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Abstract:  15 

Inferences derived from large multiple alignments of biological sequences are critical to many 

areas of biology, including evolution, genomics, biochemistry, and structural biology. However, 

the complexity of the alignment problem imposes the use of approximate solutions. The most 

common is the progressive algorithm, which starts by aligning the most similar sequences, 

incorporating the remaining ones following the order imposed by a guide-tree. We developed and 20 

validated on protein sequences a regressive algorithm that works the other way around, aligning 

first the most dissimilar sequences. Our algorithm produces more accurate alignments than non-

regressive methods, especially on datasets larger than 10,000 sequences. By design, it can run any 

existing alignment method in linear time thus allowing the scale-up required for extremely large 

genomic analyses. 25 

 
One Sentence Summary:  
Initiating alignments with the most dissimilar sequences allows slow and accurate methods to be 

used on large datasets 
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Main Text:  
Structural and evolutionary predictions are improved when using accurate large Multiple Sequence 

Alignments (MSAs) featuring thousands of sequences (1, 2).  Until the first benchmarking of large-

scale MSAs, analyses made on smaller datasets had suggested that scale-up would automatically 

lead to increased accuracy (3). However, all things being equal, alignments with over a thousand 5 

sequences are less accurate than their smaller counterparts (4). Under the most common multiple 

alignment procedure (5), small MSAs are built in parallel and progressively merged into 

increasingly large intermediate MSAs, following the order of a guide-tree. This sometimes results 

in extremely gapped MSAs (6) that have been speculated to account for the accuracy drop on large 

datasets (7). Recent attempts to address this problem have included SATé (8) and its follow-up 10 

PASTA (9), a progressive algorithm in which the guide-tree is split into subsets that are 

independently aligned and later merged. This divide and conquer strategy allows computationally 

intensive methods to be deployed on large datasets but does not alleviate the challenge of merging 

very large intermediate MSAs. More recent alternatives include the MSA algorithms UPP (10) 

and MAFFT-Sparsecore (Sparsecore) (11). Both rely on selecting a subset of sequences - the seeds 15 

- and turning them into a Hidden Markov Model (HMM) using either PASTA or the slow/accurate 

version of MAFFT. The HMM is then used to incorporate all the remaining sequences one by one. 

The downside of this approach is that the seed sequences can be insufficiently diverse and therefore 

preclude the accurate alignment of distantly related homologous to the seed HMM. We propose a 

regressive algorithm that addresses this problem by combining the benefits of a progressive 20 

approach when incorporating distant homologues with the improved accuracy of seeded methods. 

This synthesis was achieved by fulfilling two simple constraints: the splitting of the sequences 

across sub-MSAs each containing a limited number of sequences and their combination into a final 

MSA without the requirement of an alignment procedure. Thus, the main difference between our 
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approach and existing ones lies in the order in which sequences are aligned, starting with the most 

diverse. 

 

Given M sequences the sub-MSAs are collected as follows. A clustering algorithm is used to define 

N non-overlapping sequence groups - the children. The first sub-MSA - the parent - is computed 5 

by selecting a representative sequence from each child group. The same method is then applied 

onto every child group in which N new representatives are collected and multiply aligned to yield 

one child sub-MSA for each sequence in the parent. The procedure runs recursively by treating 

each child as a parent for the next generation until every sequence has been incorporated. The final 

MSA is produced by merging all the sub-MSAs. The merging of a child with its parent is done 10 

without additional alignment thanks to the representative sequence. This sequence, present in both 

the child and its parent, enables the stacking of the corresponding positions (Fig. 1A). When doing 

so, insertions occurring within the representative, either in the child or in its parent, are projected 

as deletions (i.e. gaps) in the other.  

 15 

A key step of this recursion is the clustering method and the subsequent selection of the N 

representative sequences. N was set to 1,000, a figure reported to be the largest number of 

sequences that can be directly aligned without accuracy loss (4). The clusters were estimated from 

binary guide-trees produced by existing large-scale MSA algorithms such as Clustal Omega 

(ClustalO) and MAFFT. The use of a binary tree to extract the most diverse sequences was inspired 20 

by an existing taxa sampling procedure (12). In our implementation, every node gets labeled with 

the longest sequence among its descendants. Given a fully labeled tree, the sequences of the first 

parent sub-MSA are collected by the breadth-first traversal of the tree, starting from the root 
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through as many generations as required to collect N sequences (Fig. 1B). Because of the way they 

are collected along the tree these N first sequences are as diverse as possible. Within the resulting 

sub-MSA every sequence is either a leaf or the representative of an internal node ready to 

processed (Fig. 1C).  

 5 

Our algorithm does not depend on specific alignment or guide-tree methods and therefore lends 

itself to be combined with any third-party software. This property enabled us to run various 

alignment software both directly and in combination with the regressive algorithm. A combination 

involves estimating a guide-tree with an existing method, collecting sequences with the regressive 

algorithm and then computing the sub-MSAs with an existing MSA algorithm. By doing so we 10 

were able to precisely quantify the impact of our algorithm on both accuracy and computational 

requirements. We used as a benchmark the HomFam protein datasets (4) in which sequences with 

known structures - the references - are embedded among large numbers of homologues. Accuracy 

is estimated by aligning the large dataset and then comparing the induced alignment of the 

references with a structure-based alignment of these same references (13). We started by 15 

benchmarking the ClustalO and MAFFT-FFT-NS-1 (Fftns1) MSA algorithms using two guide-

tree methods: ClustalO embedded k-means trees (mBed) (14) and MAFFT-PartTree (PartTree) 

(15). These widely adopted software were selected because they support large-scale datasets, are 

strictly progressive and allow the input and output of binary guide-trees.  

 20 

In three out of four combinations of guide-tree and MSA algorithms, the regressive combination 

outperformed the progressive one. When considering the most discriminative measure (total 

column score, TC, Table 1) on the datasets with over 10,000 sequences, the regressive combination 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 7, 2018. ; https://doi.org/10.1101/490235doi: bioRxiv preprint 

https://doi.org/10.1101/490235
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

5 
 

delivered MSAs that were on average 5.13 percentage points more accurate than when computed 

progressively (39.31 and 34.24 respectively). These differences remained comparable, albeit 

reduced, when considering the contribution of smaller datasets (Table S1, S2). Within this first set 

of analysis, the regressive combination of ClustalO with PartTree was the most accurate and on 

the large datasets it outperformed its progressive counterpart by 15.27 percentage points (42.21 5 

and 26.94 respectively, Wilcoxon p-value <0.001).  

 

We also tested the seed-based non-progressive MSA algorithms Sparsecore (10) and UPP (11). 

Both were improved when combined with the regressive algorithm. For instance, the regressive 

combination of Sparsecore with mBed guide-trees yielded the best readouts of this study on the 10 

very large alignments, and a clear improvement over the default Sparsecore (TC score 51.07 vs. 

44.98, Wilcoxon p-value<0.1). Comparable results were observed when extending this analysis to 

the Sum-of-Pair (SoP) metrics or to smaller datasets (Table S1, S2). The regressive algorithm is 

especially suitable for the scale-up of computationally expensive methods. For instance, the 

consistency-based variant of MAFFT named MAFFT-G-INS-1 (Gins1) (16), was among the most 15 

accurate small-scale MSA algorithms on the reference sequences. Gins1 cannot, however, be 

deployed on the HomFam datasets because its computational requirements are cubic with the 

number of sequences thus restricting it to a few hundred sequences. By combining Gins1 with the 

regressive algorithm we overcame this limitation and produced the most accurate readouts on 

datasets larger than 1,000 sequences (Table S1, S2). 20 

 

We complemented these measures of absolute accuracy with an estimate of accuracy degradation 

when scaling up. The effect of extra homologous sequences degrading the alignment accuracy of 
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an MSA can be quantified by comparing the small MSAs of the reference sequences alone with 

their corresponding large-scale datasets. With the default progressive MSA algorithms ClustalO 

and Fftns1, the large datasets were on average 16.79 percentage points less accurate than when 

aligning the reference sequences (Table 1, 34.24 and 51.03 respectively) with the trend being 

amplified on the larger alignments (Fig. 2A). Yet, on this same comparison the regressive 5 

combinations were only affected by 11.72 points (Fig. S1). The improved stability of the regressive 

combination was especially clear when considering Gins1 (Fig. 2A, Fig. S1A) that was merely 

degraded by 2.87 percentage points thus achieving on the large datasets a level of accuracy close 

to the one measured on the reference sequences alone (Table 1, 50.20 and 53.07 respectively).   

 10 

Identifying the factors driving accuracy improvement can be challenging considering that each 

alignment procedure relies on different combinations of algorithmic components (i.e. 

regressive/non-regressive, tree method, MSA algorithm). For this purpose, we used Constrained 

Correspondence Analysis (CCA) (17), a dimensionality reduction method adapted for categorical 

variables. When applied to Table 1 data, CCA allowed us to estimate the relative impact of each 15 

method’s algorithmic component with respect to a constrained variable - accuracy in this case. As 

one would expect, the MSA algorithm is the most influential variable with respect to accuracy but 

CCA confirmed the general benefits of switching from a non-regressive to a regressive 

combination (Fig. 2B). 

 20 

When using the same guide-tree for the regressive and non-regressive alignment combinations, 

improved accuracy comes along with substantially improved computational performance. On 

average the regressive combinations require about 4-fold less CPU time that their non-regressive 
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equivalent on datasets larger than 10,000 sequences (Table 1). Seeded methods like UPP or 

Sparsecore appear to benefit less from the regressive deployment with marginal differences in 

CPU requirements (Fig. 3A). When considering MSA algorithms like ClustalO or Fftns1 that scale 

linearly with the number of sequences, the improvement yielded by the regressive combination 

was roughly proportional to the original non-regressive CPU requirements. For instance, in the 5 

case of ClustalO using mBed trees, the regressive combination was about twice as fast as the 

progressive alignment and appeared to have a linear complexity (Fig. 3B). The situation was even 

more favorable when considering CPU intensive MSA algorithms like Gins1 for which the non-

regressive computation had been impossible.  

 10 

The ability to use slow and accurate MSA algorithms in linear time regardless of their original 

computational complexity is the most important feature of the regressive algorithm. It allows the 

application of any of these methods - natively - onto extremely large sequence datasets. This 

linearization is an inherent property of the regressive procedure in which all the sequences are split 

across sub-MSAs of a bounded size (1,000 sequences). This bounding in size results in a bounded 15 

computational cost. Since the total number of sub-MSAs is proportional to the initial number of 

sequences, the resulting complexity for the full MSA computation is linear. Furthermore, owing 

to the computational independence of the sub-MSAs, the regressive algorithm turns MSA 

computation into an embarrassingly parallel problem (18). 

 20 

Our regressive algorithm provides a practical and generic solution to the critical problem of MSA 

scalability. It is a versatile algorithm that lends itself to further improvements, for instance by 

exploring the impact of more sophisticated clustering structures, such as k-guide-trees and b-guide-
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trees or by testing different ways of selecting the representative sequences. The regressive 

algorithm is nonetheless a mature development framework that will enable a clean break between 

the improvement of highly accurate small-scale MSA algorithms - like Gins1 - and the design of 

more efficient large-scale clustering algorithms, like PartTree and mBed. This divide will help 

potentiate the large body of work carried out in the clustering and alignment communities over the 5 

last decades and hopefully speed up the development of new improved methods. Achieving this 

goal is not optional. There is a Red Queen’s race going on in genomics. It started the day omics’ 

data growth overtook computing power and it shows no signs of slowing down (19). 
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Fig. 1.  

Regressive algorithm overview (A) Parent and children sub-MSAs are merged via their common 5 

sequence (blue) whose indels are projected from child to parent (green) and parent to child (red). 

(B) The sub-MSAs are produced after collecting sequences from a binary guide tree with each 

node labeled with the name of its longest descendant sequence. Sequences are collected by 

traversing the tree in a breadth-first fashion. Pale red color blocks indicate how the N parent 

sequences (N=3) are collected by recursively expanding nodes. The same process is then applied 10 

to gather the children (green) and the grandchildren (blue). (C) In the nine resulting sub-MSAs 

that are displayed, one should note the presence of a common representative sequence between 

each child and its parent.  
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Fig. 2.  

Relative performances of alternative MSA algorithm combinations. (A) Average differential 

accuracy of datasets larger than Number of Sequences (horizontal axis). The differences of 

accuracy are measured between the reference sequence MSAs and their embedded projection in 

the large datasets. The envelope is the standard deviation. (B) In this constrained correspondence 5 

analysis (CCA) the first component (horizontal axis, 14.1% of the variance) is constrained to be 

the total column score accuracy as measured on datasets larger than 10,000. The best unconstrained 

component (vertical axis) explains 20.8% of the remaining variance. Methods (grey dots with their 

accuracy on the lower horizontal axis) are categorized by their guide-tree (blue), MSA algorithms 

(grey) and regressive/non-regressive procedure (red). Vectors indicate the contributions to 10 

variance of each category from the three variables. Their projection onto the upper horizontal axis 

quantifies the contribution to variance of overall accuracy. 
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Fig. 3.  

CPU requirements of the regressive algorithm on HomFam datasets containing more than 

10,000 sequences. (A) The total CPU requirements (horizontal axis) and average total column 

score accuracies (vertical axis). The corresponding non-regressive (blue square) and regressive 

(red circles) combinations are connected by a dashed line with the exception of Gins1 for which 5 

the non-regressive computation costs are prohibitive. (B) Comparison of CPU time requirements 

for ClustalO using mBed trees using a regressive and a non-regressive procedure on HomFam 

datasets containing more than 10,000 sequences. A linear regression (grey) was fitted on the 

resulting graph (R2 = 0.89, p-value < 6.9*10-10).  

  10 
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Table 1.  

Total Column Score and average CPU time (s) on the 20 HomFam datasets containing over 10,000 

sequences. 5 
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