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ABSTRACT 27 

Objectives 28 

We assessed the efficacy of exome capture in lemurs using commercially available 29 

human baits. 30 

Materials and Methods 31 

We used two human kits (Nimblegen SeqCap EZ Exome Probes v2.0; IDT xGen Exome 32 

Research Panel v1.0) to capture and sequence the exomes of wild Verreaux’s sifakas 33 

(Propithecus verreauxi, n = 8), a lemur species distantly related to humans. For 34 

comparison, we also captured exomes of a primate species more closely related to 35 

humans (Macaca mulatta, n= 4). We mapped reads to both the human reference 36 

assembly and the most closely related reference for each species before calling 37 

variants. We used measures of mapping quality and read coverage to compare capture 38 

success. 39 

Results 40 

We observed high and comparable mapping qualities for both species when mapped to 41 

their respective nearest-relative reference genomes. When investigating breadth of 42 

coverage, we found greater capture success in macaques than sifakas using both 43 

nearest-relative and human assemblies. Exome capture in sifakas was still highly 44 

successful with more than 90% of annotated coding sequence in the sifaka reference 45 

genome captured, and 80% sequenced to a depth greater than 7x using Nimblegen 46 

baits. However, this success depended on probe design: the use of IDT probes resulted 47 

in substantially less callable sequence at low-to-moderate depths. 48 

Discussion 49 
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 3 

Overall, we demonstrate successful exome capture in lemurs using human baits, 50 

though success differed between kits tested. These results indicate that exome capture 51 

is an effective and economical genomic method of broad utility to evolutionary 52 

primatologists working across the entire primate order. 53 

KEY WORDS: genomics, strepsirrhines, primates, macaques, methods  54 
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Introduction 55 

Recent advances in next generation sequencing technology and the increasing 56 

availability of annotated reference genomes have made feasible the genomic study of 57 

nonmodel taxa (Ellegren, 2014; Goodwin, McPherson, & McCombie, 2016). Nonhuman 58 

catarrhines, in particular papionin monkeys (Bergey, Phillips-Conroy, Disotell, & Jolly, 59 

2016; Gibbs et al., 2007; Lea, Altmann, Alberts, & Tung, 2016; Wall et al., 2016) and 60 

apes (Carbone et al., 2014; de Manuel et al., 2016; Locke et al., 2011; Perry et al., 61 

2008; Prado-Martinez et al., 2013), have been the focus of intense genomic study 62 

because of their importance in understanding human evolutionary history (Jolly, 2001; 63 

Swedell & Plummer, 2012; Wrangham, 1987) and history of use as biomedical models 64 

(Carlsson, Schapiro, Farah, & Hau, 2004; Rogers & Gibbs, 2014; Varki, 2000). 65 

However, genomic data hold promise to enable vast insights into evolution, ecology, 66 

and behavior, as well as inform conservation management across the entire primate 67 

order. 68 

Nevertheless, genomic analyses remain out-of-reach for many species. Even for  69 

species for which there is a draft genome available, population-scale whole genome 70 

sequencing and the concomitant data storage, management, and analyses often require 71 

prohibitively vast financial, computational, and bioinformatics resources. These 72 

conditions have fostered the development and wide adoption of reduced representation 73 

genomic sequencing methods, like restriction-associated DNA sequencing (RAD-seq; 74 

K. R. Andrews, Good, Miller, Luikart, & Hohenlohe, 2016; Baird et al., 2008).  While 75 

RAD-seq and similar “genotyping-by-sequencing” methods have enabled the genomic 76 

study of a variety of nonmodel organisms, aspects of the data—particularly marker 77 
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sparseness and discontinuity—can be limiting for some research questions (Arnold, 78 

Corbett-Detig, Hartl, & Bomblies, 2013; Lowry et al., 2017; Rubin, Ree, & Moreau, 79 

2012). 80 

In contrast, targeted capture involves the selective enrichment of genomic 81 

regions before sequencing, allowing both for more continuous sequence and for control 82 

over the density and identity of targets (Gnirke et al., 2009; Jones & Good, 2016). 83 

Foremost among targeted capture techniques is exome capture and sequencing 84 

(exome sequencing), which primarily targets all the protein coding regions of the 85 

genome along with a number of untranslated regions, promoter regions, and miRNAs 86 

(Clark et al., 2011). In total, these targets account for less than 2% of the genome, 87 

making exome sequencing much more cost-effective than whole genome sequencing, 88 

while still providing the majority of data often desired by those undertaking high 89 

throughput sequencing. Numerous commercial exome capture kits based on the human 90 

genome have been developed and widely adopted in clinical settings and for identifying 91 

the underlying basis of human genetic disorders (Bamshad et al., 2011; Bilgüvar et al., 92 

2010; Ng et al., 2010).  93 

Synthesizing custom high-quality oligonucleotide baits for targeted capture is 94 

expensive and generally requires a high-quality reference genome (Jones & Good, 95 

2016; but see Snyder-Mackler et al., 2016). Because of the close evolutionary, and thus 96 

genetic, relationship between human and nonhuman primates, researchers studying 97 

nonhuman primates are advantageously situated to potentially exploit the baits and 98 

resources developed for human exome sequencing. In particular, human exome baits 99 

have been successfully used in haplorrhine primates (Bataillon et al., 2015; George et 100 
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al., 2011; Hvilsom et al., 2012; Jin et al., 2012; Teixeira et al., 2015; Vallender, 2011). 101 

However, it is currently unclear how well human exome baits would work for more 102 

distantly related species (e.g., strepsirrhine primates). 103 

To ascertain and quantify the utility of exome sequencing across the order 104 

Primates, we performed exome capture and sequencing of a distantly related 105 

strepsirrhine species, Verreaux’s sifaka (Propithecus verreauxi), that diverged from 106 

humans over 60 million years ago (dos Reis et al., 2018). As a direct comparison to 107 

provide context for assessing the strepsirrhine results we also included rhesus 108 

macaques (Macaca mulatta), a catarrhine species for which the efficacy of exome 109 

capture using baits designed for humans has already been established (George et al., 110 

2011; Vallender, 2011).  Both species have closely-related reference genomes available 111 

(P. coquereli, M. mulatta). Our overall goal is to assess capture efficiency, mapping 112 

success, and variant calling using two commercially available human exome capture 113 

kits.    114 

 115 

MATERIALS AND METHODS 116 

Samples 117 

We collected the Verreaux’s sifaka samples from individuals living at Bezà 118 

Mahafaly Special Reserve (Bezà), located in southwestern Madagascar (Toliara 119 

province). As part of long-term research, research team members capture unmarked 120 

yearlings and recent immigrants annually to collect biometric data and give each 121 

individual a unique identifying collar and ear notch pattern (Richard, Dewar, Schwartz, & 122 

Ratsirarson, 2002).  123 
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For this study, we generated two different Verreaux’s sifaka datasets (Sifaka1 124 

and Sifaka2). Sifaka1 is the primary dataset we use throughout the study in comparison 125 

with the macaque samples (Macaque1). We generated the Sifaka2 dataset using 126 

different exome capture kit to explore any effects of bait design on capture success 127 

(described below). For Sifaka1, we extracted DNA from banked ear tissue biopsies as 128 

described in Lawler et al. (2001) from four sifakas: a mother-daughter pair and two 129 

unrelated males (Supporting Information Table S1). For Sifaka2, we extracted DNA 130 

from the ear tissue of two additional male and two additional female sifakas using the 131 

QIAgen DNeasy Blood and Tissue (Qiagen) kit following manufacturer instructions with 132 

an extended lysis step (Supporting Information Table S1).  133 

For a catarrhine comparison, we used DNA derived from blood samples from 134 

four unrelated—two male and two female—captive Indian rhesus macaques 135 

(Macaque1) from the Wisconsin National Primate Research Center (Supporting 136 

Information Table S1). 137 

 138 

DNA extraction, library preparation, and sequencing 139 

We sent extracted DNA to the Yale Center for Genome Analysis (YCGA) for 140 

exome capture, library preparation, and multiplexed sequencing following their standard 141 

protocols, described as follows. For all three datasets (Sifaka1, Sifaka2, and 142 

Macaque1), genomic DNA was sheared to a mean fragment length of 140 bp and 143 

adapters were ligated onto both ends of fragments. Fragments were then PCR 144 

amplified, during which a 6 bp barcode was inserted at one end of each fragment. 145 

Libraries were hybridized with baits from two different kits:  Nimblegen baits (Nimblegen 146 
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SeqCap EZ Exome version 2) were used for Sifaka1 and Macaque1, and IDT xGen 147 

baits (IDT xGen Exome Research Panel 1.0) were used for Sifaka2. Fragments were 148 

then mixed with streptavidin-coated beads and washed to remove unbound fragments. 149 

Captured fragments were then PCR amplified and purified with AMPure XP beads. 150 

Libraries from Sifaka1 and Macaque1 were multiplexed (all four sifaka samples in one 151 

lane, and the four macaques in another lane with two other samples) and sequenced 152 

using 75 bp paired-end reads on a single lane of an Illumina HiSeq 2000 using Illumina 153 

protocols. Sifaka2 libraries were sequenced using 100 bp paired-end reads on a single 154 

Illumina HiSeq 4000 lane and multiplexed with eight other samples (12 total samples 155 

per lane, but only four are included in this study). 156 

 157 

Exome assembly  158 

 We assessed read quality pre- and post-trimming using FastQC (S. Andrews, 159 

2018) and MultiQC (Ewels, Magnusson, Lundin, & Käller, 2016). We used BBDuk 160 

(Bushnell, 2018) to remove adapters and perform quality trimming using the parameters 161 

“ktrim=r k=21 mink=11 hdist=2 tbo tpe qtrim=rl trimq=10”. We then mapped reads from 162 

sifaka samples (Sifaka1 and Sifaka2) to the Propithecus coquereli draft genome 163 

(Pcoq_1.0; Baylor College of Medicine; https://www.ncbi.nlm.nih.gov/genome/24390). 164 

P. verreauxi and P. coquereli share a common ancestor 3-8 million years ago (Herrera 165 

& Dávalos, 2016; Springer et al., 2012). We mapped macaque samples (Macaque1) to 166 

the Indian rhesus macaque draft genome (Mmul_8.0.1; Macaca mulatta Genome 167 

Sequencing Consortium; 168 

https://www.ncbi.nlm.nih.gov/genome/215?genome_assembly_id=259055). Finally, we 169 
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mapped reads from both species to the human reference genome (hg38; Genome 170 

Reference Consortium, Dec 2013). For the rest of the manuscript, we refer to 171 

Mmul_8.0.1 as mmul8, proCoq_1.0 as pcoq1, and hg38 as hg38. In all cases, we 172 

mapped reads using BWA MEM (Li, 2013) using default parameters except for “-t 4” 173 

and “-R” to add read group information. We marked duplicates with SAMBLASTER 174 

(Faust & Hall, 2014). We then used SAMtools (Li et al., 2009) to fix read pairing, and 175 

sort and index BAM files. 176 

To enable a direct comparison of exome capture success between species for 177 

which we had different numbers of raw reads and different duplication rates, we 178 

conducted all downstream analyses on downsampled BAM files (containing the same 179 

number of reads for each individual). To downsample BAM files, we first used the “stats” 180 

tool in SAMtools (Li et al., 2009) to count the total number of reads and number of 181 

duplicate reads in each BAM file. We then used the “view” tool in SAMtools (Li et al., 182 

2009) with the parameters “-F 1024 –s 0.<subsample_fraction>” to subsample 183 

approximately 50 million reads, where <subsample_fraction> is equal to 50 million 184 

divided by the total number of nonduplicate reads. The flag “-F 1024” removes reads 185 

flagged as duplicate. 186 

 187 

Variant calling 188 

 We jointly called variants for each dataset using both GATK’s HaplotypeCaller 189 

(Poplin et al., 2018) and Freebayes (Garrison & Marth, 2012). To speed up processing, 190 

we input BED files containing minimally callable sites—depth greater than 3, mapping 191 

quality greater than 19, and base quality greater than 29—generated using CallableLoci 192 
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in GATK (McKenna et al., 2010). Finally, we filtered variants for site quality (minimum of 193 

30), sample depth (minimum of 8), sample genotype quality (minimum of 30), allele 194 

support (minimum of 3 reads), and number of passing samples (minimum of 4) with a 195 

Python script built using the cyvcf2 library (Pedersen & Quinlan, 2017). 196 

 We functionally annotated filtered variants using Ensembl’s Variant Effect 197 

Predictor (McLaren et al., 2016) tool with annotations derived from the NCBI gene 198 

format files corresponding to the respective reference genomes for the rhesus and 199 

sifaka references (NCBI Macaca mulatta Annotation Release 102 [GCF_000772875.2] 200 

and Propithecus coquereli Annotation Release 100 [GCA_000956105.1]), and 201 

Ensembl’s cache for the human reference (hg38). We also obtained NCBI’s annotation 202 

for the human reference (GCF_00001405.37) for use in our coverage analyses (see 203 

below). Using these annotation files, we intersected various regions (exon, intron, and 204 

intergenic) with filtered variants using bedtools “intersect” (Quinlan & Hall, 2010) and 205 

then used the “stats” module of BCFtools (Li, 2011) to tally variants in each region. 206 

 207 

Coverage analysis 208 

 We calculated the mean and standard deviation of mapping quality (MAPQ) of 209 

reads within each BAM file using a custom program written in Go (“mapqs.go”) using 210 

packages in bíogo/hts (Kortschak, Pedersen, & Adelson, 2017). BWA MEM’s (Li, 2013) 211 

MAPQ scores are PHRED-scaled and can range from 0-60, with higher values 212 

indicating increased confidence in mapping accuracy. 213 

We counted the number of callable sites across a variety of depths and genomic 214 

regions by first using SAMtools (Li et al., 2009) “view” to remove duplicates and reads 215 
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with a mapping quality less than 20 with the flags “-F 1024 -q 20”, and then calculating 216 

per site depths with genomecov in bedtools (Quinlan & Hall, 2010), outputting in 217 

bedgraph format (“-bg”). We then processed bed files, including intersecting with 218 

genomic regions derived from the NCBI annotation described above using bedtools 219 

(Quinlan & Hall, 2010), BEDOPS (Neph et al., 2012), and a custom Python script 220 

(“Compute_histogram_from_bed.py”). Finally, we used the coverage module in bedtools 221 

with default parameters (Quinlan & Hall, 2010) to calculate the fraction of each coding 222 

region with coverage. Note that for all region-based analyses, we merged regions in the 223 

NCBI GFF annotations during processing because many, but not all, regions were 224 

present multiple times.  225 

 226 

Exome capture kit comparison 227 

We used the sifaka datasets (Sifaka1 and Sifaka2) for a direct comparison of 228 

capture success using the two different capture kits (NimbleGen SeqCap EZ Exome 229 

version 2 for Sifaka1 and IDT xGen Exome Research Panel 1.0 for Sifaka2). We ran 230 

both datasets through identical exome assembly and coverage analysis steps as 231 

described above.  232 

 233 

Data Availability 234 

 We deposited raw sequencing reads in NCBI’s Sequence Read Archive 235 

(https://www.ncbi.nlm.nih.gov/sra) under BioProject PRJNA417716. We provide SRA 236 

accession numbers in Supporting Information Table S1. 237 
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 12 

 We built all analyses into a reproducible pipeline using Snakemake (Köster & 238 

Rahmann, 2012), Bioconda (Grüning et al., 2018). The entire pipeline—including all 239 

scripts, environment files, and software versions—is available on Github 240 

(https://github.com/thw17/Sifaka_assembly). 241 

 242 

Ethics Statement 243 

We report no conflict of interest. All research conformed to institutional and 244 

national guidelines, and complied with the American Association of Physical 245 

Anthropologists Code of Ethics. This protocol is approved by the James Madison 246 

University Institutional Animal Care and Use Committee (protocol numbers A03-14 and 247 

A18-04) and permission to conduct research at Bezà was granted by the Malagasy 248 

Ministry of the Environment. 249 

 250 

3. Results 251 

 We generated the following mean numbers of raw sequencing reads per sample: 252 

96,358,883 for Sifaka1 (range 80,434,390–108,538,766), 65,460,924 for Macaque1 253 

(range 59,422,700–70,596,638), and 75,441,014 for Sifaka2 (range 70,264,610–254 

79,520,110) (Supporting Information Table S2). After trimming, duplicate removal, and 255 

quality control, 83-86% of Sifaka1 reads, 89-92% of Macaque1 reads, and 68-70% of 256 

Sifaka2 reads passed all filters, with differences among datasets largely driven by 257 

duplication rates (Supporting Information Table S2). To account for these differences in 258 

duplication rates and raw sequences generated, we downsampled reads for all samples 259 
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to approximately 50 million nonduplicate reads (Supporting Information Table S2). We 260 

only included the downsampled datasets in downstream analyses. 261 

 Mapping qualities were very similar when mapping samples to their most closely 262 

related reference genomes (pcoq1 for sifakas; mmul8 for macaques). Across datasets, 263 

we observed mean mapping qualities of approximately 56 (out of a maximum of 60), 264 

with standard deviations ranging between 11 and 14 (Figure 1). However, when 265 

mapping to the human reference genome (hg38), mapping qualities decreased 266 

substantially—dropping to approximately 52 in Macaque1, 45 in Sifaka1, and 48 in 267 

Sifaka2—and the standard deviation increased (Figure 1). 268 

 We measured the number of sites in coding (CDS), intergenic, intronic, and 269 

untranslated (UTR) regions at four different depth thresholds (1x, 4x, 8x, and 12x), 270 

counting only nonduplicate reads with a minimum mapping quality of 20, which we term 271 

“callable sites.” Across all regions and in both datasets (Sifaka1 and Macaque1), we 272 

observed a decrease in the number of callable sites as we increased minimum depth of 273 

coverage (Figure 2). This decrease was minor for CDS and UTR, while intronic and 274 

intergenic regions exhibited a disproportionate drop moving from 1x to 4x thresholds 275 

(Figure 2). We observed taxon differences as well. Specifically, the Macaque1 samples 276 

exhibited more callable sites in each region than those in Sifaka1 for all reference 277 

genomes. Moreover, we found little difference between callable sites in mmul8 and 278 

hg38 for each region in Macaque1, in contrast to Sifaka1, for which we observed a 279 

decrease in callable sites across regions when moving from pcoq1 to hg38 (Figure 2). 280 

 Because the primary goal of exome sequencing is to target coding sequence, we 281 

explored CDS in more detail (Figure 3; Figure 4). For both Sifaka1 and Macaque 1, 282 
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when mapping to the most closely related reference genome (pcoq1 and mmul8, 283 

respectively), we found that more than 90% of annotated CDS had one or more reads 284 

mapped to it (Figure 3; Sifaka1 mean = 90.9%, Macaque1 mean = 92.8%). However, as 285 

the minimum depth threshold increased, we observed a steeper decline in Sifaka1 than 286 

Macaque 1 until approximately 20x coverage. For example, Sifaka1 had means of 287 

84.1% (4x), 78.7% (8x), 74.0% (12x), 69.9% (16x) and 66.1% (20x) of CDS covered at 288 

increasing thresholds, while Macaque1 had broader coverage at each threshold: 89.1% 289 

(4x), 85.1% (8x), 80.7% (12x), 75.8% (16x), and 70.6% (20x) of CDS covered (Figure 290 

3). This pattern was far more pronounced when the two datasets were mapped to hg38. 291 

Across the same depth thresholds, Sifaka1 had approximately 10-14% fewer bases 292 

covered when mapping to pcoq1 to hg38 (Figure 3), while Macaque1 only exhibited a 3-293 

5% decrease per threshold moving from mmul8 to hg38 (Figure 3). 294 

 We also tested to see if exome capture success in strepsirrhines was consistent 295 

across two commonly used commercially available human kits: NimbleGen (Sifaka1) 296 

and IDT (Sifaka2). At lower minimum depth thresholds typically used in genomic 297 

analyses (e.g., 8x and 12x), the NimbleGen kit recovered more than 20% more CDS in 298 

pcoq1 and 15% more CDS in hg38 than IDT (Figure 4). This difference was significant 299 

across depths less than 50x (U= 31378, p < 2.2 x 10-16). Interestingly, because 300 

NimbleGen and IDT exhibit different slopes, they intersect at approximately 50x 301 

coverage (Figure 4). While NimbleGen probes still recover significantly more CDS at 302 

depth thresholds between 50x and 100x (U=38416, p < 2.2 x 10-16), the proportion of 303 

bases with X or more coverage exhibits the opposite pattern in this interval, with IDT 304 
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displaying higher values (Figure 4). This pattern is consistent with IDT capturing less 305 

sequence, but at greater depths (i.e., depths greater than 100x).  306 

 To further explore the difference in capture success between NimbleGen and 307 

IDT, we calculated the breadth of coverage across coding regions in pcoq1. NimbleGen 308 

probes captured a significantly greater mean fraction of coding regions, measured as 309 

the mean fraction of each coding sequence covered by at least one read (185,162 310 

regions; NimbleGen mean = 0.91, IDT mean = 0.63; U=1.89 x 1011, p < 2.2 x 10-16). 311 

Upon closer examination, this difference was primarily driven by IDT completely missing 312 

more coding regions. Among 185,162 coding regions in pcoq1, 33.8% of regions lacked 313 

coverage in the IDT data (range 33.6-34%), while only 7.1% completely lacked 314 

coverage in the NimbleGen dataset (range = 6.6-7.3%). When we excluded these 315 

regions with no coverage, the difference in mean fraction of coding regions captured 316 

decreased substantially, though NimbleGen still captured significantly more (NimbleGen 317 

mean = 0.98, IDT mean = 0.95; U=1.57 x 1011, p < 2.2 x 10-16). 318 

 We used two variant callers, GATK’s HaplotypeCaller and Freebayes, to 319 

genotype Sifaka1 and Macaque1 when mapped to hg38 and the closest reference 320 

(pcoq1 for Sifaka1, and mmul8 for Macaque1), for a total of eight sets of variant calls 321 

(Supporting Information Table 3). In both datasets, variant call sets for the most closely 322 

related genome were broadly similar between HaplotypeCaller and Freebayes in terms 323 

of number of variants identified and genes overlapped (Supporting Information Table 3). 324 

However, when mapped to hg38, the datasets showed opposite patterns: for Sifaka1, 325 

HaplotypeCaller identified approximately four times as many variants as Freebayes 326 

(HaplotypeCaller = 250,389, Freebayes = 62,793), while in Macaque1 Freebayes 327 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2018. ; https://doi.org/10.1101/490839doi: bioRxiv preprint 

https://doi.org/10.1101/490839
http://creativecommons.org/licenses/by/4.0/


 16 

identified more than 56% more variants (HaplotypeCaller = 97,709, Freebayes = 328 

152,768; Supporting Information Table 3).  329 

 While the number of variants identified across call sets differed substantially, 330 

within call sets, proportions of variant types were broadly similar (Supporting Information 331 

Table 3). Most variants identified across call sets were single nucleotide variants (SNVs; 332 

71.6-81.2%), though proportions of multiple nucleotide variants (MNVs), insertions, and 333 

deletions increased when mapping to hg38. Similarly, the relative numbers of 334 

nonsynonymous, frameshift, and stop gained variants in exons were much higher when 335 

mapping to hg38 (Table 1). Variants were not limited to exons however, as most 336 

variants were intronic (Supporting Information Table 3). 337 

 338 

4. Discussion 339 

In this study we demonstrate, for the first time, that human baits can be used to 340 

successfully capture high-coverage exomic data for strepsirrhines. While previous 341 

studies have established that human baits are effective in anthropoid primates (George 342 

et al., 2011; Jin et al., 2012; Vallender, 2011), our results extend the cross-species 343 

application of baits to lineages diverged over 60 million years ago (dos Reis et al., 2018) 344 

and indicate that human baits are likely viable options for genomic analyses across the 345 

entire primate order. 346 

 We found that a mean of 90.9% of annotated coding sequence (CDS) in the draft 347 

P. coquereli genome was covered by one or more reads in our P. verreauxi samples. As 348 

we increased the minimum depth of coverage thresholds to match common filter values 349 

(e.g., 4x, 8x, and 12x coverage), we observed a steady, curvilinear decline in breadth of 350 
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CDS coverage (Figure 3). This pattern indicates that coverage is not uniform across 351 

CDS, consistent with predictions for next-generation sequencing (Lander & Waterman, 352 

1988), particularly those for targeted capture (Clark et al., 2011; Sims, Sudbery, Ilott, 353 

Heger, & Ponting, 2014). In particular, in targeted sequencing, there are expected 354 

position-based sampling biases that lead to greater coverage towards the middle of 355 

targets (Wendl & Barbazuk, 2005). However, despite the fact that increasing 356 

sequencing effort will increase depth nonuniformly across targets, clearly any CDS base 357 

with coverage has been successfully captured. Therefore, increasing sequencing 358 

effort—we used 50 million nonduplicate reads in this study—should increase the 359 

fraction of callable CDS at various coverage thresholds up to at least 90.9%, the 360 

amount of CDS we observed covered by at least one read in this study. 361 

 Surprisingly, the fraction of captured CDS in sifakas (90.9%) was very similar to, 362 

albeit slightly smaller than, the fraction captured in rhesus macaques (92.8%), even 363 

though macaques share a much more recent common ancestor with humans (30-35 364 

million years; dos Reis et al., 2018). However, the macaques exhibited a slower 365 

decrease in breadth of CDS coverage at increasing minimum depth thresholds, 366 

particularly across thresholds most commonly used (Figure 3). Thus, while exome 367 

capture is certainly highly successful in sifakas, there is a decrease in efficiency 368 

compared to lineages more closely related to humans. This pattern holds both when 369 

mapping to the nearest reference genomes (pcoq1 for the sifakas and mmul8 for the 370 

macaques) and when mapping back to the human reference, and therefore appears to 371 

be driven by capture success, rather than assembly methods (e.g, mapping). 372 
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 Similar to our results, previous studies have noted a decrease in capture 373 

efficiency across increasing evolutionary distances within catarrhine primates (Jin et al., 374 

2012; Vallender, 2011). In this study, however, we found that this effect was much less 375 

pronounced even though we sampled much greater evolutionary distances. This is likely 376 

driven by differences in mapping strategies. Previously, assessments of capture 377 

efficiency involved mapping back to the human reference genome (George et al., 2011; 378 

Jin et al., 2012; Vallender, 2011). In this study, we found that mapping across large 379 

evolutionary distances appears to reduce both breadth and depth of coverage (Figure 380 

3), an effect likely caused by the greater number of differences between reads and the 381 

reference sequence, which substantially impacts mapping quality (Figure 1). In fact, the 382 

Indian rhesus macaques used in this study were much more closely related to their 383 

nearest reference (same population and species) than the Verreaux’s sifakas (about 6 384 

million years diverged from P. coquereli; dos Reis et al., 2018), which might account for 385 

some of the difference in our observed capture success between the two species, 386 

though this requires further study. In addition, while most protein-coding genes in 387 

sifakas and macaques are expected to have homologues in humans, gene content is 388 

not identical across primates (Rogers & Gibbs, 2014). It is therefore possible that our 389 

results were also influenced by the presence of more sifaka-specific gene content than 390 

macaque-specific gene content. 391 

 While exome capture was successful in the sifakas, the degree of success 392 

depended on the capture baits used. Specifically, while the NimbleGen probes captured 393 

an average of more than 90% of pcoq1 CDS and only completely missed 6-7% of 394 

coding regions, the IDT probes captured less than 70% of pcoq1 CDS and completely 395 
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missed approximately one-third of coding regions. When we excluded missed regions, 396 

the difference in coverage reduced substantially, with both baits covering more than 397 

95% of CDS in regions with any coverage. Taken together, the difference between baits 398 

is primarily driven by IDT baits completely missing entire coding regions, rather than the 399 

failure of IDT baits to capture entire targets. Commercially available human exome 400 

capture kits differ markedly in design, with different targets, bait lengths, and bait 401 

overlap (Clark et al., 2011). Even in human samples, for which the baits are designed, 402 

these differences in bait design affect capture efficiency and the number and location of 403 

variants detected (Clark et al., 2011; Sulonen et al., 2011). 404 

 Compared to other reduced representation methods (e.g., RAD-seq), exome 405 

capture’s primary strength is that it aims to capture all protein coding regions of the 406 

genome—the regions frequently of most interest from a functional standpoint. To this 407 

end, exome capture and sequencing, particularly with the NimbleGen probes, was 408 

highly successful in our samples, capturing the vast majority of CDS and leading to the 409 

identification of a rich suite of variants. However, exome capture’s utility is not limited to 410 

these regions, and it can generate high-quality data in regulatory and untranslated 411 

regions (UTRs), as well as other intronic and intergenic regions (Samuels et al., 2013). 412 

In our data, we identified tens of millions of base pairs of sequence outside of coding 413 

regions (Figure 2); in fact, more variants were identified in introns than any other 414 

sequence class. Thus, exome capture across nonhuman primates holds great promise 415 

for not only recovering coding regions across the genome, but also recovering putatively 416 

neutral sequences (introns, intergenic regions, and four-fold degenerate sites) that can 417 
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be applied to traditional questions in molecular ecology regarding kinship, geneflow and 418 

demographic history.   419 

 420 
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Figures 650 

 651 

Figure 1. Mean mapping quality (MAPQ) for samples mapped to their most closely 652 

related reference genome (pcoq1 for sifakas and mmul8 for macaques) and the human 653 

reference genome (hg38). Samples are organized by dataset membership, defined by 654 

species and capture kit. Sifaka1 and Macaque1 were processed using NimbleGen baits 655 

and Sifaka2 was processed using IDT baits. Error bars denote plus/minus one standard 656 

deviation. Note that maximum mapping quality is 60. 657 
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 659 

Figure 2. The effect of minimum depth on the number of callable sites across genomic 660 

regions. Samples are mapped to their most closely related reference genome (pcoq1 for 661 

sifakas and mmul8 for macaques) and the human reference genome (hg38). Minimum 662 
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depth thresholds were 1, 4, 8, and 12 nonduplicate reads per site with MAPQ greater 663 

than or equal to 20. 664 
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 666 

Figure 3. Depth of coverage across the coding regions of the genome.  Samples are 667 

mapped to their most closely related reference genome (pcoq1 for sifakas and mmul8 668 

for macaques) and the human reference genome (hg38). The x-axis presents depth of 669 

coverage, measured as the number of nonduplicate reads with MAPQ >= 20. The y-axis 670 

presents the proportion of coding sequence in the genome with X or greater coverage, 671 

where X is the value on the x-axis. The vertical dotted lines highlight three common filter 672 

values: 4x or greater coverage, 8x or greater coverage, and 12x or greater coverage. 673 
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The solid horizontal line marks the fraction of the genome covered by one or more 674 

reads for macaque samples mapped to mmul8. 675 

 676 
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Figure 4. A comparison of depth of coverage across the coding regions of the genome 679 

for NimbleGen and IDT baits.  Samples are mapped to pcoq1 and hg38. Samples 680 

captured with NimbleGen baits are represented by dashed lines, while those captured 681 

with IDT baits are represented by solid lines. The x-axis presents depth of coverage, 682 

measured as the number of nonduplicate reads with MAPQ >= 20. The y-axis presents 683 

the proportion of coding sequence in the genome with X or greater coverage, where X is 684 

the value on the x-axis. The vertical dotted lines highlight three common filter values: 4x 685 

or greater coverage, 8x or greater coverage, and 12x or greater coverage. The solid 686 

horizontal line marks the fraction of the genome covered by one or more reads for 687 

NimbleGen samples mapped to pcoq1. 688 
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Tables 690 

Table 1. Coding variants identified.a 691 

Coding variant type Sifaka1 

(Pcoq1) 

Sifaka1 

(hg38) 

Macaque1 

(Mmul8) 

Macaque1 

(hg38) 

Synonymous 62,201 114,951 96,650 95,982 

Nonsynonymous  29,079 102,711 51,743 75,499 

Frameshift variant 1,230 9,648 1,044 13,171 

Stop  409 3,563 408 3,231 

aValues are counts of variants identified for each dataset-reference genome 692 

combination. 693 
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