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ABSTRACT 20 

 21 

Systems genetic analysis of complex traits involves the integrated analysis of 22 

genetic, genomic, and disease related measures. However, these data are often 23 

collected separately across multiple study populations, rendering direct correlation 24 

of molecular features to complex traits impossible. Recent transcriptome-wide 25 

association studies (TWAS) have harnessed gene expression quantitative trait loci 26 

(eQTL) to associate unmeasured gene expression with a complex trait in genotyped 27 

individuals, but this approach relies primarily on strong eQTLs. We propose a 28 

simple and powerful alternative strategy for correlating independently obtained 29 

sets of complex traits and molecular features. In contrast to TWAS, our approach 30 

gains precision by correlating complex traits through a common set of continuous 31 

phenotypes instead of genetic predictors, and can identify transcript-trait 32 

correlations for which the regulation is not genetic. In our approach, a set of 33 

multiple quantitative “reference” traits is measured across all individuals, while 34 

measures of the complex trait of interest and transcriptional profiles are obtained in 35 

disjoint sub-samples. A conventional multivariate statistical method, canonical 36 

correlation analysis, is used to relate the reference traits and traits of interest in 37 

order to identify gene expression correlates. We evaluate power and sample size 38 

requirements of this methodology, as well as performance relative to other 39 

methods, via extensive simulation and analysis of a behavioral genetics experiment 40 

in 258 Diversity Outbred mice involving two independent sets of anxiety-related 41 

behaviors and hippocampal gene expression. After splitting the dataset and hiding 42 
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one set of anxiety-related traits in half the samples, we identified transcripts 43 

correlated with the hidden traits using the other set of anxiety-related traits and 44 

exploiting the highest canonical correlation (R = 0.69) between the trait datasets. 45 

We demonstrate that this approach outperforms TWAS in identifying associated 46 

transcripts. Together, these results demonstrate the validity, reliability, and power 47 

of the reference trait method for identifying relations between complex traits and 48 

their molecular substrates.  49 

  50 
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AUTHOR SUMMARY 51 

 52 

Systems genetics exploits natural genetic variation and high-throughput 53 

measurements of molecular intermediates to dissect genetic contributions to 54 

complex traits. An important goal of this strategy is to correlate molecular features, 55 

such as transcript or protein abundance, with complex traits. For practical, 56 

technical, or financial reasons, it may be impossible to measure complex traits and 57 

molecular intermediates on the same individuals. Instead, in some cases these two 58 

sets of traits may be measured on independent cohorts. We outline a method, 59 

reference trait analysis, for identifying molecular correlates of complex traits in this 60 

scenario. We show that our method powerfully identifies complex trait correlates 61 

across a wide range of parameters that are biologically plausible and experimentally 62 

practical. Furthermore, we show that reference trait analysis can identify 63 

transcripts correlated to a complex trait more accurately than approaches such as 64 

TWAS that use genetic variation to predict gene expression. Reference trait analysis 65 

will contribute to furthering our understanding of variation in complex traits by 66 

identifying molecular correlates of complex traits that are measured in different 67 

individuals. 68 

  69 
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INTRODUCTION 70 

 71 

A major goal of complex trait analysis is to discover pathways and mechanisms 72 

associated with disease. By definition, these traits exhibit hallmarks of genetic 73 

complexity including pleiotropy, epistasis, and gene-environment interaction. 74 

Genetic mapping is a powerful approach for detecting quantitative trait loci that 75 

influence complex trait variation, but it has limited power for detecting small effect 76 

loci and can suffer from poor mapping resolution, hindering the identification of 77 

causal genes. Moreover, these causal genetic variants do not always reside in 78 

relevant therapeutic targets. Therefore, many systems genetic strategies have 79 

emerged to correlate complex traits directly with molecular phenotypic variation, 80 

with the goal of constructing molecular networks that are correlated with trait 81 

variation from a trait-relevant tissue or cell population.  82 

 83 

Ideally, trait correlation networks are constructed using direct phenotypic 84 

measurements for each member of a population. However, there are wide-ranging 85 

questions for which this approach is infeasible or impossible because it is physically, 86 

technically, or financially impossible to obtain all of the measures in the same 87 

individuals. To refer to phenotypes whose measurement on the same individual is 88 

infeasible or impossible, we will use the term incompatible phenotypes. 89 

Incompatible phenotypes arise in common experimental designs such as studies of 90 

susceptibility to exposure effects where the exposure affects physiology (e.g. 91 

predisposition to psychostimulant addiction) or studies of disease that relate early 92 
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stage changes to late stage outcomes (e.g. early molecular correlates predictive of 93 

Alzheimer’s disease risk). Moreover, incompatible phenotypes arise when the 94 

original study population no longer is available but there is a desire to extend the 95 

study to a new set of traits, a situation that is common in human genetic analyses. 96 

Finally, phenotypes could be incompatible for strictly financial or logistical reasons, 97 

for example due to prohibitively high costs of genomic assays in large cohorts, 98 

leading to fractional collection of data on some samples and more thorough 99 

characterization of others. 100 

 101 

One emerging approach for relating gene expression and complex traits measured 102 

in different cohorts of genetically diverse individuals is to exploit genetic variants 103 

that affect gene expression (eQTL) to impute transcript abundance from genotypes 104 

alone (Gamazon et al. 2015; Gusev et al. 2016a; b; Mancuso et al. 2017; Barbeira et 105 

al. 2017). This enables estimation of the association between imputed gene 106 

expression and complex traits, an approach that has been called a transcriptome-107 

wide association study (TWAS; Gusev et al. 2016a). However, the TWAS approach 108 

suffers from several limitations, most notably a reliance on strong local (presumably 109 

cis-acting) eQTL and consequent inability to impute transcript abundance for genes 110 

without detected eQTL. In contrast to using sparse, discrete genotypes to impute 111 

per-individual gene expression and infer correlation to complex traits, our approach 112 

uses shared variation across a rich set of quantitative, multidimensional phenotypes 113 

to infer gene expression correlates of phenotypic variability.  114 

 115 
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Rather than impute gene expression from genetic data, another strategy is to impute 116 

phenotypic data from other phenotypes. Hormozdiari et al. (2016a) used this 117 

approach to impute unmeasured phenotypes in the context of genome-wide 118 

association studies (GWAS; Hormozdiari et al. 2016a). Specifically, the method of 119 

Hormozdiari et al. (2016a) uses the correlation structure in one set of traits to 120 

predict a single unmeasured target trait in a second cohort using only phenotypic 121 

data. In the present study, we extend this strategy to multivariate phenotyping and 122 

apply it to transcriptomics, providing a precise transcript-to-trait correlation 123 

approach that can be compared to the TWAS method.  124 

 125 

We outline a simple method, reference trait analysis, to study relations between a 126 

set of complex traits of interest (target traits) and a set of high-dimensional 127 

molecular traits obtained in disjoint subsets of individuals. Reference trait analysis 128 

relates these two incompatible, multidimensional sets of phenotypes indirectly 129 

through the use of a shared set of reference traits measured in all individuals. Since 130 

target and molecular traits are not measured in the same individuals, direct 131 

comparisons are impossible. Instead, we relate these traits through reference traits. 132 

Reference traits are best chosen with a priori knowledge that they share biological 133 

underpinnings with target traits. This relationship between reference and target 134 

traits is exploited to compute scores from reference traits that capture variation in 135 

unmeasured target traits and can be directly related to transcriptional profiles. By 136 

design, our method is robust to the detection of transcript-trait associations for 137 

which the regulation is not genetic or is characterized by multiple weak, indirect 138 
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genetic effects. Therefore, it captures biological variability associated with both 139 

genetic and environmental sources of vulnerability, and has the potential to identify 140 

molecular networks of complex trait variation even when there is insufficient power 141 

to detect a quantitative trait locus or genome-wide significant SNP association.  142 

 143 

In this study we develop and evaluate the reference trait analysis method using data 144 

from a previously published behavioral study of Diversity Outbred mice (Logan et 145 

al. 2013). Diversity Outbred mice are genetically unique; consequently, per subject 146 

terminal traits such as brain gene expression can only be obtained in a single 147 

exposure condition. However, the approach we propose can be useful in any 148 

heterogeneous population for which a common reference set of traits is assessed. 149 

Our assessment data set consists of multiple measures of anxiety-related traits in a 150 

sample of Diversity Outbred mice, all of whom have been subjected to brain 151 

transcriptional profiling as well as measurements of two sets of related behaviors. 152 

We present an overview of our method, use these data to assess sample size 153 

requirements, and quantify the method’s reliability across a range of target-154 

reference trait correlations. Finally, we test whether the reference trait method 155 

more faithfully recovers trait-gene expression correlations than the TWAS 156 

approach. 157 

 158 

 159 

  160 
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RESULTS AND DISCUSSION 161 

 162 

Outline of Approach 163 

 164 

The reference trait analysis procedure is straightforward, and relies on well-165 

characterized canonical correlation analysis. Beginning with a population of 166 

individuals, reference traits (labeled using the variable U) are measured on all 167 

individuals, target traits (labeled with V) on the training cohort, and high 168 

dimensional molecular traits (labeled with M) on the testing cohort (Figure 1). 169 

Although target traits and their molecular correlates are of primary interest, the 170 

choice of reference traits is an important aspect of the method. First, as we will 171 

show, the strength of the multivariate relationship between target and reference 172 

traits is a key parameter determining the power to detect trait-transcript 173 

correlations. Second, because our method leverages shared variation between target 174 

and reference traits, it identifies trait-transcript correlations driven by the portion 175 

of target trait variation that is shared with reference traits. For example, studying 176 

addiction-related traits using novelty behaviors as reference traits would be 177 

expected to uncover transcripts associated with addiction behaviors through 178 

biological pathways that also contribute to the etiology of novelty-seeking 179 

behaviors. 180 

 181 

To conduct reference trait analysis, we employ canonical correlation (Hotelling 182 

1936), which can be thought of as a parent analysis of the more familiar multiple 183 
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regression. A multiple regression of Y on X models the relationships between 184 

multiple X measures ��, ��, … , �� and univariate Y. In contrast, canonical correlation 185 

reveals the magnitude and nature of relationships between multivariate U and V, e.g. 186 

��, ��, … , �� and ��, ��, … , �� . Specifically, canonical correlation identifies linear 187 

combinations of two multivariate measures U and V such that the (univariate) linear 188 

combinations of each measure ��	 and 
	, known as canonical variables, are maximally 189 

correlated. In this study we use canonical correlation to build linear combinations of 190 

reference traits (transforming U to ��	) that maximize shared variance with target 191 

traits (V) in the set of training individuals. The possible number of canonical 192 

variables is limited to the size of the smaller of U and V, and each successive 193 

covariate captures a diminishing proportion of the shared variance between the 194 

traits. In this study we focus on the first canonical variable, ��	�or 
	�, which explains 195 

the largest fraction of shared variance between U and V. This quantity can be 196 

thought of as a summary of each set of traits analogous to their first principal 197 

component, but rather than being aligned with the axis of maximal variation among 198 

a single set of variables, it is aligned in the direction of maximal shared variation 199 

between the two sets of traits U and V. For datasets with a very large number of 200 

reference and/or target traits (i.e. p >> n), sparse canonical correlation analysis 201 

(Witten and Tibshirani 2009; Wilms and Croux 2016) may reduce over-fitting, but 202 

this situation is not common when relating two sets of traits U and V that contain 203 

organism-level phenotypes as opposed to molecular features. 204 

 205 
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The analysis of training data defines canonical coefficients that can be used to 206 

compute first canonical variables from individual-level trait data (i.e. transform U to 207 

��	�or V to 
	�). We use these coefficients learned from the training data (Figure 1, top) 208 

to transform reference trait data from the testing cohort U´, which projects these 209 

data in the direction of maximal shared variation with target traits. Thus, these 210 

“projected” traits ��	�
�  optimally capture the portion of variation shared between 211 

reference and target traits due to their underlying genetic and environmental 212 

covariation. Projected traits are then compared to high-dimensional genomic 213 

measurements to extract molecular phenotypes in one sample set that co-vary with 214 

target traits from another group (Figure 1, bottom right).  215 

 216 

Transitive reliability captures global patterns of covariation between incompatible 217 

traits 218 

 219 

Reference trait analysis reveals covariation between molecular phenotypes and 220 

target trait variation. There are many possible applications of this strategy. For 221 

example, in addiction research, many studies evaluate transcriptional response to 222 

drug exposure but are unable to evaluate the predisposing characteristics of a drug 223 

naïve brain that associate with addiction-related behaviors. Using a reference trait 224 

strategy, one can evaluate the transcriptomes of drug naïve brains and relate them 225 

to the response to drug self-administration through a set of reference traits that do 226 

not involve drug exposure. We have previously estimated the association of novelty 227 
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seeking and drug self-administration in mice, revealing a canonical correlation of 228 

0.61 among these sets of traits (Dickson et al. 2015).  229 

 230 

To evaluate whether the reference traits strategy could be applied to find 231 

transcriptional correlates of drug self-administration, we used a dataset where 232 

reference, target, and molecular trait profiling were performed on the same 233 

individuals to allow for assessment of the accuracy and robustness of the method. In 234 

this data set, transcriptional profiles, target traits, and reference traits are available 235 

for all individuals. This allows evaluation of the properties of the reference trait 236 

strategy, including robustness and sample size requirements. Specifically, we 237 

studied relationships between two distinct sets of anxiety-related traits and 238 

hippocampal gene expression, where all traits were measured in each of N = 258 239 

Diversity Outbred mice (Logan et al. 2013). The anxiety-related traits consisted of 240 

eleven measurements of open-field arena exploration behaviors and five 241 

measurements of light-dark box behaviors (Supplementary Table 1). A canonical 242 

correlation analysis of these two sets of traits yielded a statistically significant 243 

model (F55,1123.75 = 4.48, p < 2×10-16, Wilk’s λ = 0.400) that had a first canonical 244 

correlation coefficient of magnitude 0.69. This was higher than all univariate 245 

correlations between open-field and light-dark box traits (median 0.11, maximum 246 

0.65), and similar in magnitude to the shared variation revealed by the first 247 

canonical variable in the motivating analysis of novelty-related behaviors and 248 

cocaine self-administration (Dickson et al. 2015). We arbitrarily designated the 249 

open-field traits as target traits and light-dark box traits as reference traits. For 250 
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reference trait analysis, we hid gene expression data for some mice (training set) 251 

and open-field data for the remaining mice (testing set). 252 

 253 

In this evaluation of reference trait analysis, we know the true values of all hidden 254 

data and can directly evaluate the power of the method to reveal gene expression 255 

patterns associated with target trait variation. Specifically, we estimate canonical 256 

coefficients (weights to calculate canonical variables) from the training set and use 257 

them to calculate projected traits ��	�
�  in the testing set. To quantify the performance 258 

of reference trait analysis when the true answer is known, we computed 259 

correlations in testing set animals between gene expression E and either (1) the first 260 

projected trait ��	�
� , cor (E, ��	�

� � or (2) the first canonical variable computed using 261 

hidden target traits 
	�
� , cor(E, 
	�

�). The latter quantity, the “truth”, is unavailable in a 262 

real application of reference trait analysis. A set of reference traits that perfectly 263 

captures all variation in target traits would result in a vector of gene expression-264 

trait correlations that is identical whether the target traits were known or projected 265 

from reference traits (i.e. the reference traits serve as a perfect surrogate for target 266 

traits). We define transitive reliability as the correlation between these vectors i.e. 267 

cor[cor(E, ��	�
� ), cor(E, 
	�

�)]. High transitive reliability would indicate that strong 268 

correlations between gene expression and target traits are likely to be identified 269 

using projected traits. 270 

 271 

Transitive reliability, estimated using real gene expression data and simulated 272 

canonical variables with known correlation, scales linearly with the magnitude of 273 
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the canonical correlation coefficient (Figure 2A), confirming our intuition that 274 

greater sharing of variation between target and reference traits increases the utility 275 

of leveraging reference traits to understand target trait variation. We divided the 276 

anxiety dataset into equally sized subsets (partially overlapping for larger sample 277 

sizes) to examine the dependence of transitive reliability on sample size. The 278 

canonical correlation was upwardly biased for small sample sizes (N < 90; data not 279 

shown), as has previously been recognized (e.g. Thompson 1990). When we used 280 

Wherry’s correction as suggested by Thompson (1990), canonical correlations no 281 

longer depended on sample size (linear model; p > 0.8). Overall, transitive reliability 282 

asymptotically approached the magnitude of the canonical correlation coefficient 283 

calculated from the full dataset (Figure 2B, black line), demonstrating that global 284 

patterns of trait-gene expression correlation can be recovered with relatively 285 

modest sample sizes using the reference trait approach. In contrast, weights from 286 

the smallest (fifth) canonical covariate, which captures little shared variation 287 

between datasets, produced low transitive reliabilities (median 0.11). 288 

 289 

Reference trait analysis successfully identifies known trait correlations 290 

 291 

Ultimately, the primary goal of reference trait analysis is to identify molecular 292 

correlates of unmeasured phenotypes. To discover these correlates, individual gene 293 

expression levels are correlated to projected traits. To test this strategy, we first 294 

employed reference trait analysis on the anxiety-related phenotype data described 295 

above. After randomly splitting the dataset and withholding open-field data 296 
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(arbitrarily designated as target traits) in half the individuals, we identified gene 297 

expression levels correlated to projected reference traits. We found high overlap 298 

between the genes most strongly correlated with hidden target trait canonical 299 

variable 1 and those most strongly correlated with projected traits (23% overlap 300 

among genes with top 5% of correlations to each trait, compare to 2.5% expected 301 

overlap; p < 1×10-15, Fisher’s Exact Test). Across all genes, including those with 302 

weaker correlations, we found that the vector of trait-gene expression correlations 303 

computed using reference trait analysis showed significant similarity to the true 304 

correlations (p < 0.001, permutation test using generalized Jaccard similarity 305 

statistic). Moreover, in contrast to the alternative methods for identifying trait-gene 306 

expression correlations discussed above, some correlations detected using 307 

reference trait analysis involved genes with no significant eQTL (e.g. 42% of top 50 308 

correlations). These genes, which are demonstrably associated with trait variation, 309 

would not be detectable using TWAS type approaches. 310 

 311 

To examine the power and robustness of reference trait analysis across a wide 312 

range of biologically plausible parameter values, we conducted extensive 313 

simulations. We simulated data across a range of sample sizes (100, 200, 300, …, 314 

1000, 1200, 1400, …, 2000) and enforced a similar covariance structure to the 315 

observed data. Specifically, data were simulated using observed covariances within 316 

each set of anxiety traits, but we perturbed covariances between the two sets of 317 

traits in order to generate datasets with varying canonical correlations. We then 318 

simulated gene expression levels with known correlation to the first target trait 319 
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canonical variable, 
	� (ρ = 0.2, 0.225, 0.25, …, 0.9 with 20 genes each). We simulated 320 

trait data and gene expression data at random for each of 1,000 simulations for each 321 

sample size. 322 

 323 

For each simulation, after hiding target traits in half the individuals and gene 324 

expression data in the other half, we conducted reference trait analysis. We 325 

computed projected reference traits, correlated to gene expression, and quantified 326 

performance as the fraction of true trait-gene expression correlations that were 327 

detected using a 10% false discovery rate (FDR) threshold. For high trait-gene 328 

correlations (ρ > 0.6) and strong target-reference trait canonical correlations (R = 329 

0.7 or 0.9), the correlation of interest was essentially always detected (Figure 3). For 330 

lower target-reference trait canonical correlations (R = 0.5), even relatively modest 331 

true trait-gene expression correlations (e.g. ρ = 0.3) were often detected with 332 

sample sizes above ~300 individuals (Figure 3). Thus, reference trait analysis was a 333 

highly effective means for identifying trait-gene expression correlations across a 334 

diverse range of practical sample sizes, typical values for trait-to-gene expression 335 

correlation, and canonical correlation parameters. 336 

 337 

Comparison of reference trait analysis to related approaches 338 

 339 

An alternative approach to identifying genes associated with complex traits is to 340 

make use of known genetic variation that regulates gene expression (gene 341 

expression QTL or eQTL). There has been considerable recent interest in methods 342 
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that integrate complex trait associations and gene expression genetics in order to 343 

identify genes whose expression is associated with trait variation (Nica et al. 2010; 344 

Wallace et al. 2012; He et al. 2013; Gamazon et al. 2015; Gusev et al. 2016a; Zhu et 345 

al. 2016; Hormozdiari et al. 2016b; Wen et al. 2017; Hauberg et al. 2017). Several 346 

methods perform tests of the hypothesis that genome-wide association (GWA) 347 

signals and eQTLs are truly colocalized versus independent but appearing 348 

colocalized due to linkage disequilibrium  (Nica et al. 2010; Wallace et al. 2012; 349 

Giambartolomei et al. 2014; Fortune et al. 2015; Zhu et al. 2016; Hormozdiari et al. 350 

2016b; Wen et al. 2017; Hauberg et al. 2017). Another approach that is more 351 

directly applicable to the experimental designs studied herein is to harness strong 352 

genetic predictors of gene expression variation (eQTL) to impute transcriptomes in 353 

genotyped and phenotyped cohorts, which allows detection of trait-expression 354 

correlations (the TWAS approach; Gamazon et al. 2015; Gusev et al. 2016a; b; 355 

Mancuso et al. 2017; Barbeira et al. 2017). TWAS is an approach that is 356 

complementary to reference trait analysis, and has been a particularly powerful 357 

method for discovery of candidate genes driving GWA signals detected in very large 358 

human cohorts (tens or hundreds of thousands of individuals). Supplementary 359 

Figure 1 provides a comparison of genotype, phenotype, and gene expression data 360 

in the reference traits and TWAS strategies. One weakness of the TWAS approach is 361 

that it hinges on the presence of detectable eQTL (typically local, presumably cis-362 

acting eQTL; but see He et al. 2013; Vervier and Michaelson 2016). In humans, even 363 

panels of 1,000 individuals with gene expression measurements only result in a 364 

modest number of genes (500-4,000) with significant cis-heritability that can be 365 
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imputed in the cohort lacking gene expression data (Gusev et al. 2016a). In contrast, 366 

reference trait analysis has no requirement for detection of eQTLs, and therefore it 367 

is amenable to detect of correlation of transcripts with complex expression 368 

regulatory mechanisms to traits of similarly complex regulation, and retains 369 

performance across lower sample sizes, as we demonstrate below. 370 

 371 

Although TWAS and reference trait analysis utilize different data types, both are 372 

tools inferring relations between complex traits and transcript abundance, so we 373 

sought to compare their performance on the same dataset. For TWAS, we used 374 

methods implemented in the software suite PrediXcan (Gamazon et al. 2015). We 375 

randomly divided our anxiety dataset in half and considered open-field 376 

measurements as target traits. We withheld gene expression measurements in half 377 

the animals; therefore, only genotype and reference trait data were visible for all 378 

animals. We built predictive models of gene expression from the training cohort of 379 

mice, applied these models to impute gene expression in the testing cohort, and 380 

calculated correlations between imputed gene expression and a summary measure 381 

of the target traits (first canonical variable). We conducted 1,000 permutations with 382 

random 50:50 divisions of the anxiety dataset to account for stochastic sampling 383 

effects. For each replicate, we compared global trait-gene expression correlations 384 

for PredictDB-imputed gene expression versus those computed using projected 385 

traits obtained with our new method. In the former case, trait data is available and 386 

gene expression data is imputed, while in the latter case gene expression data is 387 

available and trait data is imputed.  388 
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 389 

For direct comparisons between reference trait analysis and TWAS, we ran 390 

reference trait analysis using only genes that were significantly predicted by the 391 

PredictDB module of PrediXcan (FDR < 5%; see Methods). Across the 1,000 392 

permutations, we imputed gene expression for a mean 12,250 genes (range 11,640-393 

12,750; mean represents ~70% of total 17,539 genes measured), indicating that a 394 

substantial fraction of genes has insufficient local genetic signal for accurate 395 

imputation. An advantage of reference trait analysis is that it is not limited by the 396 

presence of strong eQTL and all genes can be tested for association with projected 397 

reference traits. For each of the 1,000 permutations, we computed the transitive 398 

reliability of TWAS and of reference trait analysis. Reference trait analysis more 399 

accurately captured global patterns of trait-transcript correlation than TWAS 400 

(Figure 4). Specifically, transitive reliability for target trait first canonical covariate-401 

gene expression correlations was higher using the reference trait approach 402 

(measured gene expression and projected reference traits) compared to the TWAS 403 

approach (imputed gene expression and measured traits) for 92.7% of simulations 404 

(Figure 4; Supplementary Figure 2 shows an example of results from one 405 

permutation). Thus, we show empirically that reference trait analysis outperforms 406 

TWAS in the mouse anxiety dataset.  407 

 408 

In addition to the quantitative comparison of the methods, we sought to determine 409 

which approach provided the best retrieval of known anxiety related genes. To 410 

perform this analysis we made use of GeneWeaver’s database of gene sets curated 411 
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from multiple sources (Baker et al. 2016). The top four hundred genes identified 412 

using each analysis method were entered as three gene lists, and each gene list was 413 

compared to every gene set in the GeneWeaver database via Jaccard similarity. For 414 

each, the top 249 similar gene sets were exported, and a rater with expertise in 415 

behavioral neuroscience who was blind to the analysis methods scored a combined 416 

list of all similar gene sets obtained in these three analyses. Gene sets were 417 

categorized discretely based on relevance to anxiety, with categories including 418 

irrelevant, generally relevant to brain or behavior, and specifically relevant to 419 

anxiety. We found that true open-field first canonical variable—gene expression 420 

correlations had highest relevance to anxiety. The top truly correlated genes were 421 

similar to gene sets more relevant to anxiety than those genes identified using 422 

reference traits or those using TWAS (p = 0.0065 and p = 1.5×10-14, respectively; 423 

two-sided Fisher’s Exact Test). Nevertheless, reference trait analysis performed 424 

significantly better than TWAS at identifying genes with similarity to anxiety-425 

relevant gene sets (p = 7.3×10-6). 426 

 427 

Finally, another alternative to relating traits and transcripts between population 428 

cohorts is to make use of polygenic risk predictors trained using genome-wide 429 

genotypes and phenotypes, and applied to individuals with genotypes but missing 430 

phenotypes (in this case, samples with only transcriptional profiles available) 431 

(Makowsky et al. 2011; Dudbridge 2013; Wray et al. 2013). However, theoretical 432 

considerations and empirical results suggest that this approach generally requires 433 

sample sizes much larger than 1,000 individuals to obtain accurate predictions 434 
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(Dudbridge 2013). In the context of reference trait analysis, relating complex 435 

reference and target traits that share high canonical correlation implicitly leverages 436 

the common polygenic or omnigenic (Boyle et al. 2017) basis of these traits by 437 

making use of all of the information contained in continuous quantitative variation. 438 

 439 

  440 
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Conclusions 441 

 442 

We have described a general method for exploring trait covariation among 443 

incompatible and independently collected phenotypes studied in disjoint samples of 444 

genetically diverse individuals to extract molecular networks associated with 445 

disease. Our method utilizes canonical correlation analysis, a standard multivariate 446 

statistical method, to relate incompatible phenotypes using a set of reference traits 447 

measured on all individuals. Our analyses demonstrate that this approach performs 448 

well over a range of parameters typically encountered in the study of trait 449 

correlations, and under sample size requirements that are practical to obtain. This 450 

approach can be useful both for capturing global patterns of covariation between 451 

target traits and high-dimensional molecular phenotypes, as well as for identifying 452 

specific molecular correlates to target traits. Our method identifies trait-gene 453 

expression associations and we do not assert that these associations are necessarily 454 

causal, as has been recognized by studies relating GWAS results and eQTL (Gamazon 455 

et al. 2015; Gusev et al. 2016a; Hauberg et al. 2017). 456 

 457 

When will reference trait analysis be a useful tool? Intuitively, and as demonstrated 458 

in Figure 3, large sample sizes, precise trait measurements, and high shared 459 

variance between reference and target traits would allow for the most accurate 460 

estimation of canonical correlation coefficients and high power to detect 461 

correlations to molecular phenotypes. Although our method could be applied in a 462 

wide variety of scenarios, it is likely to be particularly useful for studies of highly 463 
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complex, polygenic, multidimensional traits (e.g. behavior, physiology, and 464 

morphology) in cohorts of modest size. As with any method that applies information 465 

learned from one cohort to biological measures from another cohort, reference trait 466 

analysis requires the absence of systematic differences (i.e. heterogeneity in 467 

population characteristics) between the training and testing cohorts. For very large 468 

cohorts of individuals where obtaining suitable reference traits may be difficult, 469 

polygenic scores based on either genetic predictors alone or on a combination of 470 

genetic and environmental risk factors (Dudbridge et al. 2017) may be a valuable 471 

approach for predicting phenotypic variation in a test cohort that can then be 472 

correlated with molecular networks.  473 

 474 

Although our application of reference trait analysis involves correlations to high 475 

dimensional molecular phenotypes, the method could, in principle, be applied to any 476 

sets of phenotypes that are multivariate in nature. Moreover, the high relative 477 

performance of our method underscores the importance of extensive phenotyping 478 

using quantitative traits rather than relying on binary indicators of disease and 479 

disease-related phenotypes that may mask complex underlying etiologies. We 480 

anticipate that the framework outlined in this study will be increasingly useful as 481 

studies of diverse, genetically unique populations become more widespread. A 482 

useful future extension to this approach would incorporate statistical techniques 483 

such as sparse canonical correlation analysis (Witten and Tibshirani 2009; Wilms 484 

and Croux 2016), which could permit inference in phenome-level studies where the 485 

target or reference traits are high dimensional. Overall, our approach is likely to be 486 
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particularly important in functional genomics studies, those utilizing post-mortem 487 

subjects, and large population studies in which individuals are unavailable for 488 

further characterization.  489 

 490 

 491 

  492 
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Materials and Methods 493 

 494 

Mouse rearing and phenotyping 495 

 496 

Diversity Outbred mice (J:DO, The Jackson Laboratory) are a heterogeneous stock 497 

derived from the same eight founder strains as the Collaborative Cross (Svenson et 498 

al. 2012; Churchill et al. 2012; Gatti et al. 2014; Chesler et al. 2016). In this study we 499 

used a subset (N = 258) of the 283 Diversity Outbred mice studied by Logan et al. 500 

(2013) with hippocampal gene expression profiled by RNA-Seq (see below). Mice in 501 

this study were from generations 4 to 5 (G4-G5) of the DO population. Briefly, each 502 

mouse was acclimated to the housing area, and subject to a brief testing battery 503 

which included a 20 minute novel open-field test and a 10 minute light-dark test, 504 

among other common behavioral tasks. The open-field and light-dark tests are used 505 

to measure exploratory activity and approach-avoidance behavior. Many complex 506 

trait measures can be extracted from these tasks. For this analysis, we chose two 507 

sets of informative measures (Supplementary Table 1). Complete details of animal 508 

rearing, husbandry and phenotyping are presented in Logan et al. (2013). Mice were 509 

sacrificed using decapitation which was necessary to preserve fresh brain tissue in 510 

the absence of drug or asphyxiation. All procedures and protocols were approved by 511 

The Jackson Laboratory Animal Care and Use Committee, and were conducted in 512 

compliance with the National Institutes of Health Guidelines for the Care and Use of 513 

Laboratory Animals. 514 

 515 
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Genotyping 516 

 517 

DNA was prepared from tail biopsies and samples were genotyped using the Mouse 518 

Univeral Genotyping Array (MUGA) (Morgan et al. 2016). We obtained genotypes at 519 

7,802 markers from arrays processed by GeneSeek (Lincoln, NE). We used 520 

intensities from each array to infer the haplotype blocks in each individual DO 521 

genome using a hidden Markov model (Gatti et al. 2014).  522 

 523 

Gene expression profiling 524 

 525 

Total hippocampal RNA was isolated using the TRIzol® Plus RNA purification kit 526 

(Life Technologies Corp., Carlsbad, CA) with on-column DNase digestion. Samples 527 

for RNA-Seq analysis were prepared using the TruSeq kit (Illumina Inc., San Diego, 528 

CA) according to the manufacturer’s protocols and subjected to paired-end 100 base 529 

pair sequencing on the HiSeq 2000 (Illumina) per manufacturer’s 530 

recommendations. RNA sequencing was performed in nine sequencing runs with 531 

two technical replicates for each sample, resulting in an averaging sequencing depth 532 

of approximately 24 million reads per sample after pooling technical replicates. To 533 

obtain estimates of gene expression, we aligned reads to individualized diploid 534 

genomes using the bowtie aligner (Langmead et al. 2009) and quantified transcript 535 

abundance by allocating multi-mapping reads using the EM algorithm with RSEM (Li 536 

and Dewey 2011) as described in Munger et al. (2014). Raw counts in each sample 537 

were normalized to the upper quartile value and transformed to normal scores. 538 
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Reference trait analysis 539 

 540 

We conducted reference trait analysis using R version 3.3.2 (R Core Team 2016). 541 

Canonical correlation analysis was carried out using the cancor function in base R. 542 

We regressed out the effect of sex on each phenotype because it is not of primary 543 

interest in this study. An example walk-through of a reference trait analysis and 544 

code to carry out the analyses described in this paper are available at 545 

https://daskelly.github.io/reference_traits/reference_trait_analysis_walkthrough.ht546 

ml. 547 

 548 

To examine the power and robustness of reference trait analysis, we simulated data 549 

with varying sample sizes and canonical correlation coefficients. We based our 550 

simulations on the anxiety phenotype data, consisting of open-field exploration and 551 

light-dark box behavioral measures. Specifically, for each of 1,000 simulations we 552 

started with the covariance matrix computed from five open-field and five light-dark 553 

box traits and randomly increased or decreased each of the 5×5=25 inter-dataset 554 

covariances by 20%. We then simulated multivariate normal phenotype data with 555 

the specified covariance matrix. This procedure resulted in two multivariate 556 

datasets (simulated open-field and light-dark box traits), where the covariance 557 

structure within each dataset was similar to that in the real data but with different 558 

covariances between datasets. When a canonical correlation analysis was carried out 559 

on each pair of simulated datasets, the magnitude of the first canonical correlation 560 
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coefficient varied between R = 0.35 and R = 0.98, due to the variation in inter-561 

dataset covariances. 562 

 563 

We simulated gene expression traits with exact correlation to the first target trait 564 

canonical variable 
	� in the simulated dataset. In order to simulate a random vector 565 

of observations with defined correlation to an existing vector, we took advantage of 566 

the geometric property that the cosine between two mean-centered vectors equals 567 

their correlation. Therefore, a random vector with defined correlation to an existing 568 

vector can be computed by starting with random draws from a normal distribution, 569 

mean-centering, and applying standard linear algebra operations. 570 

 571 

After hiding target traits in half the individuals and gene expression data in the 572 

other half, we conducted reference trait analysis and quantified performance as the 573 

fraction of the time true trait-gene expression correlations were detected using a 574 

10% FDR threshold. P-values for trait-gene expression correlations were calculated 575 

using a two-sided T statistic and correlations deemed significant at a 10% FDR were 576 

identified using q-values (Storey and Tibshirani 2003). 577 

 578 

Imputing gene expression using TWAS 579 

 580 

We divided the anxiety dataset in half and considered open-field measurements as 581 

target traits, hiding gene expression measurements for the animals where we did 582 

not hide open-field traits. For the TWAS strategy, our training cohort consisted of 583 
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animals with genotypes and gene expression data, and our testing cohort consisted 584 

of animals with genotypes and open-field traits (i.e. training/testing labels are 585 

reversed from reference trait analysis, see Supplementary Figure 1). Diversity 586 

Outbred mice are an outbred population with genomic ancestry derived from eight 587 

inbred founder strains. We used methods implemented in R/qtl2 software 588 

(http://kbroman.org/qtl2/) to impute single nucleotide polymorphism (SNP) 589 

variation in each mouse from array-based genotypes obtained at coarser resolution 590 

(see above) using known SNP genotypes present in founder haplotypes. This 591 

resulted in genotypes for ~30 million SNPs. Given the limited number of 592 

generations of outbreeding, haplotype blocks in Diversity Outbred mice typically 593 

stretch for megabases (Svenson et al. 2012), leading to strong local linkage 594 

disequilibrium (LD). As such, we used PLINK version 1.9 (Purcell et al. 2007) to 595 

prune variants in very strong LD in the eight founder strains, using the parameters -596 

-indep-pairwise 200kb 40kb 0.95. This procedure reduced the number of SNPs to 597 

235,335 with minimal loss of information.  598 

 599 

To impute gene expression, we used the PredictDB module of PrediXcan (Gamazon 600 

et al. 2015) to build predictive models of gene expression from local genotypes 601 

within 10Mb of each gene, with sex included as a covariate. We conducted 1,000 602 

permutations with random 50:50 divisions of the anxiety dataset to account for 603 

stochastic sampling effects. For each replicate we obtained predictive models of 604 

gene expression by running PredictDB on the training cohort and applied them to 605 

the testing cohort in order to impute gene expression. Following Gamazon et al. 606 
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(2015; https://github.com/hakyimlab/PrediXcan), we considered only genes with 607 

models that were significantly predictive of gene expression (FDR ≤ 5%). Finally, we 608 

calculated correlations between imputed gene expression and a summary measure 609 

of the target traits (first canonical variable) in the testing cohort. Results were 610 

nearly identical whether we correlated to the first canonical variable or first 611 

principal component of the target traits (median transitive reliability 45% vs. 44%), 612 

but correlations to first canonical variable allow for direct comparison with results 613 

from reference trait analysis. 614 

 615 

Scoring gene sets to assess retrieval of known anxiety-related genes 616 

 617 

To score gene sets for relevance to anxiety, a rater with expertise in behavioral 618 

neuroscience who was blind to the analysis methods scored a combined list of all 619 

gene sets obtained herein. We assigned a score of zero to irrelevant data sets, a 620 

score of two to gene sets with general brain or behavior relevance, and a score of 621 

four to anxiety relevant data sets in which either the gene set was generated in an 622 

anxiety relevant experiment, the gene set consisted of genes interacting with a 623 

compound known to be anxiolytic or anxiogenic, or the gene set was a Gene 624 

Ontology annotation set with direct biological relevance to anxiety. For compounds, 625 

a single MEDLINE query of the compound name and ‘anxiety’ was performed and 626 

the results of the query were examined for overall conceptual relevance. 627 

  628 
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Data availability 629 

 630 

Raw RNA-Seq gene expression data from the hippocampus of 258 Diversity Outbred 631 

mice are available from ArrayExpress (accession number XXX). A processed and 632 

normalized gene expression matrix is available as Supplementary Dataset 1. 633 

Phenotype data acquired via the open-field and light-dark box paradigms are 634 

available as Supplementary Datasets 2 and 3. 635 

 636 

Acknowledgements: We thank Jackson Laboratory Genome Technologies for 637 

assistance with library preparation and sequencing of RNA-Seq samples. We thank 638 

Daniel M. Gatti for assistance with processing mouse genotypes and obtaining 639 

genotype probabilities for mapping, Juliet Ndukum for implementing an early 640 

prototype of the reference trait analysis methodology, and Timothy Reynolds for 641 

assistance with the GeneWeaver platform. This study was supported by National 642 

Institutes of Health grants R01 DA037927 (EJC), R01 AA018776 (EJC), and P50 643 

GM076468 (EJC) and by program funds to EJC from The Jackson Laboratory. 644 

 645 

Author contributions: 646 

DAS – Conceptualization, Data Curation, Formal Analysis, Methodology, Software, 647 

Visualization, Writing 648 

NR – Data Curation, Formal Analysis, Software 649 

RFR – Investigation, Methodology 650 

JHG – Formal Analysis 651 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 9, 2018. ; https://doi.org/10.1101/489542doi: bioRxiv preprint 

https://doi.org/10.1101/489542
http://creativecommons.org/licenses/by-nc-nd/4.0/


EJC – Conceptualization, Funding Acquisition, Methodology, Project Administration, 652 

Supervision, Writing 653 

  654 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 9, 2018. ; https://doi.org/10.1101/489542doi: bioRxiv preprint 

https://doi.org/10.1101/489542
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 655 

 656 

Baker E., Bubier J. A., Reynolds T., Langston M. A., Chesler E. J., 2016 GeneWeaver: 657 

data driven alignment of cross-species genomics in biology and disease. 658 

Nucleic Acids Res. 44: D555-559. 659 

Barbeira A. N., Dickinson S. P., Torres J. M., Bonazzola R., Zheng J., et al., 2017 660 

Exploring the phenotypic consequences of tissue specific gene expression 661 

variation inferred from GWAS summary statistics. bioRxiv: 045260. 662 

Boyle E. A., Li Y. I., Pritchard J. K., 2017 An Expanded View of Complex Traits: From 663 

Polygenic to Omnigenic. Cell 169: 1177–1186. 664 

Chesler E. J., Gatti D. M., Morgan A. P., Strobel M., Trepanier L., et al., 2016 Diversity 665 

Outbred Mice at 21: Maintaining Allelic Variation in the Face of Selection. G3 666 

Bethesda Md 6: 3893–3902. 667 

Churchill G. A., Gatti D. M., Munger S. C., Svenson K. L., 2012 The Diversity Outbred 668 

mouse population. Mamm. Genome Off. J. Int. Mamm. Genome Soc. 23: 713–669 

718. 670 

Dickson P. E., Ndukum J., Wilcox T., Clark J., Roy B., et al., 2015 Association of 671 

novelty-related behaviors and intravenous cocaine self-administration in 672 

Diversity Outbred mice. Psychopharmacology (Berl.) 232: 1011–1024. 673 

Dudbridge F., 2013 Power and Predictive Accuracy of Polygenic Risk Scores. PLOS 674 

Genet. 9: e1003348. 675 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 9, 2018. ; https://doi.org/10.1101/489542doi: bioRxiv preprint 

https://doi.org/10.1101/489542
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dudbridge F., Pashayan N., Yang J., 2017 Predictive accuracy of combined genetic 676 

and environmental risk scores. Genet. Epidemiol.: 1–16. 677 

Fortune M. D., Guo H., Burren O., Schofield E., Walker N. M., et al., 2015 Statistical 678 

colocalization of genetic risk variants for related autoimmune diseases in the 679 

context of common controls. Nat. Genet. 47: 839–846. 680 

Gamazon E. R., Wheeler H. E., Shah K. P., Mozaffari S. V., Aquino-Michaels K., et al., 681 

2015 A gene-based association method for mapping traits using reference 682 

transcriptome data. Nat. Genet. 47: 1091–1098. 683 

Gatti D. M., Svenson K. L., Shabalin A., Wu L.-Y., Valdar W., et al., 2014 Quantitative 684 

trait locus mapping methods for diversity outbred mice. G3 Bethesda Md 4: 685 

1623–1633. 686 

Giambartolomei C., Vukcevic D., Schadt E. E., Franke L., Hingorani A. D., et al., 2014 687 

Bayesian Test for Colocalisation between Pairs of Genetic Association Studies 688 

Using Summary Statistics. PLOS Genet. 10: e1004383. 689 

Gusev A., Ko A., Shi H., Bhatia G., Chung W., et al., 2016a Integrative approaches for 690 

large-scale transcriptome-wide association studies. Nat. Genet. 48: 245–252. 691 

Gusev A., Mancuso N., Finucane H. K., Reshef Y., Song L., et al., 2016b Transcriptome-692 

wide association study of schizophrenia and chromatin activity yields 693 

mechanistic disease insights. bioRxiv: 067355. 694 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 9, 2018. ; https://doi.org/10.1101/489542doi: bioRxiv preprint 

https://doi.org/10.1101/489542
http://creativecommons.org/licenses/by-nc-nd/4.0/


Hauberg M. E., Zhang W., Giambartolomei C., Franzén O., Morris D. L., et al., 2017 695 

Large-Scale Identification of Common Trait and Disease Variants Affecting 696 

Gene Expression. Am. J. Hum. Genet. 100: 885–894. 697 

He X., Fuller C. K., Song Y., Meng Q., Zhang B., et al., 2013 Sherlock: Detecting Gene-698 

Disease Associations by Matching Patterns of Expression QTL and GWAS. Am. 699 

J. Hum. Genet. 92: 667–680. 700 

Hormozdiari F., Kang E. Y., Bilow M., Ben-David E., Vulpe C., et al., 2016a Imputing 701 

Phenotypes for Genome-wide Association Studies. Am. J. Hum. Genet. 99: 89–702 

103. 703 

Hormozdiari F., van de Bunt M., Segrè A. V., Li X., Joo J. W. J., et al., 2016b 704 

Colocalization of GWAS and eQTL Signals Detects Target Genes. Am. J. Hum. 705 

Genet. 99: 1245–1260. 706 

Hotelling H., 1936 Relations Between Two Sets of Variates. Biometrika 28: 321–377. 707 

Langmead B., Trapnell C., Pop M., Salzberg S. L., 2009 Ultrafast and memory-efficient 708 

alignment of short DNA sequences to the human genome. Genome Biol. 10: 709 

R25. 710 

Li B., Dewey C. N., 2011 RSEM: accurate transcript quantification from RNA-Seq data 711 

with or without a reference genome. BMC Bioinformatics 12: 323. 712 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 9, 2018. ; https://doi.org/10.1101/489542doi: bioRxiv preprint 

https://doi.org/10.1101/489542
http://creativecommons.org/licenses/by-nc-nd/4.0/


Logan R. W., Robledo R. F., Recla J. M., Philip V. M., Bubier J. A., et al., 2013 High-713 

precision genetic mapping of behavioral traits in the diversity outbred mouse 714 

population. Genes Brain Behav. 12: 424–437. 715 

Makowsky R., Pajewski N. M., Klimentidis Y. C., Vazquez A. I., Duarte C. W., et al., 716 

2011 Beyond Missing Heritability: Prediction of Complex Traits. PLOS Genet. 717 

7: e1002051. 718 

Mancuso N., Shi H., Goddard P., Kichaev G., Gusev A., et al., 2017 Integrating Gene 719 

Expression with Summary Association Statistics to Identify Genes Associated 720 

with 30 Complex Traits. Am. J. Hum. Genet. 100: 473–487. 721 

Morgan A. P., Fu C.-P., Kao C.-Y., Welsh C. E., Didion J. P., et al., 2016 The Mouse 722 

Universal Genotyping Array: From Substrains to Subspecies. G3 Genes 723 

Genomes Genet. 6: 263–279. 724 

Munger S. C., Raghupathy N., Choi K., Simons A. K., Gatti D. M., et al., 2014 RNA-Seq 725 

Alignment to Individualized Genomes Improves Transcript Abundance 726 

Estimates in Multiparent Populations. Genetics 198: 59–73. 727 

Nica A. C., Montgomery S. B., Dimas A. S., Stranger B. E., Beazley C., et al., 2010 728 

Candidate Causal Regulatory Effects by Integration of Expression QTLs with 729 

Complex Trait Genetic Associations. PLOS Genet. 6: e1000895. 730 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 9, 2018. ; https://doi.org/10.1101/489542doi: bioRxiv preprint 

https://doi.org/10.1101/489542
http://creativecommons.org/licenses/by-nc-nd/4.0/


Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M. A. R., et al., 2007 PLINK: a 731 

tool set for whole-genome association and population-based linkage 732 

analyses. Am. J. Hum. Genet. 81: 559–575. 733 

R Core Team, 2016 R: A Language and Environment for Statistical Computing. R 734 

Foundation for Statistical Computing, Vienna, Austria. 735 

Storey J. D., Tibshirani R., 2003 Statistical significance for genomewide studies. Proc. 736 

Natl. Acad. Sci. U. S. A. 100: 9440–9445. 737 

Svenson K. L., Gatti D. M., Valdar W., Welsh C. E., Cheng R., et al., 2012 High-738 

resolution genetic mapping using the Mouse Diversity outbred population. 739 

Genetics 190: 437–447. 740 

Thompson B., 1990 Finding a Correction for the Sampling Error in Multivariate 741 

Measures of Relationship: A Monte Carlo Study. Educ. Psychol. Meas. 50: 15–742 

31. 743 

Vervier K., Michaelson J. J., 2016 SLINGER: large-scale learning for predicting gene 744 

expression. Sci. Rep. 6: 39360. 745 

Wallace C., Rotival M., Cooper J. D., Rice C. M., Yang J. H. M., et al., 2012 Statistical 746 

colocalization of monocyte gene expression and genetic risk variants for type 747 

1 diabetes. Hum. Mol. Genet. 21: 2815–2824. 748 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 9, 2018. ; https://doi.org/10.1101/489542doi: bioRxiv preprint 

https://doi.org/10.1101/489542
http://creativecommons.org/licenses/by-nc-nd/4.0/


Wen X., Pique-Regi R., Luca F., 2017 Integrating molecular QTL data into genome-749 

wide genetic association analysis: Probabilistic assessment of enrichment 750 

and colocalization. PLOS Genet. 13: e1006646. 751 

Wilms I., Croux C., 2016 Robust sparse canonical correlation analysis. BMC Syst. Biol. 752 

10: 72. 753 

Witten D. M., Tibshirani R. J., 2009 Extensions of Sparse Canonical Correlation 754 

Analysis with Applications to Genomic Data. Stat. Appl. Genet. Mol. Biol. 8: 1–755 

27. 756 

Wray N. R., Yang J., Hayes B. J., Price A. L., Goddard M. E., et al., 2013 Pitfalls of 757 

predicting complex traits from SNPs. Nat. Rev. Genet. 14: 507–515. 758 

Zhu Z., Zhang F., Hu H., Bakshi A., Robinson M. R., et al., 2016 Integration of summary 759 

data from GWAS and eQTL studies predicts complex trait gene targets. Nat. 760 

Genet. 48: 481–487. 761 

 762 

  763 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 9, 2018. ; https://doi.org/10.1101/489542doi: bioRxiv preprint 

https://doi.org/10.1101/489542
http://creativecommons.org/licenses/by-nc-nd/4.0/


 764 
 765 

Figure 1: Overview of reference trait analysis. Target and reference traits are 766 

measured in a set of training individuals (top plots; grey triangles), while reference 767 

traits and gene expression are measured in test individuals (bottom plots and X 768 

symbols). (1) Canonical correlation is used to identify a linear combination of 769 

reference traits (top blue arrow) that best captures variation in the traits of interest 770 

(red arrow; yellow curve connecting arrows represents canonical correlation 771 

analysis). (2) The weights derived from canonical correlation analysis are applied to 772 

reference traits in the testing population to derive reference trait scores for each 773 

individual (projected reference traits; bottom blue arrow). (3) Projected reference 774 

traits are correlated with molecular phenotypes. 775 
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 779 

 780 
 781 

Figure 2: Reference trait analysis reveals overall patterns of covariation between 782 

incompatible traits. (A) Relationship between canonical correlation and transitive 783 

reliability. To evaluate the mathematical relationship between these quantities, we 784 

simulated two vectors with known correlation to represent the canonical covariates, 785 

and calculated transitive reliability with real gene expression data. Canonical 786 

correlation shown is absolute value, and transitive reliability is sign-matched. (B) 787 

Sample size increases lead to higher and more precise transitive reliability. Plot 788 

shows transitive reliability estimated using anxiety data with animals subsampled 789 

as described in the main text. Sample size on x-axis indicates the number of 790 

individuals used in each of the training and testing groups (the number of 791 

individuals phenotyped for target traits and the number with high-dimensional 792 

molecular phenotypes, respectively). Black line indicates magnitude of first 793 

canonical correlation calculated from full dataset. Color indicates whether training 794 

and testing groups were fully or partially independent. 795 
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 799 

 800 
 801 

Figure 3: Reference trait analysis identifies simulated trait-gene expression 802 

correlations across a wide variety of parameter values. Sample size plotted along x-803 

axis is the number of individuals used in each of the training and testing groups 804 

(equal sample size for the two groups, where the training group consists of 805 

individuals phenotyped for target traits and the testing group those with high-806 

dimensional molecular phenotypes). True correlation (y-axis) indicates correlation 807 

between first target trait canonical variable (
	�) and simulated gene expression. 808 

Facets indicate magnitude of canonical correlation coefficient between reference 809 

and target traits (R listed along grey strips, ±0.02). Navy and magenta contour lines 810 

depict regions above/below which trait-gene expression correlations are detected 811 

>80% and <20% of the time, respectively. 812 
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 815 
 816 

Figure 4: Reference trait analysis recovers true trait-gene expression correlations 817 

more accurately than TWAS. Binned hexagon plot shows the results of 1,000 818 

random samples where the anxiety dataset was split into two halves randomly 819 

designated the training and testing groups. Reference trait analysis and TWAS were 820 

used to recover trait-gene expression correlations. The true values of both the trait 821 

and gene expression are known in this dataset, but were hidden when running 822 

reference trait analysis or TWAS. For each method, the correlation across all genes 823 

between predicted and true values was computed.  824 
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 825 

Supplementary Table 1: Anxiety-related traits measured on 258 Diversity Outbred 826 

mice used in case study of reference trait analysis. 827 

 828 

Group Phenotype 

Light-dark box Distance traveled 

Light-dark box Light-dark transitions 

Light-dark box Percent time in light (first four minutes) 

Light-dark box Percent time in light (total) 

Light-dark box Percent time in light, slope 

Open-field Distance traveled (first four minutes) 

Open-field Distance traveled (total) 

Open-field Distance change (first – last) 

Open-field Percent time in corner 

Open-field Percent time in corner, slope 

Open-field Percent time in periphery 

Open-field Percent time in periphery, slope 

Open-field Percent time in center (square-root transformed) 

Open-field Percent time in center, slope 

Open-field Percent time mobile 

Open-field Fecal boli count 

 829 
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 831 

 832 
Supplementary Figure 1: Schematic comparing overall strategies of reference trait 833 

analysis and TWAS. For reference trait analysis, canonical correlation analysis is 834 

used to relate traits of interest to reference traits (blue, 1) and coefficients derived 835 

from this model are applied to reference traits in the cohort without measurements 836 

of traits of interest (blue, 2). Finally, these projected reference traits are compared 837 

to gene expression to identify trait-gene expression correlations (blue, 3). In the 838 

TWAS approach, genotypes are used to build models that predict gene expression 839 

through eQTL (red, 1). These models are applied to genotypes in the cohort without 840 

gene expression measurements (red, 2) and imputed gene expression is compared 841 

with traits of interest to identify trait-gene expression correlations (red, 3). Note 842 

that training and testing cohort labels are switched for the two methods but that the 843 

end result of each is to compare traits of interest with gene expression (grey dashed 844 

line, middle). 845 
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 848 
 849 

Supplementary Figure 2: Comparison of TWAS and reference trait analysis using a 850 

single random division of the mouse anxiety dataset. For both panels we take the 851 

true trait of interest to be the first canonical covariate of open-field traits (open-field 852 

CC1). For TWAS we used genotypes to impute gene expression. Left panel shows 853 

correlation of individual transcripts to the trait of interest, where the x-axis plots 854 

correlations based on true transcript abundance and the y-axis plots correlations 855 

based on imputed transcript abundance. Right panel shows the analogous result but 856 

using reference trait analysis, where gene expression is fixed and predictors of 857 

open-field behavior are represented by projected traits. 858 
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Supplementary Datasets 860 

 861 

Supplementary Dataset 1: Normalized hippocampal gene expression matrix. RNA-862 

Seq data were processed as described (Methods).  To obtain normalized gene 863 

expression matrix, raw counts in each sample were normalized to the upper quartile 864 

value and transformed to normal scores. 865 

 866 

Supplementary Dataset 2: Traits derived from open-field arena exploration assay 867 

and used in case study of reference trait analysis. Supplementary Table 1 provides 868 

basic information on phenotypes, while complete details of animal rearing, 869 

husbandry and phenotyping are presented in Logan et al. (2013). 870 

 871 

Supplementary Dataset 3: Traits derived from light-dark box behavior assay and 872 

used in case study of reference trait analysis. Supplementary Table 1 provides basic 873 

information on phenotypes, while complete details of animal rearing, husbandry 874 

and phenotyping are presented in Logan et al. (2013). 875 
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