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Abstract 

A continuing challenge in quantitative cell biology is the accurate and robust 3D segmentation of 
structures of interest from fluorescence microscopy images in an automated, reproducible, and widely 
accessible manner for subsequent interpretable data analysis. We describe the Allen Cell Structure 
Segmenter, a new Python-based open source toolkit developed for 3D segmentation of intracellular 
structures in fluorescence microscope images. This toolkit brings together classic image segmentation and 
iterative deep learning workflows first to generate initial high-quality 3D intracellular structure 
segmentations and then to easily curate these results to generate the ground truths for building robust and 
accurate deep learning models. The toolkit takes advantage of the high-replicate 3D live cell image data 
collected at the Allen Institute for Cell Science of over 30 endogenous fluorescently tagged human 
induced pluripotent stem cell (hiPSC) lines. Each cell line represents a different intracellular structure 
with one or more distinct localization patterns within undifferentiated hiPS cells and hiPSC-derived 
cardiomyocytes. The Allen Cell Structure Segmenter consists of two complementary elements, a classic 
image segmentation workflow with a restricted set of algorithms and parameters and an iterative deep 
learning segmentation workflow. We created a collection of 20 classic image segmentation workflows 
based on 20 distinct and representative intracellular structure localization patterns as a “lookup table” 
reference and starting point for users. The iterative deep learning workflow can take over when the classic 
segmentation workflow is insufficient. Two straightforward “human-in-the-loop” curation strategies 
convert a set of classic image segmentation workflow results into a set of 3D ground truth images for 
iterative model training without the need for manual painting in 3D. The deep learning model 
architectures used in this toolkit were designed and tested specifically for 3D fluorescence microscope 
images and implemented as readable scripts. This toolkit was applied to the robust segmentation of 
fluorescent lamin B1, which exhibits significant variability in its localization pattern during the cell cycle. 
The Allen Cell Structure Segmenter thus leverages state of the art computer vision algorithms in an 
accessible way to facilitate their application by the experimental biology researcher. 
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Introduction 

Modern fluorescence microscopy has revolutionized imaging of tissues, cells, subcellular structures, and 
proteins [Kervrann et al., 2016]. The resulting multi-dimensional image data (3D, time-lapse, multiple 
imaging channels, or combinations thereof, etc.) require further analysis with a variety of qualitative and 
quantitative approaches. Simple visual inspection of small image data sets is used to rapidly assess 
general image quality or compare differences among experimental conditions. Quantitative and automated 
analysis approaches, however, become necessary when the number of images is large, the differences 
between experimental conditions are subtle or complex, or the image data and their interpretations are 
used to develop data-driven analyses and models. Quantifying images becomes especially important when 
dealing with 3D image data where even a straightforward comparison between two conditions can be 
difficult without quantitative measurements. Segmentation, the identification of every pixel (or voxel) that 
is either part or not part of that object, is key to extracting interpretable, quantitative measurements of an 
object in an image, permitting measurement of size, shape, number of objects and intensity of a given 
object, for example.  

The large number of different sizes and shapes of structures found in cells makes image segmentation 
particularly challenging. Furthermore, 3D image data are inherently harder to work with than 2D images, 
presenting an additional challenge for cellular image segmentation and analysis. Existing 3D image 
segmentation methods can be categorized as classic image processing algorithms, traditional machine 
learning, and deep learning methods. Classic image processing algorithms are the most widely used by 
the cell biological research community and are accessible in two main ways. Some algorithms are 
available as collections of basic functions in several open platforms, including the widely-used ImageJ 
[Schindelin et al., 2012], CellProfiler [Carpenter et al., 2006, McQuin et al., 2018], Icy [De Chaumont et 
al., 2012], and ITK-SNAP [Yushkevich et al., 2006]. However, basic functions in the open platforms are 
often not sufficiently accurate or up to date [Jerman et al., 2016]. Other published algorithms may be 
designed for a specific structure in a specific imaging modality and are often implemented and released 
individually [Neila et al., 2016, Hodneland et al., 2013, Smith and Barton, 2014]. Compared to general 
image processing platforms, such tools are less broadly applicable and often less convenient to apply. 

Machine learning algorithms can also facilitate segmentation of 2D and 3D fluorescence microscopy 
images. Traditional machine learning algorithms, e.g., random forest and supporting vector machine, have 
been integrated successfully into openly accessible tools such as trainable WEKA segmentation 
[Arganda-Carreras et al., 2017] in ImageJ and ilastik [Sommer et al., 2011]. Users simply manually paint 
on selective pixels/voxels as foreground and background samples to create a ground truth training set. A 
traditional machine learning model is then automatically trained and applied on all selected images. While 
easy to use, these traditional machine learning models and tools are less effective than deep learning 
models especially when segmenting objects with occluded boundaries (e.g. tightly packed or highly 
textured objects [Çiçek et al., 2016, Chen et al., 2016B, Chen et al., 2017]. Unfortunately, deep learning 
models are “training data hungry.” Thus tedious manual painting in 3D quickly becomes prohibitive for 
generating sufficient 3D ground truth data. Additionally, even if an adequate 3D ground truth can be 
prepared, access to convenient tools for building/deploying these deep learning models is currently 
prohibitive for many biologists. Existing tools, such as NiftyNet [Gibson et al., 2018] or DLTK 
[Pawlowski et al., 2017], are difficult to use without sufficient experience in deep learning and computer 
vision. Other tools, e.g., Aivia Cloud [DRVISION, 2018], are easier to use but not openly accessible. 

The Allen Institute for Cell Science has developed a pipeline that generates high-replicate, dynamic 
image data on cell organization and activities using a collection of endogenous fluorescently tagged 
human induced pluripotent stem cell (hiPSC) lines (Allen Cell Collection; allencell.org; [Roberts et al., 
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2017]). Most lines express a monoallelic mEGFP-tagged protein that represents a particular intracellular 
structure (exceptions are the tagged sialyltransferase 1 line and the Ras-related protein Rab5-a line, which 
are also available as biallelic lines and the centrin-2 line, which is tagged with mTagRFP-T). To enable 
quantitative image and data analyses, we generated accurate and robust segmentations for over 30 
intracellular 3D structure localization patterns. By developing and testing a diverse set of traditional 
segmentation algorithms on a wide range of intracellular structures, we identified a conceptually simple 
“classic image processing workflow” involving a limited number of classic image processing steps and 
algorithms that generated high-quality segmentations of these structures. These segmentations permitted 
initial analyses of basic morphometric features of these structures including size, number, shape, and 
location within the cell, and form the basis for more complicated feature parameterizations (Fig. 1A). To 
enhance the accuracy and robustness of these segmentations, we also developed a novel “iterative deep 
learning workflow” (Fig. 1B) that takes advantage of these high-quality classic segmentation results and 
applies them as an initial ground truth in an iterative deep learning-based approach to image 
segmentation.  

These workflows are packaged into the Allen Cell Structure Segmenter, an open-source, Python-based 
toolkit for segmentation of 3D microscope images. We developed this toolkit to make both workflows 
accessible to cell biologists wishing to quantify and analyze their own image data. The Segmenter offers 
two key advantages over other image processing packages. First, the classic image segmentation 
workflow streamlines algorithm and parameter choice. Users are provided with a “lookup table” of classic 
image segmentation workflows for 20 intracellular structure localization patterns with varying 
morphological properties that can be used as a starting point for segmentation. Second, the iterative deep 
learning workflow provides users with tools to apply results from the classic segmentation workflow to 
generate ground truth segmentations for training deep learning models, without manual painting, and then 
to use these models to iteratively improve those segmentation results. 
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Results and Discussion 

General overview of the Allen Cell Structure Segmenter 

The goal of the Allen Cell Structure Segmenter is to make flexible, robust, state-of-the-art 3D 
segmentation methods accessible to cell biology researchers. While developed specifically for the 3D 
segmentation of intracellular structures, the Segmenter may also be applicable to a variety of other image 
segmentation applications. It seamlessly integrates a traditional image segmentation workflow and an 
iterative deep learning workflow to streamline the segmentation process (Fig.1). The classic image 
segmentation workflow is based on a restricted set of both standard and cutting-edge algorithms and 
tunable parameters (Fig.1A) that we identified to be optimal for segmenting over 30 different intracellular 
structure localization patterns. We created a suite of 20 intracellular structure segmentation workflows 
which we present in a lookup table as a starting point for users to solve their own segmentation tasks (Fig. 
2). In the iterative deep learning workflow of the Segmenter, we describe two new strategies for preparing 
3D ground truth images without laborious and subjective manual painting in 3D (Fig. 1B). The training 
and testing of the deep learning model are customized for intracellular structures in 3D fluorescence 
microscopy images and implemented as readable scripts for researchers without experience in deep 
learning. 

The classic image segmentation and iterative deep learning workflows complement each other – the 
classic image segmentation workflow can generate sufficiently accurate segmentations for a wide range 
of intracellular structures for analysis purposes. However, when the accuracy or robustness of the optimal 
classic image segmentation workflow is insufficient, the iterative deep learning workflow can boost 
segmentation performance. Conversely, the classic segmentation workflow facilitates the application of 
deep learning models to 3D segmentation by generating candidate segmentations for an initial ground 
truth for model training. We have thus developed a new toolkit for 3D fluorescence microscopy image 
segmentation that (1) is applicable to a wide range of structures, (2) achieves state-of-the-art accuracy and 
robustness, and (3) is easy to use for cell biology researchers. 

 

The classic image segmentation workflow 

The challenge of designing classic image segmentation algorithms for a large number of distinct 
intracellular structures led us to a simple 3-step workflow. The steps include a restricted set of image 
processing algorithm choices and tunable parameters to effectively segment a wide range of structure 
localization patterns. The classic image segmentation workflow begins with a two-part pre-processing 
step, intensity normalization and smoothing, followed by the core segmentation algorithms, and ends with 
a post-processing step. Pre-processing prepares the original 3D microscope images for the core 
segmentation algorithms. Intensity normalization helps the segmentation be more robust to different 
imaging inconsistencies, including microscopy artifacts, debris from dead cells, etc., such that the same 
structures in different sets of images have similar intensity values above background when fed into the 
core segmentation algorithms (Fig. 3A). Smoothing reduces background noise from the microscope and 
other sources to improve segmentation algorithm performance. The choice of smoothing algorithm 
depends on the morphology of the intracellular structure (Fig. 3B). The core of the classic image 
segmentation workflow is a collection of algorithms for segmenting objects with different morphological 
characteristics (Fig. 4). This step takes in the pre-processed 3D image stack and generates a preliminary 
binary segmentation as input into the post-processing step. The final, post-processing step then fine-tunes 
the preliminary binary segmentations such as by filling holes or filtering by object size, turning them into 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2018. ; https://doi.org/10.1101/491035doi: bioRxiv preprint 

https://doi.org/10.1101/491035
http://creativecommons.org/licenses/by-nc/4.0/


a final result (Fig. 5). The classic image segmentation workflow for a specific structure localization 
pattern may consist of just one of the core algorithms or it may require a combination of several core 
algorithms (Fig. 2). 

Application of the classic image segmentation workflow to segmentation of over 30 intracellular 
structure localization patterns 

We applied the classic image segmentation workflow to 3D images of over 30 fluorescently tagged 
proteins, each representing different intracellular structures. Structures were imaged in two different cell 
types, the undifferentiated hiPS cell and the hiPSC-derived cardiomyocyte. The tagged proteins 
representing these structures exhibited different expression levels and localization patterns in these two 
cell types. Certain structures also varied in their localization patterns in a cell cycle-dependent manner. 
Together, this led to over 30 distinct intracellular structure localization patterns, which we used to 
develop and test the classic image segmentation workflow. A key decision point for any segmentation 
task is the targeted level of accuracy. This is a function of several factors including: the size of the 
structure, the limits of resolution and detection for that structure, the goal of the subsequent analysis, and 
the effort required to obtain any given target accuracy. In general, we aimed to be consistent with 
observations in the literature about the structure and to obtain segmentations useful for 3D visualization. 
For example, our alpha tubulin segmentation workflow (Fig. 2) describes where the microtubules 
primarily localize and is detailed enough to generate a reasonable 3D visualization, but does not take 
known structural properties, such as the persistence length of microtubules, into account [Gan et al., 
2016]. We also addressed the blurring of the boundaries of the structure arising from the resolution limits 
of fluorescence microscopy. Depending on both the contrast setting of the image and the parameters of a 
given segmentation algorithm, the resultant binary image can vary significantly. For example, 
segmentation of a mitochondrial tubule can result in segmented tubules of varying width (Fig. 6). To 
establish a consistent baseline of how to detect the blurred boundary, we used a fluorescently tagged 
mitochondrial matrix marker as a test structure and picked the segmentation parameter that most closely 
matches EM-based measurements of mitochondria in human stem cells ([Bukowiecki et al. 2014, Niclis et 
al. 2015]; see methods). We then used the resultant combination of contrast settings and object boundary 
setting as a consistent target for the creation of the other intracellular structure segmentation workflows. 

Application of the classic segmentation workflow with these structure target criteria culminated in the 
intracellular structure look-up table of segmentation workflows for 20 selected distinct structure 
localization patterns (Fig. 2). These classic image segmentation workflows significantly improved 
segmentations compared with a set of 22 common baseline algorithms, including both global and local 
thresholding (Fig. 7). We found that for structures with similar morphological properties, the same series 
of algorithm choices resulted in successful segmentation (compare workflow diagrams in rows 5 and 6 in 
Fig. 2). However, the parameter values for the best result still varied. The structure segmentation look-up 
table and accompanying 3D z-stack movies (Fig. 2 and allencell.org/segmenter) thus serve as a guide for 
which segmentation workflow (set of algorithm steps and parameter values) is a good starting point for a 
user’s particular segmentation task. The classic image segmentation workflow component of the Allen 
Cell Structure Segmenter is openly accessible at allencell.org/segmenter. For each example in the lookup 
table, the specific workflow and accompanying algorithm parameters, fine-tuned on our data, are preset in 
a workflow-specific Jupyter notebook and accompanying “pseudocode” (see Supplemental Information) 
for rapid referencing and initial testing. If the preset parameters don’t generate satisfactory segmentation 
results on user data, the parameters can be adjusted and assessed directly within the Jupyter notebook via 
an embedded 3D viewer. Step by step suggestions of which parameters to adjust are also included to help 
the user.    
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The iterative deep learning workflow 

The aim of the iterative deep learning workflow (Fig. 1B) is to improve segmentation accuracy and 
robustness for situations where the classic image segmentation workflow is insufficient. It applies the 
concept of incremental learning [Schlimmer et al., 1986] to iteratively improve segmentation results. The 
segmentation results from the classic image segmentation workflow provide us with a set of 3D 
segmentation images that have the potential to be used as a ground truth for deep learning purposes. 
However, the accuracy of these results is often not uniform for all images. Instead, the greatest accuracy 
is generated in subsets of images or specific regions within images. We developed and tested two human-
in-the-loop strategies, sorting and merging, to convert a set of classic image segmentation workflow 
results into an acceptable 3D ground truth image set for model training. These straightforward human-in-
the-loop strategies do not involve any manual painting of the 3D structure, but still incorporate human 
knowledge into curating high-quality segmentation ground truth images. These first curated results from 
the classic image segmentation workflow can then be used as a starting point to train the first model. The 
segmentation results of the first model can once again be curated to provide a second, improved ground 
truth data set to create a second, improved segmentation model and so on for any number of iterations. 
Iterations can also be performed by combining segmentation results from several deep learning models 
via the merging and sorting strategies to further improve the resultant model. This approach thus 
eliminates the need for a large set of training data. The iterative deep learning workflow is implemented 
in an easily accessible way and with minimal tunable parameters. Specifically, users put raw images and 
training ground truths (segmentation images) in the same folder following a prescribed naming 
convention and set a few parameters that vary depending on image resolution and imaging modality. The 
details of building models, setting hyper-parameters, training the models, and so on, are handled 
automatically in a way that is designed and optimized for 3D fluorescence microscopy images. 

 

Application of the iterative deep learning workflow generates a more accurate and robust lamin B1 
segmentation 

Image-to-image variation and cell-to-cell variation are two common scenarios in which the classic image 
segmentation workflow may not be sufficiently robust to data variation. For example, algorithms in the 
classic segmentation workflow do not always handle the image-to-image variation that arises within a 
dataset due to differences in biological and/or microscopy imaging conditions. In this case, a simple 
approach to preparing a ground truth segmentation image set is to sort segmented 3D images into 
“accept” or “reject” categories and only use the accepted images for initial model training (Fig. 8). The 
subsequent deep learning model may end up more robust to image-to-image variation because it 
incorporates contextual knowledge, which the classic segmentation workflow algorithms are incapable of 
doing. Similarly, within the same image, cells at different stages of the cell cycle may exhibit distinct 
structure morphologies or fluorescence intensities since interphase and mitotic structures can differ 
dramatically. In this case, two (or more) different segmentation parameters or algorithms might permit 
both types of structure localization patterns to be well-segmented, but two sets of parameters or 
algorithms cannot normally be applied to the same image. With the aid of a simple image editing tool, 
such as those available through ImageJ or ITK-SNAP, however, specific regions of interest within an 
image can be manually circled and masked. Different parameter sets or algorithms are then applied to 
each of these regions, and the results merged into one single segmentation ground truth for that image 
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(Fig. 9). A single deep learning model usually has sufficient representation capacity to learn all such 
variations within the image.  

To demonstrate the segmentation accuracy and robustness achievable by the iterative deep learning 
workflow, we applied this workflow to the segmentation of lamin B1 images (Fig. 10). The lamin B1 
localization pattern changes dramatically through the cell cycle, changing from a thin shell around the 
nucleus in interphase to a variable, wavy pattern during mitosis. This significant difference in localization 
patterns created a challenge for a classic image segmentation approach. To address this, we first built a 
classic image segmentation workflow to segment lamin B1 in interphase cells (Fig. 2). The best core 
algorithm to obtain accurate segmentation of this lamin B1 shell depended on generating an automatic 
seed in the center of each nucleus for the subsequent watershed algorithm. This automatic seeding was 
performed on the center slice of the 3D image stack, where most of the nuclei were easily detectable. 
However, this automatic seeding step sometimes failed, especially for cells with nuclei positioned above 
or below this center slice (blue arrows in Fig. 10). Further, as expected, mitotic cells in the image were 
not successfully segmented with this lamin B1 interphase-specific segmentation workflow (yellow arrows 
Fig. 10). From an initial set of 80 segmented images, only eight fell into the “keep” sorting category. The 
rest of the images either failed in the automatic seeding step or contained mitotic cells, which could 
therefore not be used as a ground truth. However, a first iteration deep learning model based only on these 
eight image stacks as its initial ground truth generated lamin B1 segmentations that picked up all 
interphase nuclei in all 80 images. This was an improvement from 85% to 100% when considering 
individual interphase nuclei and an improvement from 20% to 100% when considering entire image fields 
(e.g. an image field can fail if a single nucleus is not detected). In the second iteration of this workflow, 
we manually circled mitotic cells in 22 additional images and applied a separate classic image 
segmentation workflow for mitotis-specific lamin B1 localization patterns (Fig. 2). We then merged the 
interphase lamin B1 segmentation results from the first deep learning model with the mitotic lamin B1 
segmentations obtained from the classic workflow to build a new training set out of these 22 images. This 
second iteration of a lamin B1 segmentation deep learning model generated successful lamin B1 
segmentations for all interphase and mitotic cells in the original 80 images.  

The Allen Cell Structure Segmenter is a powerful toolkit for the 3D segmentation of intracellular 
structures in fluorescence microscope images. The Segmenter combines a streamlined collection of 
selected standard and cutting-edge classic image segmentation algorithms with a suite of preset classic 
image segmentation workflows for 20 distinct intracellular structure patterns and with a novel iterative 
deep learning segmentation workflow. The classic image segmentation workflow together with the 
lookup table should provide users with a straightforward starting point for their own basic segmentation 
needs. More challenging segmentation tasks can benefit from the complementary approach of the classic 
and the iterative deep learning segmentation workflows. This combined approach permits training of deep 
learning models that can successfully segment different structure localization patterns within a single 
image. Two of the most significant challenges to creating robust useful segmentation methods for 3D 
quantitative analysis of cell behavior is to detect all instances of the cell or structure within the entire 
image and to do so successfully over time, especially if the cell or structure changes [Ulman et al., 2017]. 
This is required, for example, to capture the dynamic behavior of neighboring cells or neighboring 
structures within cells. The challenge here is that any cell or structure missed within one image or within 
one timepoint of a timeseries significantly reduces the analyzable data set. The success of our joint classic 
and iterative deep learning approach in improving the detection of all nuclei in an image from 20 to 100% 
with just one iteration of the model suggests great potential of applying this approach to the robust, 
automated segmentation of entire images of cells and intracellular structures in time.   
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Materials and Methods 

Data collection for toolkit development 

The image segmentation toolkit has been applied to data produced at the Allen Institute for Cell Science 
using gene-edited, human induced pluripotent stem cells (hiPSCs) in both the undifferentiated stem cell 
and hiPSC-derived cardiomyocytes. Briefly, CRISPR/Cas9 was used to introduce mEGFP and mTagRFP-
T tags to proteins localizing to known intracellular structures [Roberts et al., 2017, Haupt et al., 2018]. 
Clonal, FP-tagged lines were generated for each intracellular structure of interest and were used in 
imaging experiments in which undifferentiated hiPS cells were labeled with membrane dye (CellMask 
Deep Red) and DNA dye (NucBlue Live) to mark cell boundaries and the nucleus (see the SOP at 
allencell.org). Edited hiPSC cell lines were differentiated into cardiomyocytes using a small-molecule 
protocol, as described previously (allencell.org and [Roberts et al., 2018]). For imaging, cells were plated 
onto glass bottom plates coated with matrigel for undifferentiated hiPS cells and polyethyleneimine and 
laminin for cardiomyocytes (see SOPs at allencell.org), respectively and were imaged using a ZEISS 
spinning-disk microscope with a 100x/1.25 Objective C-Apochromat W Corr M27, a CSU-X1 Yokogawa 
spinning-disk head or a 40x/1.2 NA W C-Apochromat Korr UV Vis IR objective, and Hamamatsu Orca 
Flash 4.0 camera. Imaging settings were optimized for Nyquist sampling. Voxel sizes were 0.108 µm × 
0.108 µm × 0.290 µm in x, y, and z, respectively, for 100x, hiPSC images and 0.128 µm × 0.128 µm × 
0.290 µm in x, y, and z, respectively, for 40x, cardiomyocyte images. The mEGFP-tagged Tom20 line 
was transfected with mCherry-Mito-7 construct (Michael Davidson, addgene #55102) using 6 μl per well 
of transfection mixture containing 25 μl Opti-MEM (ThermoFisher #31985-070), 1.5 μl GeneJuice 
(Millipore #70967) and 1 ug endotoxin free plasmid. Transfected cells were imaged the next day on a 
ZEISS spinning disk confocal microscope as above. All channels were acquired at each z-step.  

 

Algorithms in the classic image segmentation workflow 

Step 1: Pre-processing. To prepare images for segmentation, we first performed intensity normalization 
and smoothing. Our toolkit includes two normalization algorithms to choose from, min-max (MM) and 
auto-contrast normalization (AC). Min-max normalization transforms the full range of intensity values 
within the stack into the range [0,1]. Auto-contrast normalization adjusts the image contrast by 
suppressing extremely low/high intensities. To do this, the mean and standard deviation (std) of intensity 
is first estimated by fitting a Gaussian distribution to the whole stack intensity profile. Then, the full 
intensity range is cut off to the range [mean - a × std, mean + b × std], and then normalized to the range 
[0, 1] (Fig. 3A). The parameters, a and b, can be computed automatically based on a subset of typical 
images or can be user-defined. Auto-contrast is recommended by default. Min-max normalization should 
be used when the voxels with highest intensities are the target in the structure and should not be 
suppressed. For example, in “point-source” structures, such as centrin-2 (centrioles), the voxels with 
highest intensities usually reside in the center of the structure, making them critical to preserve. In 
addition to intensity normalization, there are three smoothing operations available in the pre-processing 
step: 3D Gaussian smoothing (G3), slice-by-slice 2D Gaussian smoothing (G2), and edge-preserving 
smoothing (ES; [Perona and Malik, 1990]). 3D Gaussian smoothing generally works well. However, if 
the target structure consists of dense filaments, an edge-preserving smoothing operation may be more 
effective (Fig. 3B). Slice-by-slice 2D Gaussian smoothing should be used when the movement of the 
intracellular structure is faster than the time interval between consecutive z-slices during live 3D imaging. 
In this situation, 3D smoothing may further aggravate the subtle shift of the structure in consecutive z-
slices. 
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Step 2: Core segmentation algorithms. After pre-processing the images, they are segmented via a 
selection of core segmentation algorithms (Fig. 1A). 2D and 3D filament filters (F2 and F3; Fig. 4A; 
[Jerman et al., 2016]) are suitable for structures with curvi-linear shape in each 2D frame (e.g. Sec61 beta 
in Fig. 4A) or filamentous shape in 3D (e.g. alpha tubulin in Fig. 4A). The 2D and 3D spot filters (S2 and 
S3) compute the Laplacian of the Gaussian of the image in either 2D or 3D and thus can detect similar yet 
distinct spot-like localization patterns (Fig. 4B). The “point-source” desmoplakin localization pattern, 
exhibits as a round and fluorescence-filled shape in 3D. The S3 filter is more accurate for desmoplakin 
than the S2 filter, which stretches filled, round objects in the z-direction. For structures with a more 
general spotted appearance within each 2D frame instead of separate round structures (e.g. fibrillarin vs. 
desmoplakin in Fig. 4B), the S3 filter may fail to detect obvious structures while the S2 filter performs 
much better. The core watershed algorithm (W) can be used in two different ways. First, watershed can be 
applied to distance transformations of S3 filter results using local maxima as seeds to further separate 
proximal structures (Fig. 4C). Second, watershed can also be directly applied to the pre-processed image 
with seeds (detected by another algorithm) to segment structures enclosed in fluorescent shells (e.g. lamin 
B1 in Fig. 4D). The last core segmentation algorithm, masked object thresholding (MO) is designed for 
intracellular structure patterns with varying granularity or intensity (e.g. nucleophosmin in Fig. 4E). The 
MO threshold algorithm first applies an automated global threshold to generate a pre-segmentation result, 
which is used as a mask to permit an Otsu threshold to be applied within each pre-segmentation object. 
For example, the nucleophosmin localization pattern includes a primary localization to the granular 
component of the nucleolus and a weaker, secondary localization to other parts of both the nucleolus and 
nucleus. Therefore, we first apply a relatively low global threshold to roughly segment each nucleus We 
next compute a local threshold within individual nuclei to segment the nucleophosmin pattern (Fig. 4E). 
Compared to traditional global thresholding, masked-object thresholding performs more robustly to 
variations in intensity of the nucleophosmin localization pattern in different nuclei within the same image.  

Step 3: Post-processing. Three different algorithms are available for the final post-processing step in the 
workflow (Fig. 5). These algorithms refine the binary core segmentation algorithm result to return a final 
segmentation. Not all post-processing algorithms are needed for every structure. The first algorithm is a 
morphological hole-filling algorithm (HF) that can resolve incorrect holes that may have appeared in 
certain segmented objects to represent the target structure more accurately (Fig. 5A). Second, a 
straightforward size filter (S) can be used to remove unreasonably small or large objects from the core 
segmentation algorithm result. (Fig. 5A). Finally, a specialized topology-preserving thinning operation 
(TT) can be applied to refine the preliminary segmentation without changing the topology (e.g., breaking 
any continuous but thin structures). This thinning is accomplished by first skeletonizing the preliminary 
segmentation, then eroding the segmentation in 3D on all voxels that are not themselves within a certain 
distance from the skeleton (Fig. 5B).  

 

Deep Learning Models and Training 

The deep learning models employed in our iterative deep leaning workflow are two fully convolutional 
networks specially customized for 3D fluorescence microscopy images: Net_basic and Net_zoom (Fig. 
11; [Long et al., 2015] for more details about fully convolutional networks). Net_basic is a variant of a 
3D U-Net [Çiçek et al., 2016] with (1) max pooling in all xyz dimensions replaced by max pooling in xy 
only, (2) zeros padding removed from all 3D convolution and (3) auxiliary loss added for deep 
supervision [Chen et al., 2016A]. Net_zoom has a similar architecture to Net_basic, but with an extra 
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pooling layer with variable ratio to further enlarge the effective receptive field. Such modifications are 
made to deal with anisotropic dimensions common in 3D microscopy images and to improve the 
performance in segmenting tenuous structures, such as the thin nuclear envelope. 

In each training iteration, random data augmentation is applied on each image and a batch of sample 
patches are randomly cropped from the augmented images. In practice, the patch size (i.e., the size of 
model input) and batch size (i.e., the number of samples trained simultaneously in each iteration) depend 
on the available GPU memory. For example, a single Nvidia GeForce GPU with 12GB memory is used in 
our experiments. With this setup, we choose a batch size of 4 and each input sample patch has size 140 × 
140 × 44 voxels for Net_basic and 420 × 420 × 72 voxels for Net_zoom. For data augmentation, we adopt 
a random rotation by θ (a random value from 0 to π) and a random horizontal flip with probability 0.5. 
Weighted cross-entropy is used in all the loss functions, where a per-voxel weight is taken as a separate 
input image (e.g., cost map). By default, we use a weight = 1 for all voxels, but one can assign a larger 
weight on those extremely critical regions or assign zeros to those regions that do not count for the loss 
function. Models are trained with Adam [Kingma and Ba, 2014] with constant learning rate 0.00001 and 
L2 regularization with weight 0.005. 

 

Segmentation algorithm comparisons 

Representative sample images from 20 structure localization patterns were used to compare segmentation 
results between the Allen Cell Structure Segmenter classic image segmentation workflow, 14 global and 8 
local thresholding algorithms (Fig. 7). All images corresponded to the maximum intensity projection of a 
z-slice of choice plus and minus one z-slice. Each image was segmented with 14 automatic global 
thresholding algorithms available in ImageJ under the Image/Adjust/Auto Threshold option and 8 local 
thresholding algorithms available in ImageJ under the Image/Adjust/Auto Local Threshold option. The 
local algorithms require an additional parameter that corresponds to the radius of the local domain over 
which the threshold will be computed. Radius values 8, 16, 32 and 64 were tested for each local 
thresholding algorithms. For each of these results, the segmentation algorithms that provided the 
segmentation most similar to the Allen Cell Structure Segmenter result was identified based on the Dice 
Metric. Global threshold algorithms included Huang, Intermodes, IsoData, Li, MaxEntropy, Mean, 
Minimum, Moments, Otsu, Percentile, RenyiEntropy, Shanbhag, Triangle, Yen. Local threshold 
algorithms included Bernsen, Contrast, Mean, MidGrey, Niblack, Otsu, Phansalkar, Sauvola. 

 

Determining mitochondrial width from published EM images 

Methods: Mitochondrial widths were determined in human pluripotent stem cells and human embryonic 
stem cells using previously published EM images [Bukowiecki et al. 2014, Niclis et al. 2015], 
respectively. JPEG versions of the EM images obtained from the manuscripts were opened in FiJi and 
mitochondrial width was measured for 5-10 mitochondria per EM image. A line was manually drawn 
between the outer mitochondrial membranes along the smaller mitochondrial axis. Line lengths were 
measured and converted into nanometers using the original scale bars in the figures. Mitochondrial width 
was found to be 256 +/- 22 nm for human pluripotent stem cells and 265 +/- 34 nm for human embryonic 
stem cells (mean +/- 95% confidence interval). An average mitochondrial width of 260 nm was used in 
Fig 6. 
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Figure Legends 

Figure 1: Overview of the Allen Cell Structure Segmenter. (A) The classic image segmentation workflow 
consists of three steps and includes a restricted set of image processing algorithm choices and tunable 
parameters. (B) The iterative deep learning workflow is used when the accuracy or robustness of the 
classic image segmentation workflow is insufficient. Two human-in-the-loop strategies, sorting and 
merging, can be iteratively applied to build 3D ground truth training sets from the classic image 
segmentation workflow results or resultant deep learning 3D segmentation models.  

 

Figure 2: “Lookup table” of classic image segmentation workflows for 20 intracellular structure 
localization patterns. 18 of the 20 examples consist of image from one tagged protein representing the 
localization pattern. Examples in the bottom row are both lamin B1 images, but from interphase and 
mitotic stages of the cell cycle, each one representing a distinct localization pattern requiring a separate 
segmentation workflow. Each boxed region contains a pair of images with the original image on the left 
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and the result of the classic image segmentation workflow on the right. All original images presented here 
are single slices from a 3D z-stack of images available online (allencell.org/segmenter). Along the bottom 
of each image pair is a diagram outlining the steps for that segmentation workflow. The arrows within 
each diagram represent the transitions between the three steps (pre-processing, core segmentation, post-
processing) of the classic image segmentation workflow (Fig. 1). Within each workflow step, two 
symbols directly adjacent to each other represent that the algorithms were applied sequentially while the 
symbol represents combining the results from both algorithms. The asterisk within the TT symbol for the 
sialyltransferase 1 workflow indicates that the topology-preserving thinning was only applied to the 
results from the masked object thresholding algorithm. The target result for LAMP-1 includes filling the 
larger lysosomes as the protein LAMP-1 labels the lysosomal membrane, but the target structure to detect 
is the entire lysosome.  

 

Figure 3: Examples of available pre-processing algorithms in the Allen Cell Structure Segmenter. (A) 
Two different examples of non-muscle myosin IIB images with corresponding auto-contrast 
normalization (AC) results. (B) An example image of alpha tubulin demonstrating the difference between 
3D Gaussian smoothing (G3) and edge-preserving smoothing (ES). The Otsu thresholding results of the 
original image and the images after two smoothing algorithms are shown to highlight the difference in 
detecting two parallel tubule bundles. 

 

Figure 4: Examples of the available core segmentation algorithms in the Allen Cell Structure Segmenter. 
(A) Comparison between 2D and 3D filament filters (F2 and F3) applied to Sec61 beta and alpha tubulin 
images. The binary images are the results of applying a cutoff value (manually optimized for 
demonstration purpose) on the filter outputs. F2 performs better for curvi-linear shapes in each 2D slice, 
as seen in Sec61 beta images. F3 performs better for filamentous shapes in 3D, as seen in alpha tubulin 
images. Orange arrows indicate major segmentation errors. (B) Comparison between 2D and 3D spot 
filters applied to desmoplakin (left three panels) and fibrillarin (right three panels) images. Four 
consecutive z-slices are shown as four rows. The binary images are the results of applying a cutoff value 
(manually optimized for demonstration purpose) on the filter outputs. S3 performs better for round, 
fluorescence-filled shapes in 3D, as seen for desmoplakin images. In this case the S2 filter falsely detects 
desmoplakin in z-frames where the structure is already out of focus (orange arrows). S2 performs better 
for localization patterns with a general spotted appearance within each 2D frame, as seen in fibrillarin 
images. (C) Application of the watershed algorithm (W) on S3 segmentation of desmoplakin to separate 
merged spots. Left to right: The maximum intensity z-projection of the middle two z-slices of 
desmoplakin in (B) and the corresponding S3 result, the detected local maximum (small white dots) and 
the final results after applying the watershed (W) algorithm with the local maximum as seeds. (D) 
Application of the watershed algorithm (W) directly on pre-processed lamin B1 interphase images for 
segmentation with automatically detected seeds. The watershed line of the watershed output is taken as 
the segmentation result. (E) Application of the steps of masked object thresholding (MO) to 
nucleophosmin images. From left to right: an original image of nucleophosmin, the same image with 
adjusted contrast to highlight lower intensity signal throughout the nucleus, the result of a global 
threshold obtaining the overall shape of nuclei used as a mask, and the result of the Otsu threshold within 
individual nuclei as the final segmentation image. Compared to traditional global thresholding, masked-
object thresholding is more robust to variations in intensity between different nuclei in the same image.  
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Figure 5: Examples of the available post-processing algorithms in the Allen Cell Structure Segmenter. 
(A) Demonstration of the hole-filling algorithm (HF) and the size filter (S) applied to the preliminary 
segmentation results of LAMP-1 images. The target result for LAMP-1 includes filling the larger 
lysosomes as the protein LAMP-1 labels the lysosomal membrane, but the target structure to detect is the 
entire lysosome. (B) Demonstration of the topology-preserving thinning algorithm (TT) on 
sialyltransferase 1 images. The magenta in the last column represents pixels that are removed after 
applying the TT algorithm. 

 

Figure 6: Comparisons of detected object boundaries dependent on segmentation parameters. To identify 
a consistent target for detecting boundaries of the many different tagged intracellular structures, we 
demonstrate the effect of different segmentation parameters on the segmentation of mitochondrial tubules 
marked with a matrix-targeted mCherry in transiently transfected hiPS cells. The top row shows the same 
tubule with increasing brightness and contrast settings from left to right for visualization purposes only. 
The bottom row shows the result of increasing the kernel size parameter (S) while decreasing the 
threshold parameter (T) in the 2D filament filter segmentation algorithm, which was applied to this 
image. The brightness and contrast settings in the top row are set to match the segmentation results in the 
bottom row to demonstrate that each of the segmentation results are reasonable given the input image. 
The green line within the inset in the bottom row is 260 nm, the diameter of mitochondria based on EM 
images of human stem cells. The second column represents the segmentation result that the collection of 
classic image segmentation workflows in the look-up table aimed to consistently target for each 
intracellular structure localization pattern.  

 

Figure 7: Comparison of segmentation results between the Allen Cell Structure Segmenter classic image 
segmentation workflow and 14 global and 8 local thresholding algorithms applied to the 20 structure 
localization patterns in the lookup table (Fig. 2). All images correspond to the maximum intensity 
projection of a z-slice of choice plus and minus one z-slice. The first column represents the original 
image. The second, third and fourth columns display the optimal global algorithm result, optimal local 
algorithm result, and the Allen Cell Structure Segmenter classic image segmentation workflow result, 
respectively (Fig. 2; see methods for list of algorithms tested). 

 

Figure 8: Schematic of the human-in-the-loop sorting strategy for generating ground truth data sets from 
classic image segmentation workflow results for training subsequent 3D deep learning models. A classic 
image segmentation workflow was applied on a set of lamin B1 images, and then the segmented images 
were manually curated to sort out the images to keep. These images directly become the 3D deep learning 
training set.  

 

Figure 9: Schematic of the human-in-the-loop merging strategy for generating ground truth data sets 
from classic image segmentation workflow results for training subsequent 3D deep learning models. Two 
different classic image segmentation workflows were applied to the same lamin B1 images. One 
workflow worked well on interphase lamin B1 localization patterns (yellow) and the other worked better 
on mitotic lamin B1 localization patterns (cyan). A mask made up of four circles with two different radii 
was manually created in Fiji with the “PaintBrush” tool. A single ground truth image was then merged 
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(�) based on the two segmentations by taking the segmentation displayed in yellow within the yellow 
area and the segmentation displayed in cyan within the cyan area on the mask. This merged ground truth 
image is used as part of the 3D deep learning training set. 

 

Figure 10: Application of the iterative deep learning workflow to generate robust lamin B1 
segmentations. The first two images in the top row represent a middle z-slice from the original lamin B1 
image and a second version of the same image with adjusted contrast settings to highlight the fine 
structure in the lamin B1 mitotic localization pattern (yellow arrow). The third column in the top row 
represents the result of a standard Otsu thresholding segmentation as a baseline. The first image in the 
bottom row shows the Segmenter classic image segmentation workflow result. The middle image shows 
the result after the first iteration of the deep learning model trained by a ground truth set generated by 
sorting. Finally, the third image shows the result after the second iteration of the deep learning model 
trained on a ground truth set generated by merging. The blue arrow indicates an interphase lamin B1 
localization pattern that was originally missing in the classic image segmentation workflow but was 
detected using the iterative deep learning models. The yellow arrow indicates a mitotic lamin B1 
localization pattern that was detected after the second iteration of the deep learning model.  

 

Figure 11: The architecture of the two deep neural networks used in the iterative deep learning workflow. 
The two networks, Net_basic and Net_zoom are almost identical in architecture. The layers and data 
flows that differ between Net_basic and Net_zoom are marked in purple and red, respectively. In general, 
the network consists of 7 core blocks connected by downsampling and upsampling layers. All core blocks 
have the same layers, detailed in the corner green box (two consecutive sets of 3D convolution with 
kernel size 3, batch normalization and ReLU activation). Both networks are attached to one main 
prediction branch and two auxiliary prediction branches. The main prediction block is one 3D 
convolution with kernel size 1, while auxiliary blocks have one 3D convolution with kernel size 3, 
followed by another 3D convolution with kernel size 1. 
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