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Abstract

Being given a phylogenetic tree of both extant and extinct taxa in which the fossil ages are the
only temporal information (namely, in which divergence times are considered unknown), we provide
a method to compute the probability distribution of any divergence time of the tree with regard
to any speciation (cladogenesis), extinction and fossilization rates under the Fossilized-Birth-Death
model.

We then use this method to obtain a probability distribution for the age of Amniota (the synap-
sid/sauropsid or bird/mammal divergence), one of the most-frequently used dating constraint.
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1 Introduction

Dating the Tree of Life (TOL from here one) has become a major task for systematics because timetrees
are increasingly used for a great diversity of analyses, ranging from comparative biology (e.g., Felsen-
stein 1985, 2012) to conservation biology (Faith 1992), and including deciphering patters of changes in
biodiversity through time (e.g., Feng et al. 2017). Dating the TOL has traditionally been a paleon-
tological enterprise (Romer 1966), but since the advent of molecular dating (Zuckerkandl and Pauling
1965), it has come to be dominated by molecular biology (e.g., Kumar and Hedges 2011). However,
recent developments have highlighted the vital role that paleontological data must continue to play in
this enterprise to get reliable results (Heath et al. 2014; Zhang et al. 2016; Cau 2017; Guindon 2018).

Most of the recent efforts to date the TOL have used the now-venerable (though still very useful)
node dating method (e.g., Shen et al. 2016), even though several recent studies point out at limitations
of this approach (e.g., van Tuinen and Torres 2015), notably because uncertainties about the taxonomic
affinities of fossils has rarely been fully incorporated (e.g., Sterli et al. 2013), incompleteness of the
fossil record is difficult to take into consideration (Strauss and Sadler 1989; Marshall 1994; Marjanović
and Laurin 2008; Nowak et al. 2013), or simply because it is more difficult than previously realized
to properly incorporate paleontological data into the proper probabilistic framework required for node
dating (Warnock et al. 2015). More recently, other methods that incorporate more paleontological data
have recently been developed. Among these, tip (or “total evidence”) dating (Pyron 2011; Ronquist
et al. 2012a,b) has the advantage of using phenotypic data from the fossil record (and molecular data,
for the most recent fossils) to estimate the position of fossils in the tree and thus does not require fixing
a priori this parameter, and comparisons between tip and node dating are enlightening (e.g., Sharma
and Giribet 2014). Another recently-developed approach is the “fossilized birth-death process” (Stadler
2010), which likewise can incorporate much paleontological data, but using birth-death processes (in
addition to the phenotypic or molecular data to place fossils into a tree). It was initially used to estimate
cladogenesis, extinction and fossilization rates (Stadler 2010; Didier et al. 2012, 2017), but it can also be
used to estimate divergence times (Heath et al. 2014). Development of such methods is timely because
much progress has been made in the last decades in understanding the phylogeny of extinct taxa, as
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shown by the growing number of papers that included relevant phylogenetic analyses among vertebrates
(e.g., Romano and Nicosia 2015; Brocklehurst 2017) and other taxa (e.g., Bardin et al. 2017).

This contribution develops a new method to date the TOL using the fossilized birth-death process.
This method relies on estimating parameters of the fossilized birth-death process through exact compu-
tations and using these data to estimate a probability distribution of node ages. This method currently
requires input trees, though it could be developed to include estimation of these trees. These trees include
fossils as terminal taxa or on internal branches, and each occurrence of each taxon in the fossil record
must be dated. In this implementation, we use a flat probability distribution of fossil ages between two
bounds, but other schemes could easily be implemented. Our new method thus shares many similarities
with what we recently presented (Didier et al. 2017), but it is aimed at estimating nodal ages rather
than rates of cladogenesis, extinction, and fossilization. Namely, in Didier et al. (2017), we proposed a
method for computing the probability density of a phylogenetic tree of extant and extinct taxa in which
the fossil ages was the only temporal information. The present work extends this approach in order to
provide an exact computation of the probability density of any divergence times of the tree from the
same information.

We then use these new developments to estimate the age of the divergence between synapsids and
sauropsids, which is the age of Amniota, epitomized by the chicken/human divergence that has been
used very frequently as a dating constraint (e.g., Hedges et al. 1996; Hugall et al. 2007). In fact, Müller
and Reisz (2005: 1069) even stated that “The origin of amniotes, usually expressed as the ‘mammal-
bird split’, has recently become either the only date used for calibration, or the source for ‘secondary’
calibration dates inferred from it.” The recent tendency has fortunately been towards using a greater
diversity of dating constraints, but the age of Amniota has remained a popular constraint in more recent
studies (e.g., Hugall et al. 2007; Marjanović and Laurin 2007; Shen et al. 2016). However, Müller
and Reisz (2005: 1074) argued that the maximal age of Amniota was poorly constrained by the fossil
record given the paucity of older, closely related taxa, and that this rendered its use in molecular dating
problematic. Thus, we believe that a more sophisticated estimate of the age of this clade, as well as
its probability distribution, will be useful to systematists, at least if our estimates provide a reasonably
narrow distribution. Such data are timely because molecular dating software can incorporate detailed
data about the probability distribution (both its kind and its parameters) of age constraints (Ho and
Phillips 2009; Sauquet 2013), the impact of these settings on the resulting molecular age estimates is
known to be important (e.g., Warnock et al. 2012), but few such data are typically available, though
some progress has been made in this direction recently (e.g., Nowak et al. 2013).

We developped a computer program computing the probability distribution of divergence times
from fossil ages and topologies in C language. Its source code is available at https://github.com/

gilles-didier/DateFBD.

2 Methods

2.1 Birth-death-fossil-sampling model

We consider here the model introduced in Stadler (2010) and referred to as the Fossilized-Birth-Death
(FBD) model in Heath et al. (2014). Namely, speciations (cladogenese) and extinctions are modelled as
a birth-death process of constant rates λ and µ. Fossilization is modelled as a Poisson process of constant
rate ψ running on the whole tree resulting from the speciation-extinction process. In other words, each
lineage alive at time t leaves a fossil dated at t with rate ψ. Last, each lineage alive at the present time,
i.e., each extant taxon, is sampled with probability ρ, independently of any other event. In practice,
“sampled” may mean discovered or integrated to the study. Note that, in constrast with our previous
works (Didier et al. 2012, 2017) which were based on the FBD model with full sampling of extant taxa
(i.e., with ρ = 1), we shall consider uniform sampling of the extant taxa in the present work. In all what
follows, we make the usual technical assumptions that λ, µ, ψ and ρ are non-negative, that λ > µ, and
that ψ and ρ are not both null.

We shall not deal directly with the whole realizations of the FBD process (Figure 1-left) but rather,
with the part of realizations which can be reconstructed from present time and which will be referred to as
the (reconstructed) phylogenetic tree with fossils. Indeed, we have no information about the parts of the
diversification process leading to extinct taxa that left no fossil record or non-sampled extant or extinct
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Figure 1: Left: a realization of the diversification process with fossil finds (represented by “•”); Center:
its observable part from the sampled extant taxa and the fossil finds is displayed in black – the gray parts
are lost (sampled extant species are those with “X”); Right: the resulting reconstructed phylogenetic
tree.

species (Figure 1-center). Let us state more precisely which information is assumed reconstructible. We
make the assumption that the starting time of the diversification (i.e., the base of the root branch) and
the fossil ages are known (in practice, we specify these as intervals, over which we sample randomly using
a flat distribution for fossil ages, and we integrate for the root age) and that we are able to accurately
determine the phylogenetic relationships between all the extant and extinct taxa considered, in other
words, that we can reconstruct the actual tree topology of the species phylogeny (Figure 1-right). Note
that under these assumptions, the only available temporal information in a reconstructed phylogenetic
tree with fossils is given by the fossil ages, the starting time of the diversification process and the present
time. Namely, all the divergence times of the reconstructed phylogeny are unknown.

Most of our calculus are based on probabilities of the following basic events, already derived in
(Stadler 2010; Didier et al. 2012, 2017) under the FBD model.

The probability that a single lineage starting at time 0 has n descendants sampled with probability
ρ at time t > 0 without leaving any fossil (i.e., neither from itself nor from any of its descendants) dated
between 0 and t is given by

P(0, t) =
α(β − (1− ρ))− β(α− (1− ρ))eωt

β − (1− ρ)− (α− (1− ρ))eωt
and

P(n, t) =
ρn(β − α)2eωt (1− eωt)

n−1

(β − (1− ρ)− (α− (1− ρ))eωt)
n+1 for all n > 0,

where α < β are the roots of −λx2 + (λ+ µ+ ψ)x− µ = 0, which are always real (if λ is positive) and
are equal to

λ+ µ+ ψ ±
√

(λ+ µ+ ψ)2 − 4λµ

2λ

and ω = −λ(β − α).
Let us write Po(t) for the probability that a lineage present at time 0 is observable at t, which is the

complementary probability that it both has no descendant sampled at the present time T and lacks any
fossil find dated after t. Namely, we have that

Po(t) = 1−P(0, T − t)

=
(1− α)(β − (1− ρ))− (1− β)(α− (1− ρ))eω(T−t)

β − (1− ρ)− (α− (1− ρ))eω(T−t)

2.2 Tree topologies

We shall consider only binary, rooted tree topologies since so are those resulting from the FBD pro-
cess. Moreover, all the tree topologies considered below are labelled in the sense that all their tips
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Figure 2: The three types of patterns on which our computations are based. The patterns of type a
end at the present time T while the patterns of type b and c are parts of the diversification process
that continue after e < T . Here, “observable” stands for “observable at e”. Note that the bottom-most
lineage in type b may or may not be observable (strictly) after t′.

are unambiguously identified. From now on, “tree topology” will refer to “labelled-binary-rooted tree
topology”.

Let us use the same notations as Didier (2018). For all tree topologies T , we still write T for the set
of nodes of T . We put LT for the set of tips of T and, for all nodes n of T , Tn for the subtree of T
rooted at n. For all sets S, |S| denotes the cardinality of S. In particular, |T | denotes the size of the
tree topology T (i.e., its total number of nodes, internal or tips) and |LT | its number of tips.

2.2.1 Probability

Let us define T(T ) as the probability of a tree topology T given its number of tips under a lineage-
homogeneous process with no extinction, such as the reconstructed birth-death-sampling process.

Theorem 1 (Harding 1971). Given its number of tips, a tree topology T resulting from a pure-birth
realization of a lineage-homogeneous process has probability T(T ) = 1 if |T |= 1, i.e., T is a single
lineage. Otherwise, by putting a and b for the two direct descendants of the root of T , we have that

T(T ) =
2|LTa |! |LTb |!

(|LT |−1)|LT |!
T(Ta)T(Tb).

The probability provided in Didier et al. (2017, Supp. Mat., Appendix 2) is actually the same as
that just above though it was derived in a different way from Harding (1971) and expressed in a slightly
different form (Appendix A).

From Theorem 1, T(T ) can be computed in linear time through a post-order traversal of the tree
topology T .

2.2.2 Start-sets

Following Didier (2018), a start-set of a tree topology T is a possibly empty subset A of internal nodes
of T which verifies that if an internal node of T belongs to A then so do all its ancestors.

Being given a tree topology T and a non-empty start-set A, the start-tree ΛTA is defined as the subtree
topology of T made of all nodes in A and their direct descendants. By convention, ΛT∅ , the start-tree
associated to the empty start-set, is the subtree topology made only of the root of T .

For all internal nodes n of the tree topology T , we define ΓTn as the set of all the start-sets of T that
contain n.

2.3 Patterns

As in Didier et al. (2017), our computations are based on three types of subparts of the FBD process
which all start with a single lineage and end with three different configurations, namely

• patterns of type a end at the present time T with n ≥ 0 sampled lineages,

• patterns of type b end at a time e < T with a fossil find dated at e and n−1 ≥ 0 lineages observable
at e,
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• patterns of type c end at a time e < T with n > 0 lineages observable at e (the case where n = 0
is not required in the calculus).

The probability density of a pattern of any type is obtained by multiplying the probability density of
its ending configuration, which includes its number of tips, by the probability of its tree topology given
its number of tips provided by Theorem 1.

In this section, we provide equations giving the probability density of ending configurations of patterns
of types a, b and c, first with regard to a given “punctual” starting time and, second, by integrating this
probability density uniformly over an interval of possible starting times in order to take into account the
uncertainty associated with the timing of the beginning of the diversification process.

2.3.1 Patterns of type a

The probability density of the ending configuration of a pattern of type a is that of observing n ≥ 0
lineages sampled at time T by starting with a single lineage at time s without observing any fossil
between s and T . We have that

Pa(n, s) = Pz(n, T − s) =



α(β − (1− ρ))− β(α− (1− ρ))eω(T−s)

β − (1− ρ)− (α− (1− ρ))eω(T−s) if n = 0,

ρn(β − α)2eω(T−s) (1− eω(T−s))n−1(
β − (1− ρ)− (α− (1− ρ))eω(T−s)

)n+1 otherwise.

Integrating this probability density over all starting times s between a and b, we get that∫ b

a

Pa(n, s)ds

=


α
T − a
T − b

+
1

λ
log

(
β − (1− ρ)− (α− (1− ρ))eω(T−a)

β − (1− ρ)− (α− (1− ρ))eω(T−b)

)
if n = 0,

ρn

nλ

((
1− eω(T−a)

β − (1− ρ) + (α− (1− ρ))eω(T−a)

)n
−
(

1− eω(T−b)

β − (1− ρ) + (α− (1− ρ))eω(T−b)

)n)
otherwise.

2.3.2 Patterns of type b

The probability density of the ending configuration of a pattern of type b is that of observing a fossil
find dated at e with n − 1 ≥ 0 other lineages observable at time e by starting with a single lineage at
time s without observing any fossil between s and e. From Didier et al. (2017), we have that

Pb(n, s, e) = Po(e)n−1nψeω(e−s)
(

1− eω(e−s)

β − α

)n−1(
β − (1− ρ)− (α− (1− ρ))eω(T−e)

β − (1− ρ)− (α− (1− ρ))eω(T−s)

)n+1

Integrating this probability density over all starting times s between a and b, we get that∫ b

a

Pb(n, s, e)ds

=
Po(e)n−1ψ(β − (1− ρ)− (α− (1− ρ))eω(T−e))n

λ(β − α)n

((
1− eω(e−a)

β − (1− ρ)− (α− (1− ρ))eω(T−a))

)n
−
(

1− eω(e−b)

β − (1− ρ)− (α− (1− ρ))eω(T−b))

)n)

2.3.3 Patterns of type c

The probability density of the ending configuration of a pattern of type c is that of getting n > 0 lineages
observable at time e by starting with a single lineage at time s without observing any fossil between s
and e. From Didier et al. (2017), we have that
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Figure 3: Decomposition of the reconstructed tree of Figure 1 into basic trees, obtained by cutting it at
all fossils finds. Remark that the second basic tree from the top in the last column, which starts just
after the fossil find dated at f1, is not observable.

Pc(n, s, e) = Po(e)neω(e−s)
(

1− eω(e−s)

β − α

)n−1(
β − (1− ρ)− (α− (1− ρ))eω(T−e)

β − (1− ρ)− (α− (1− ρ))eω(T−s)

)n+1

Integrating this probability density over all starting times s between a and b, we get that∫ b

a

Pc(n, s)ds =
Po(e)n(β − (1− ρ)− (α− (1− ρ))eω(T−e))n

nλ(β − α)n

((
1− eω(e−a)

β − (1− ρ)− (α− (1− ρ))eω(T−a))

)n
−
(

1− eω(e−b)

β − (1− ρ)− (α− (1− ρ))eω(T−b))

)n)

2.4 Basic trees

Following Didier et al. (2017), we split a reconstructed realization of the FBD process, i.e. a phylogenetic
tree with fossils, by cutting the corresponding phylogenetic tree at each fossil find. The trees resulting of
this splitting will be referred to as basic trees (Figure 3). If there are k fossils, this decomposition yields
k + 1 basic trees. By construction, basic trees (i) start with a single lineage either at the beginning of
the diversification process or at a fossil age, (ii) contain no internal fossil finds and (iii) are such that
all their tip-branches either terminate with a fossil find or at the present time. Note that a basic tree
may be unobservable (Figure 3). Since tips of basic trees are either fossil finds or extant taxa, they are
unambiguously labelled. The set of basic trees of a phylogenetic tree with fossils is a partition of its
phylogenetic tree in the sense that all its nodes belong to one and only one basic tree.

The interest of the decomposition into basic trees stands in the fact that a fossil find dated at a time
t ensures that the fossilized lineage was present and alive at t. Since the FBD process is Markov, the
evolution of this lineage posterior to t is independent of the rest of the evolution, conditionally on the fact
that this lineage was present at t. It follows that the probability density of a reconstructed realization
of the FBD process is the product of the probability densities of all its basic trees (Didier et al. 2017).

Remark that a basic tree is fully represented by a 3-tuple (T , s,v), where T is its topology, s is its
starting time and v is the vector of its tip ages. Namely, for all ` ∈ LT , v` is the age of `. We assume
that all fossil ages are strictly anterior to the present time. Under the FBD model, the probability that
two fossils are dated at the exact same time is zero. In other words, if v` < T and v`′ < T then v` 6= v`′ .
For all subsets S ⊂ LT , we put v[S] for the vector made of the entries of v corresponding to the elements
of S.
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2.5 Probability distribution of divergence times

Let us consider a phylogenetic tree with fossils H in which the only temporal information is the diversi-
fication starting time and the fossil ages, and a possibly empty set of time constraints C given as pairs
{(n1, t1), . . . , (nk, tk)} where n1, . . . , nk are internal nodes of the phylogenetic tree (each one occurring
in a single pair of the set) and t1, . . . , t2 are times. For any subset of nodes S, we write C[S] for the set
of the time constraints of C involving nodes in S, namely C[S] = {(nj , tj) | (nj , tj) ∈ C and nj ∈ S}.

We shall see here how to compute the joint probability density of H and the events τn1
≤ t1, . . . ,

τnk ≤ tk, denoted P(H, C). Computing the joint probability of H and events τn1
≥ t1, . . . , τnk ≥ tk is

symmetrical.
Note that the probability distribution of the divergence time associated to a node n at any time t

is given as the ratio between the joint probability density of H and the event τn ≤ t to the probability
density of H (with no time constraint). Though calculating the distribution of the divergence time of n
requires only the probability densities of H and that of H and τn ≤ t (i.e., H without time constraint
and with a single time constraint), we present here the more general computation of the joint probability
density of a phylogenetic tree with fossils and an arbitrary number of time constraints since it is not
significantly more complicated to write.

From the same argument as in the section above, P(H, C), the joint probability density of H and the
events τn1

≤ t1, . . . , τn` ≤ t` is the product of the probability densities of the basic trees resulting from
the decomposition of H with the corresponding time constraints.

Namely, by putting (T (1), s(1),v(1)), . . . , (T (k), s(k),v(k)) for the basic trees of H we have that

P(H, C) =
k∏
j=1

P(T (j), s(j),v(j), C[T (j)]),

where P(T (j), s(j),v(j), C[T (j)]) is the probability density of (T (j), s(j),v(j)) with time constraints C[T (j)] =

{(n′1, t′1), . . . , (n′k′ , t
′
k′)}, in other words, the joint probability density of the basic tree (T (j), s(j),v(j)) and

the events τn′1 ≤ t
′
1, . . . , τn′k ≤ t

′
k.

In order to compute the probability density of a basic tree (T , s,v) with a set of time constraints
C = {(n1, t1), . . . , (nk, tk)}, let us define its oldest age z as z = min{mini vi,minj tj} and its set of
anterior nodes X as the union of the nodes nj such that (nj , z) ∈ C and, if there exists a tip c such that
vc = z, of the direct ancestor of c (under the FBD model, if such a tip exists, it is almost surely unique).

Theorem 2. Let (T , s,v) be a basic tree, T the present time, C a possibly empty set of time constraints,
z the corresponding oldest age and X the set of anterior nodes. By setting ΓTX = ∩n∈XΓTn , the probability
density of the basic tree (T , s,v) with time constraints C is

P(T , s,v, C)

=



T(T )Pa(|LT |, s) if z = T ,

∑
A∈ΓTX

(|LΛTA
|−1)! T(ΛTA)Pb(|LΛTA

|, s, z)
|LT |!

∏
m∈L

ΛT
A
\{c}

|LTm |! P(Tm, z,v[LTm ], C[Tm])

Po(z)

if there is a
tip
c such that
vc = z,

∑
A∈ΓTX

|LΛTA
|! T(ΛTA)Pc(|LΛTA

|, s, z)
|LT |!

∏
m∈L

ΛT
A

|LTm |! P(Tm, z,v[LTm ], C[Tm])

Po(z) otherwise.

Proof. Let us first remark that if z = T , then we have that P(T , s,v, C) = P(T , s,v), since even if
C = {(n1, t1), . . . , (nk, tk)} is not empty, z = T implies that all the times tj are posterior or equal to T ,
thus we have always τnj ≤ tj . Moreover, the fact that z = T implies that the basic tree (T , s,v) contains
no fossil. By construction, it is thus a pattern of type a and its probability density is T(T )Pa(|LT |, s).

Let now assume that z < T (i.e., the subtree includes a fossil or a time constraint) and that there is
a tip c associated to a fossil find dated at z (i.e., such that vc = z). Let us write the probability density
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P(T , s,v, C) as the product of the probability densities of the part of the diversification process which
occurs before z and of that which occurs after z. Delineating these two parts requires to determine
the relative time positions of all the divergences with regard to z. Let us remark that some of the
divergence times are constrained by the given of the problem. In particular, all the divergence times of
the ancestral nodes of c are necessarily anterior to b and so are the divergence times of the nodes nj (and
their ancestors) involved in a time-constraint such that tj = z. Conversely, the divergence times of all
the other nodes may be anterior or posterior to z. We thus have to consider all the sets of nodes anterior
to z consistent with the basic tree and its time constraints. From the definition of the set X of anterior
nodes associated to (T , s,v, C), the set of all these sets of nodes is exactly ΓTX = ∩n∈XΓTn . Since all these
sets of nodes correspond to mutually exclusive possibilities, the probability density P(T , s,v, C) is the
sum of the probability densities associated to all of them.

Let us first assume that there exists a fossil find dated at z. Given any set of nodes A ∈ ΓTX anterior to
z, the part of diversification anterior to z is then the pattern of type b starting at s and ending at z with
topology ΛTA, while the part posterior to z is the set of basic trees starting from time z inside the branches
bearing the tips of ΛTA except c , i.e, {(Tm, z,v[LTm ]) | m ∈ LΛTA

\ {c}}, with the corresponding time

constraints derived from C, i.e., C[Tm] for all m ∈ LΛTA
\ {c} (Figure 5). From the Markov property, the

diversification occurring after z of all lineages crossing z is independent of any other events conditionally
on the fact that this lineage was alive at z. The probability density of the corresponding basic trees has to
be conditioned on the fact that their starting lineage are observable at z, i.e., it is P(Tm,z,v[LTm ],C[Tm])/Po(z)

for all nodes m ∈ LΛTA
\ {c}. The probability density of the ending configuration of the pattern of type

b (ΛTA, s, z) is Pb(|LΛTA
|, s, z). We have to be careful while computing the probability of the topology

ΛTA since its tips except c (the one associated to the oldest fossil find) are not directly labelled but only
known with regard to the labels of their tip descendants while Theorem 1 provides the probability of
a (exactly) labelled topology. In order to get the probability of ΛTA, we multiply the probability of ΛTA
assuming that all its tips are labelled with the number of ways of connecting the tips of ΛTA except the one
with the fossil (i.e., (|LΛTA

|−1)!) to its pending lineages and the probability of their “labelling”. Since,
assuming that all the possible labellings of T are equiprobable, the probability of the “labelling” of the
lineages pending from ΛTA is ∏

m ∈L
ΛT
A
\{c}|LTm |!

|LT |!
,

the probability of the tree topology ΛTA is eventually

(|LΛTA
|−1)! T(ΛTA)

∏
m∈L

ΛT
A
\{c}|LTm |!

|LT |!
,

i.e., the product of the probability of the labelled topology ΛTA with the number of ways of connecting
the (not fossil) tips to the pending lineages and the probability of their “labelling”.

The case where z < T and where no fossil is dated at z is similar. It differs in the fact that the
diversification occurring before z is a pattern of type c (Figure 5) and that the probability of ΛTA is in
this case

|LΛTA
|! T(ΛTA)

∏
m∈L

ΛT
A

|LTm |!

|LT |!
,

i.e., the product of the probability of the labelled topology ΛTA with the number of ways of connecting its
tips to the pending lineages (i.e., |LΛTA

|!) and the probability of their “labelling” (i.e,
∏
m∈L

ΛT
A

|LTm |!/|LT |!).

Theorem 2 allows us to express the probability density of a basic tree with a set of time constraints as
a sum-product of probability densities of patterns of type a, b or c and of smaller basic trees, which can
themselves be expressed in the same way. Since the basic trees involved in the right part of the equation
of Theorem 2 contain either at least one fewer time constraint and/or one fewer fossil find than the one
at the left part, this recursive computation eventually ends. We shall not discuss algorithmic complexity
issue here but, though the number of possibilities “anterior/posterior to the oldest age” to consider can
be exponential, the computation can be factorized in the same way as in Didier (2018) in order to get a
polynomial, namely cubic, algorithm.
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Figure 4: Schematic of the computation of the probability density of the basic tree in the left-most
column with the time constraint τn ≤ t in the case where t is posterior to the oldest fossil age f1. If a
time-axis is displayed in blue, the positions of the nodes of the basic trees delimited by that time with
regard to this axis say nothing about the corresponding divergences times. Conversely, if a time-axis
is displayed in red, all nodes to the left (resp. to the right) of this axe have divergence anterior (resp.
posterior) to the time of the axis. Column 2 displays the three possible sets of anterior nodes consistent
with this basic tree and the fossil find dated at f1. Column 3 shows the computation of the probability
density associated to the top one (the two other computations are similar), as a product of probability
densities of a pattern of type b, a pattern of type a and of a basic tree. Column 4 schematizes the
computation of this basic tree (Column 3, Row 3), which requires to consider the two possible sets of
anterior nodes with regard to the time constraint τn ≤ t displayed at Column 4 and eventually expressed
as products of patterns of types c, a and b (Column 5).
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Figure 5: Schematic of the computation of the probability density of the basic tree in the left-most
column with the time constraint τn ≤ t in the case where t is anterior to the oldest fossil age f1. If a
time-axis is displayed in blue, the positions of the nodes of the basic trees delimited by that time with
regard to this axis say nothing about the corresponding divergences times. Conversely, if a time-axis
is displayed in red, all nodes to the left (resp. to the right) of this axe have divergence anterior (resp.
posterior) to the time of the axis. Column 2 displays the four possible sets of anterior nodes consistent
with this basic tree and the time constraint τn ≤ t (i.e., all the possibilities such that the divergence time
of node n is anterior to t). Column 3 shows the computation of the probability density associated to the
top one. Column 4 displays the computation of the basic tree at Column 3, Row 2 (the other rows of
Column 3 are patterns of type a.
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In the case where the dataset is limited to a period which does not encompass the present (as for the
dataset below), some of the lineages may be known to be observable at the end time of the period but
data about their fate after this time may not have been entered into the database. As in Didier et al.
(2017, Section “Missing Data”), adapting the computation to this case is done by changing the type of
all the patterns of type a to type c.

Note that applying the computation with an empty set of time constraints yields to the probability
density of a phylogenetic tree with fossils (without the divergence times) as provided by Didier et al.
(2017). On top of improving the computatinal complexity of the calculus, which was exponential in the
worst case with Didier et al. (2017), the method provided here corrects a mistake in the calculus of Didier
et al. (2017), which did not take into account the question of the labelling and the “rewiring” of the
tips of internal basic trees, missing correcting factors in the sum-product giving the probability density
that are provided here. Fortunately, this mistake do not harm much the accuracy the rates estimation
(Appendix B). In particular, rates estimated from the Eupelicosauria dataset of Didier et al. (2017) are
less than 5% lower, thus essentially the same, with the corrected method.

For all phylogenetic trees with fossils H, the distribution Fn of the divergence time corresponding to
the node n of H is defined for all times t by

Fn(t) =
P(H, τn ≤ t)

P(H)
=

P(H, {(n, t)})
P(H, ∅)

,

i.e., the probability density of observing H and the divergence of n posterior to t divided by the proba-
bility density of H with no constraint. It follows that Fn(t) can be obtained by applying the recursive
computation derived from Theorem 2 on H twice: one with the time constraint {(n, t)} and one with no
time constraint.

2.6 Dealing with time uncertainty

The computation presented in the previous section requires all the fossil ages and the origin of the
diversification to be provided as punctual times. In a realistic situation, these times are rather given
as time intervals corresponding to geological stages for fossil ages or to hypotheses for the origin of
the diversification. Actually, we give the possibility for the user to provide only the lower bound for
the origin of the diversification (in this case, the upper bound is given by the most ancient fossil age).
This time uncertainty is handled in the following way. First, we sample each fossil age uniformly in the
corresponding time interval as we did in Didier et al. (2017). Next, thanks to the fact that we have
explicit formulas for integrating the probability densities of patterns of type a, b, c with regard to their
starting time, we uniformly integrate from the lower bound of the origin to its upper bound if provided
or to the oldest sampled fossil age otherwise.

3 Empirical Example

3.1 Dataset Compilation

Our dataset represents the fossil record of Cotylosauria (Amniota and their sister-group, Diadectomor-
pha) from their origin (oldest record in the Late Carboniferous) to the end of the Roadian, which is
the earliest stage of the Middle Permian. It represents the complete dataset from which the example
presented in Didier et al. (2017) was extracted. Because of computation speed issues that we have now
overcome, Didier et al. (2017) presented only the data on Eupelycosauria, a subset of Synapsida, which
is one of the two main groups of amniotes (along with Sauropsida). Thus, the dataset presented here
includes more taxa (109 taxa, instead of 50). We also incorporated the ghost lineages that must have
been present into the analysis. However, in many cases, the exact number of ghost lineages that must
have been present is unclear because a clade that appears in the fossil record slightly after the end of the
studied period (here, after the Roadian) may have been present, at the end of that period, as a single
lineage, or by two or more lineages, depending on when its diversification occurred. This concerns, for
instance, in the smallest varanopid clade that includes Heleosaurus scholtzi and Anningia megalops (four
terminal taxa). Our computations consider all possible cases; in this example, the clade may have been
represented, at the end of the Roadian, by one to four lineages.
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The data matrix used to obtain the trees is a concatenation of the matrix from Benson (2012), the
study that included the highest number of early synapsid taxa, and of that ofMüller and Reisz (2006)
for eureptiles. However, several taxa studied here were not in our concatenated matrix. We specified
conservatively their relationships to other taxa using a skeletal constraint in PAUP 4.0 (Swofford 2003),
as we reported previously (Didier et al. 2017). The skeletal constraint reflects the phylogeny of Romano
and Nicosia (2015) and Romano et al. (2017) for Caseasauria, Spindler et al. (2018) for Varanopidae,
Brink et al. (2015) for Sphenacodontidae, and Brocklehurst (2017) for Captorhinidae. Note that our
tree incorporates only taxa whose affinities are reasonably well-constrained. Thus, some enigmatic taxa,
such as Datheosaurus and Callibrachion, were excluded because the latest study focusing on them only
concluded that they were probably basal caseasaurs (Spindler et al. 2016). The recently described
Gordodon was placed after Lucas et al. (2018). The search was conducted using the heuristic tree-
bisection-reconnection (TBR) search algorithm, with 50 random addition sequence replicates. Zero-
length branches were not collapsed because our method requires dichotomic trees. Characters that form
morphoclines were ordered, given that simulations and theoretical considerations suggest that this gives
better results than not ordering (Rineau et al. 2015), even if minor ordering errors are made (Rineau
et al. 2018). The analysis yielded 100 000 equally parsimonious trees; there were no doubt more trees,
but because of memory limitation, we had to limit the search at that number of trees. Benson (2012) had
likewise found several (more than 15 000 000) equally parsimonious trees, and we had to add additional
taxa whose relationships were only partly specified by a constraint, so we logically obtained more trees.
We performed our analyses on a random sample of 100 equiparsimonious trees (one of these trees is
displayed in Figure 6). As in our previous study (Didier et al. 2017), these trees do not necessarily
represent the best estimate that could possibly be obtained of early amniote phylogeny if a new matrix
were compiled, but that task would represent several years of work (Laurin and Piñeiro 2018) and is
beyond the scope of the current study. The analyses performed here can be repeated in the future as
our understanding of amniote phylogeny progresses. In our dating analyses, all taxa were considered to
represent tips (no fossils were placed on internal branches). It is conceivable that a few of the fossils
included in our dataset represent actual ancestors, but the sensitivity analyses carried out by Didier
et al. (2017) suggest that this should have a negligible impact on our results. The data are available in
the supplementary information.

3.2 Dealing with Fossil, Root Age, and Tree Topology Uncertainty When
Estimating Nodal Ages

As in Didier et al. (2017), we used a flat distribution between upper and lower bounds on the estimate of
the age of each fossil. For the taxa that were present in the analysis presented in Didier et al. (2017), the
boundaries of the range of stratigraphic ages were not modified. However, our new analyses are based
on a more inclusive set of taxa.

Our method also requires inserting a prior on the origin of the diversification, i.e., on the starting
time of the branch leading to the root (here, Cotylosauria). We set only the lower bound of this origin
and assume a flat distribution between this origin and the most ancient (sampled) fossil age (here that
of Hylonomus lyelli between 319 and 317 Ma), a fairly basal eureptile sauropsid (Müller and Reisz 2006;
Matzke and Irmis 2018). To study the robustness of our estimates to errors in this prior, we repeated the
analysis with several origins that encompass the range of plausible time intervals. Recent work suggests
that the Joggins Formation, in which the oldest undoubted amniote (Hylonomus) has been recovered
(Carroll 1964; Davies et al. 2006; Falcon-Lang et al. 2006), is coeval with the early Langsettian in the
Western European sequence, which is about mid-Bashkirian (Carpenter et al. 2015), around 317-319 Ma
(Utting et al. 2010; Raine et al. 2015). In fact, recent work suggests more precise dates of between about
318.2 and 318.5 Ma (Utting et al. 2010; Rygel et al. 2015), but we have been more conservative in putting
broader limits for the age of this formation, given the uncertainties involved in dating fossiliferous rocks.
Thus, we have set the lower bound of the origin of diversification to 330 Ma, 340 Ma, 350 Ma, 400 Ma
and 1 000 Ma to assess the sensitivity of our results to the older bound or the width of the interval.
The lower bound of 1 000 Ma is of course much older than any plausible value, but its inclusion in our
analysis serves as a test of the effect of setting unrealistically old lower bounds for the root age.

We deal with the uncertainty on the phylogenetic tree topology by uniformly sampling among the
100 equiparsimonious trees provided in the dataset. The distribution displayed below were obtained by
sampling 10 000 times into the 100 equiparsimonious trees and the fossil age intervals (considering a
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Figure 6: One of the 100 equally parsimonious trees used in our analyses with some divergence time
distributions displayed at the corresponding nodes. The distributions shown here (contrary to those
shown in Figures 7 and 8) were computed from this tree only (i.e., without taking into account the 99
other equiparsimonious trees). The brown highlighting of the branches represents the bounds of the
range of plausible ages of fossil occurrences; darker brown indicates more than one record in the same
time interval. Some taxa, displayed in red for extinct ones and in blue otherwise, lack a fossil record in
the sample period (which ends at the end of the Roadian, at 268.8 Ma) but are included if their affinities
suggest that a ghost lineage must have been present.
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Figure 7: Probability density of the Amniota divergence time obtained from the ML estimates of the
speciation, extinction and fossilization rates, and from the ML estimates plus or minus two SD.

highter number of samples do not change the plots). Each computation for 10 000 samples and with our
dataset takes a few minutes on a desktop computer.

3.3 Results

Estimation and influence of the speciation, extinction and fossilization rates

The maximum likelihood (ML) estimates of the speciation, extinction and fossilization rates (we assumed
a full sampling of the extant taxa) were obtained on the dataset by dealing with data uncertainty as
described just above, as we did in our previous study (Didier et al. 2017). Our estimates for the speciation,
extinction and fossilization rates are 1.457135 × 10−1 with standard deviation (SD) 7.068532 × 10−3,
1.372005 × 10−1 with SD 6.655568 × 10−3 and 2.301837 × 10−2 with SD 1.116616 × 10−3, respectively.
In order to assess the influence on the divergence date estimates of the uncertainty on the parameter
estimates of the speciation, extinction and fossilization rates, we display in Figure 7 the distributions of
the estimated age of Amniota obtained from the ML parameter estimates and from the ML parameter
estimates plus or minus two SD, in all cases by assuming a lower bound 400 Ma for the interval of origin
of diversification. This analysis shows an asymmetric impact; the resulting ages can decrease by about
9 Ma or increase by about 3 Ma, around our best estimate of 334 Ma.

3.3.1 Approximating divergence time distribution

Though the exact distributions can be directly computed in a reasonable time, it may be useful to fit
them with standard distributions, for instance in order to use it in molecular dating software which do
not implement their exact computation. Figure 8 shows that the divergence time distributions with
lower bounds 1 000 to 350 can be reasonably approximated by shifted reverse Gamma distributions with
shape parameter α, scale parameter θ and location parameter δ, i.e., with density function:

f(x) =
(δ − x)α−1e−

δ−x
θ

Γ(α)θα
.

14

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 9, 2018. ; https://doi.org/10.1101/490003doi: bioRxiv preprint 

https://doi.org/10.1101/490003


360 350 340 330 320

Time

1000 Ma
approx 1000 Ma

400 Ma
approx 400 Ma

350 Ma
approx 350 Ma

340 Ma
approx 340 Ma

330 Ma
approx 330 Ma

Figure 8: Probability density of the Amniota divergence time for several lower bounds of the age of
origin of diversification computed from the ML estimates of the speciation, extinction and fossilization
rates (plots of the probability densities for 1 000 and 400 Ma overlap so tightly that the former is not
visible).

Lower
bound

α θ δ Mean SSR

1000 6.500 2.059 −322.747 8.574× 10−7

400 7.500 1.896 −321.825 4.059× 10−7

350 8.500 1.508 −321.842 5.174× 10−6

340 8.500 1.117 −322.731 4.978× 10−5

330 10.502 0.736 −319.640 1.535× 10−3

Table 1: Best fitting parameters of the shifted reverse Gamma distributions approximating the Amniota
divergence time distributions displayed in Figure 8.
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Table 1 displays the best fitting parameters of the shifted reverse Gamma distributions plotted in
Figure 8.

Note that shifted reverse Gamma distributions do not always approximate correctly divergence time
distributions. This is in particular the case for the distributions obtained from the lower bounds 330 and
340 of the time origin, but also for those associated to several nodes in Figure 6.

3.3.2 Age estimates

Our results show remarkable robustness to variations in root age prior specification when the lower
bound of the origin of diversification is far enough to the most ancient fossil age (Fig.8). The probability
distributions of the age of Amniota obtained with origins 1 000 or 400 Ma are so close to each other
that the curves are superimposed over all their course and thus, only one of these two curves is visible.
Assuming that the lower bound is 350, 340 or 330 Ma predictably yields slightly narrower distributions,
but the peak density is at a barely more recent age (around 333 to 327 Ma). Whatever the time origin,
the probability density of the age of Amniota always dwindles from its peak to near 0 before reaching the
age of 355 Ma. More importantly, the curves show that when the specified time of origin is at least 350
Ma, the probability density falls to near 0 well before reaching the time of origin, which suggests that
the latter does not strongly constrain the result. This is even more obvious when looking at the peak
density, which shifts very little (about 1-2 Ma) between times of origin of 340, 350, 400, and 1000 Ma.
All this suggests that Amniota probably appeared approximately in the middle of the Carboniferous,
which is fairly congruent with the fossil record.

4 Discussion

Our estimates of the rates of cladogenesis (speciation), extinction and diversification are nearly 50%
higher than to those obtained for a subset of our data (50 taxa out of the 109 used here) in Didier
et al. (2017). These moderate differences are not surprising given that we have expanded the taxonomic
sample and made minor modifications to the method.

The method provided here is, to our knowledge, the first one able to compute the exact distributions
of divergence times from fossil ages and diversification and fossilization rates. Previous approaches only
allowed to sample these distributions by using Monte Carlo Markov Chain approaches. Our computation
is fast, with a time complexity cubic with the size of the phylogenetic tree, and can handle hundreds of
taxa. Divergence time distributions obtained from fossil ages through methods such as ours are natural
choices to calibrate evolutionary models of molecular data and to be used as priors for phylogenetic
inferences.

Our analyses suggest that the fossil record of early amniotes is not as incomplete as previously feared.
This is despite the fact that the fossil record of continental vertebrates is relatively poor in the Early
Carboniferous (in “Romer’s gap”) a bit before the first amniote fossil occurrence (Romer 1956; Coates
and Clack 1995; Marjanović and Laurin 2013). Thus, there was a possibility that amniotes had a much
older origin and an extended unrecorded early history in Romer’s gap. This had led Müller and Reisz
(2005) to argue that the appearance of amniota was too poorly documented in the fossil record to be
useful as a calibration constraint for molecular dating studies. However, our results show that these fears
were exagerated; the fossil record of amniotes appears to start reasonably soon after their origin, with a
gap of no more than about 30 Ma separating amniote origins from the first recorded fossil occurrence.

Our results about the age of Amniota should prove useful for a wide range of node-based molecular
dating studies that can incorporate this calibration constraint. The main objection by Müller and Reisz
(2005: 1074) against use of the age of Amniota in molecular dating (the uncertainty about the maximal
age of the taxon) has thus been lifted; we now have a reasonably robust probability distribution that
can be used as prior in node dating. Indeed, our probability distributions for the age of Amniota
probably make it the best-documented calibration constraint so far. The probability distributions are
fairly well-constrained (with a narrower distribution than many molecular divergence age estimates) and
show surprisingly little sensitivity to the maximal root age prior, which is reassuring. The uncertainty
of the birth and death model parameters (speciation, extinction, and fossilization rates) also appear to
generate fairly narrow distributions of nodal ages. A 95% probability density interval of Amniota, using
a 350 Ma maximal root age constraint, encompasses an interval of about 20 Ma (or about 30 Ma, if we
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also take into consideration uncertainties linked to diversification parameter estimates). By comparison,
a 95% credibility interval of nodes of similar ages, such as Lissamphibia, in Hugall et al. (2007: table
3) encompasses 38 Ma or 56 Ma, depending on whether these are evaluated using the nucleotide or
aminoacid dataset. Some nodes in Hugall et al. (2007: table 3) are better constrained, probably because
they are closer to a dating constraint. Thus, Hugall et al. report a 95% credibility interval for Tetrapoda
that encompasses a range of 24 Ma and 32 Ma, for the nucleotide or aminoacid datasets. This is only
marginally broader than our 95% interval, but the width of the intervals reported in Hugall et al. (2007:
table 3) are underestimated because the reflect a punctual estimate (at 315 Ma) of the age of Amniota,
which is used as the single calibration point. Pyron (2011: table 1) reports 95% intervals of 54 Ma for the
age of Lissamphibia using Total Evidence (tip) dating. Similarly, Ronquist et al. (2012a: fig. 9) obtained
95% credibility intervals of about 50 Ma for major clades of Hymenoptera using tip (total evidence)
dating, and substantially broader intervals using node dating. Thus, we believe that our estimates are
fairly precise, when comparisons are made with molecular estimates that consider a similarly broad range
of sources of uncertainty. Our estimates also suggest that the way in which this constrainte (Amniota)
was used in most molecular dating studies was not optimal. Indeed, most (e.g., Hedges et al. 1996;
Hugall et al. 2007) have set a prior for this node centered around 310 to 315 Ma, whereas our analyses
suggest that the probability peak is approximately around 330-335 Ma. It will be interesting to see how
much precision can be gained with these new data, and with similar data on other calibration constraints
that can be obtained with our new method.

Our method can be applied to any clade that has a good fossil record and a sufficiently complex phe-
notype to allow reasonably reliable phylogenetic analyses to be performed. In addition to vertebrates,
this includes, minimally, many other metazoan taxa among arthropods (Ronquist et al. 2012b), echin-
oderms (Sumrall 1997) and mollusks (Merle et al. 2011; Bardin et al. 2017), among others, as well as
embryophytes (Corvez et al. 2012). With new calibration constraints in these taxa (and possibly others),
the timing of diversification of much of the eukaryotic Tree of Life should be much better documented.
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Laurin, M. and Piñeiro, G. H. (2018). Response: Commentary: A reassessment of the taxonomic position
of mesosaurs, and a surprising phylogeny of early amniotes. Frontiers in Earth Science, 6, 220.

18

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 9, 2018. ; https://doi.org/10.1101/490003doi: bioRxiv preprint 

https://doi.org/10.1101/490003


Lucas, S. G., Rinehart, L. F., and Celeskey, M. D. (2018). The oldest specialized tetrapod herbivore: A
new eupelycosaur from the Permian of New Mexico, USA. Palaeontologia Electronica, 21(3), 1–42.

Marjanović, D. and Laurin, M. (2007). Fossils, Molecules, Divergence Times, and the Origin of Lissam-
phibians. Systematic Biology , 56(3), 369–388.
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A Equivalence between two tree topology distributions

In Didier et al. (2017), the probability T†(T ) of a tree topology T arising from a lineage homogeneous
process (conditioned on its number of tips) was expressed as

(1)T†(T ) =
RT

(|LT |−1)! |LT |!

where RT = 1 if T is made of a single lineage and, putting a and b for the two direct descendants of the
root of T ,

(2)RT = RTaRTb2

(
|LTa |+|LTb |−2

|LTa |−1

)
otherwise.

If T is made of a single lineage, both the probability T(T ) from Harding (1971) and T†(T ) are equal
to 1.

Otherwise, by substituting Equation 2 in Equation 1, we get that

T†(T ) = 2
RTaRTb

(|LT |−1)! |LT |!

(
|LTa |+|LTb |−2

|LTa |−1

)
= 2

RTaRTb
(|LT |−1)! |LT |!

× (|LT |−2)!

(|LTa |−1)! (|LTb |−1)!

= 2
(|LT |−2)! |LTa |! |LTb |!

(|LT |−1)! |LT |!
× RTa

(|LTa |−1)! |LTa |!
× RTb

(|LTb |−1)! |LTb |!

= 2
|LTa |! |LTb |!

(|LT |−1)|LT |!
T†(Ta)T†(Tb).

It follows that the probability T†(T ) of Didier et al. (2017) can be expressed with the same recursive
formula as the probability T(T ) of Harding (1971), recalled in Theorem 1. Since moreover the recursive
computations of the probabilities of Harding (1971) and Didier et al. (2017) have the same initial condi-
tion (i.e., that of trees made of a single lineage), they are equal for all topologies T . It is worth noting
that the way in which these distributions have been derived is quite different. Arguments of Harding
(1971) mainly rely on the labelling of the tree while those of Didier et al. (2017) are essentially based on
the relative order of its divergence times.

B Impact of the correction of the probability density on the
rates estimation

In order to assess the impact of the error in the probability density of phylogenetic tree with fossils on the
diversification rate estimation, we simulated trees and fossils following an FBD model with given rates
and determine their maximum likelihood estimates on the simulations by using the computation from
Didier et al. (2017) and the corrected one presented here. Thanks to the improvement of the complexity
of the new algorithm, which we also adapted for re-implementing our former computation, we relaxed
the filtering of the simulated trees. Namely, we now rejected trees with fewer than 10 extant taxa or
with more than 5 000 clades, against 20 extant taxa and 1 000 clades in Didier et al. (2017). Unlike for
simulations of Didier et al. (2017), we did not filter the simulated trees with regard to their complexity
level (i.e., their expected computational time with the former algorithm).

Figure 9 displays the mean absolute error of speciation, extinction and fossil discovery rates obtained
from the corrected method provided in this work compared to the former one of Didier et al. (2017), in
a same set of simulated phylogenetic trees with fossils. Though we can observe a slight improvement for
the estimates of the corrected computation, the accuracy of the estimates is essentially the same for the
two methods.
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contemporary lineages + fossil finds with rate 1.00 (Didier et al, 2017)
contemporary lineages + fossil finds with rate 2.00 (Didier et al, 2017)
contemporary lineages + fossil finds with rate 3.00 (Didier et al, 2017)

contemporary lineages + fossil finds with rate 1.00 (corrected)
contemporary lineages + fossil finds with rate 2.00 (corrected)
contemporary lineages + fossil finds with rate 3.00 (corrected)
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Figure 9: Mean absolute error of speciation (cladogenesis), extinction and fossil discovery rate estimation
versus the simulation (evolutionary) time over 1 000 simulated trees with 1.5/1 (left) and 2.0/1 (right)
speciation/extinction rates and fossil discovery rates from 1 to 3.
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