to the entire assembly to identify putative host contigs (Additional file 1 : 575 

Supplementary methods). A viral-host contig pair was only identified if two or more separate 576 

reads aligned to the same viral/non-viral contig pair in any orientation.  577 

 Hi-C intercontig link associations were identified from read alignments of the Hi-C data 578 

to each respective assembly. BAM files generated from BWA alignments of Hi-C reads to the 579 

assemblies were reduced to a bipartite, undirected graph of inter-contig alignment counts. The 580 

graph was filtered to identify only inter-contig links that involved viral contigs and that had 581 

greater than 20 or 10 observations in the long-read and short-read assembly, respectively. The 582 

information from both methods was combined in a qualitative fashion using custom scripts 583 

(Additional file 1 : Supplementary methods). The resulting dataset was visualized using 584 

Cytoscape(54) with the default layout settings, or the “attribute circle” layout option depending 585 

on the degrees of viral-contig associations that needed to be visually represented.  586 

CRISPR-CAS spacer detection and ARG detection 587 

 ARG homologues were identified using BLASTN with the nucleotide sequences 588 

extracted from the Prodigal ORFs locations as a query against the transferrable ARG ResFinder 589 

database (55). Hits with a minimum 95% nucleotide sequence identity and 90% ARG sequence 590 

coverage were retained as candidate ARGs. Hi-C linker analysis identifying ARG gene contig-591 

associations was derived from Proximeta bin data and Hi-C read alignments by counting the 592 

number of read pairs connecting contigs in each bin to each ARG. The procedure for identifying 593 

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted December 9, 2018. ; https://doi.org/10.1101/491175doi: bioRxiv preprint 

https://doi.org/10.1101/491175


21 

these associations was similar to the protocol used to identify Hi-C-based, Viral-Host 594 

associations. Briefly, a bipartite, undirected graph of inter-contig alignment counts was filtered 595 

to contain only associations originating from contigs that contained ARG alleles and had hits to 596 

non-ARG-containing contigs. This graph was then converted into a matrix of raw association 597 

counts, which were then analyzed using the R statistical language (version 3.4.4). Taxonomic 598 

affiliations of contigs were derived from Blobtools, whereas the taxonomic affiliations of AN 599 

bins were derived from ProxiMeta MASH (47) and CheckM(46) analysis. 600 

Ethics approval and consent to participate 601 

 All animal work was approved by the University of Wisconsin-Madison Institutional 602 

Animal Care and Use Committee under protocol A005590-A04. Research was conducted under 603 

an IACUC approved protocol in compliance with the Animal Welfare Act, PHS Policy, and 604 

other Federal statutes and regulations relating to animals and experiments involving animals. The 605 

facility where this research was conducted is accredited by the Association for Assessment and 606 

Accreditation of Laboratory Animal Care, International and adheres to principles stated in the 607 

Guide for the Care and Use of Laboratory Animals, National Research Council, 2011. 608 

 609 

Availability of data and materials 610 

The datasets generated and/or analysed during the current study are available in the NCBI SRA 611 

repository under Bioproject: PRJNA507739. The assemblies, bins and other supplementary data 612 

are available at this URL: https://obj.umiacs.umd.edu/marbl_publications/rumen/index.html . A 613 

description of commands, scripts and other materials used to analyze the data in this project can 614 

be found in the following GitHub repository: 615 

https://github.com/njdbickhart/RumenLongReadASM  616 
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Assembly Contigs Total Assembly Length Contig N100K1 

Illumina 2,182,263 5,111,042,186 bp 88 
PacBio 77,670 1,076,426,244 bp 384 

 806 

1 The contig N100K is defined as the total number of contigs that are greater than 100 kbp in 807 
length in the entire assembly.  808 

 809 

Table 2. Assembly bin taxonomic assignment and gene content 810 

   Assembled Sequence Taxonomic Affiliation (Kbp)1 

Assembly Bin Set Avg # 
complete 
ORFs per 
contig2 

Archaea Bacteria Eukaryota Viruses No-Hits 

Illumina Unbinned 1.10 25,843 1,614,799 50,562 4,280 676,394 
 AN 1.82 26,161 2,273,837 79,804 2,083 357,193 
 HC 6.53 1,101 116,800 910 4 1,172 
PacBio Unbinned 15.43 13,382 1,024,348 9,031 2,340 27,323 
 AN 15.79 7,096 771,677 6,083 1,016 12,289 
 HC 36.08 1,827 45,204 569 0 51 

 811 

1 Superkingdom taxonomic affiliation was based on contig-level assignments derived from the 812 
BlobTools/DIAMOND workflow. 813 

2 Complete ORFs were defined as Prodigal predictions that had a “partial” status of “00”, which 814 
indicates the presence of a start and stop codon for the ORF. 815 

 816 

Figure captions 817 

Figure 1. Assembly workflow and sampling bias estimates show GC% discrepancies in long-818 

reads vs assemblies. Using the same sample from a cannulated cow, (A) we extracted DNA 819 

using a modified bead beating protocol that still preserved a large proportion of high molecular 820 

weight DNA strands. This DNA extraction was sequenced on a short-read sequencer (Illumina; 821 

dark green) and a long-read sequencer (PacBio RSII and Sequel; dark orange), with each 822 

sequence source assembled separately. Assessments of read- and contig-level GC% bias (B) 823 

revealed that a substantial proportion of sampled low GC DNA was not incorporated into either 824 

assembly. (C) Assembly contigs were annotated for likely superkingdoms of origin and were 825 
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compared for overall contig lengths. The long-read assembly tended to have longer average 826 

contigs for each assembled superkingdom compared to the short-read assembly. 827 

 828 

Figure 2. Identification of high quality bins in comparative assemblies highlights need for 829 

dereplication of different binning methods. (A). Binning performed by Metabat (light blue) and 830 

Proximeta Hi-C binning (Hi-C; blue) revealed that the long-read assembly consistently had 831 

fewer, longer contigs per bin than a short-read assembly. (B) Bin set division into Analysis (AN) 832 

and High Quality (HC) bins was based on DAS_Tool single copy gene (SCG) redundancy and 833 

completeness. Assessment of SCG completeness and redundancy revealed 22 and 48 high 834 

quality bins in the long-read (C) and short-read (D) assemblies, respectively. The Proximeta Hi-835 

C binning method performed better in terms of SCG metrics in the long-read assembly. (E) Plots 836 

of all of identified bins in the long-read (triangle) and short-read (circle) assemblies revealed a 837 

wide range of chimeric bins containing high SCG redundancy. Bins highlighted in the blue 838 

rectangle correspond to the AN bins identified by the DAS_tool algorithm while the red 839 

rectangle corresponds to the HC bin set. 840 

 841 

Figure 3. Dataset novelty compared to other rumen metagenome assemblies. Chord diagrams 842 

showing the contig alignment overlap (by base-pair) of the short-read (A) and long-read (B) AN 843 

bins to the Hungate1000 and Stewart et al. 2017 rumen microbial assemblies. The “Both” 844 

category consists of alignments of the short-read and long-read AN bins that have alignments to 845 

both Stewart et al. 2017 and the Hungate1000 datasets. (C) A dendrogram comparison of dataset 846 

sampling completeness compared to 16S V4 amplicon sequence data analysis. The outer rings of 847 

the dendrogram indicate presence (blue) or absence (red) of the particular phylotype in each 848 

dataset. Datasets are represented in the following order (from outer edge to internal edge): (1) the 849 

short-read assembly contigs, (2) the long-read assembly contigs, (3) and 16S V4 amplicon 850 

sequence data. The internal dendrogram represents each phylum in a different color (see legend), 851 

with individual tiers corresponding to the different levels of taxonomic affiliation. The outermost 852 

edge of the dendrogram consists of the genus-level affiliation.  853 

 854 
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Figure 4. Network analysis of long-read alignments and Hi-C inter-contig links identifies hosts 855 

for assembled viral contigs. In order to identify putative hosts for viral contigs, PacBio read 856 

alignments (light blue edges) and Hi-C inter-contig link alignments (dark blue edges) were 857 

counted between viral contigs (hexagons) and non-viral contigs (circles) in the long-read 858 

assembly (A) and the short-read assembly (B). Instances where both PacBio reads and Hi-C 859 

inter-contig links supported a viral-host assignment are also labeled (red edges). The long-read 860 

assembly enabled the detection of more viral host-associations in addition to several cases where 861 

viral contigs may display cross-species infectivity. We identified several viral contigs that infect 862 

important species in the rumen, including those from the genus Sutterella, and several species 863 

that metabolize sulfur. In addition, we identified a candidate viral-association with a novel genus 864 

of rumen microbes identified in this study.   865 

 866 

Figure 5. CRISPR array identification and ARG allele class counts were influenced by assembly 867 

quality. (A) The long-read assembly (dark orange) contigs had fewer identified CRISPR arrays 868 

than the short-read contigs (dark green); however, the CRISPR arrays with the largest count of 869 

spacers were overrepresented in the long-read assembly. (B) The long-read assembly had 13-fold 870 

higher anti-microbial resistance gene (ARG) alleles than the short-read assembly despite having 871 

5-fold less sequence data coverage. The Macrolide, Lincosamide and Tetracycline ARG classes 872 

were particularly enriched in the long-read assembly compared to alleles identified in the short-873 

read assembly. 874 
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Figure 1 876 
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Figure 2 879 
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Figure 3 882 
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Figure 4 884 
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Figure 5 886 
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