- 1 FULL TITLE: Reference trait analysis reveals correlations between gene expression
- 2 and quantitative traits in disjoint samples
- 3
- 4 SHORT TITLE: Reference traits for systems genetics in disjoint samples
- 5
- 6 AUTHORS: Daniel A. Skelly¹, Narayanan Raghupathy¹, Raymond F. Robledo¹, Joel H.
- 7 Graber^{1,2}, Elissa J. Chesler^{1,3}
- 8
- 9 AFFILIATIONS:
- 10 ¹The Jackson Laboratory, Bar Harbor, ME 04609, USA
- 11 ²MDI Biological Laboratory, Bar Harbor, ME 04609, USA
- 12 ³Corresponding author:
- 13 Elissa J. Chesler
- 14 The Jackson Laboratory
- 15 600 Main St.
- 16 Bar Harbor ME 04609
- 17 207-288-6453
- 18 elissa.chesler@jax.org
- 19

20 ABSTRACT

21

22 Systems genetic analysis of complex traits involves the integrated analysis of 23 genetic, genomic, and disease related measures. However, these data are often 24 collected separately across multiple study populations, rendering direct correlation 25 of molecular features to complex traits impossible. Recent transcriptome-wide 26 association studies (TWAS) have harnessed gene expression quantitative trait loci 27 (eOTL) to associate unmeasured gene expression with a complex trait in genotyped 28 individuals, but this approach relies primarily on strong eOTLs. We propose a 29 simple and powerful alternative strategy for correlating independently obtained 30 sets of complex traits and molecular features. In contrast to TWAS, our approach 31 gains precision by correlating complex traits through a common set of continuous 32 phenotypes instead of genetic predictors, and can identify transcript-trait 33 correlations for which the regulation is not genetic. In our approach, a set of 34 multiple quantitative "reference" traits is measured across all individuals, while 35 measures of the complex trait of interest and transcriptional profiles are obtained in 36 disjoint sub-samples. A conventional multivariate statistical method, canonical 37 correlation analysis, is used to relate the reference traits and traits of interest in 38 order to identify gene expression correlates. We evaluate power and sample size 39 requirements of this methodology, as well as performance relative to other 40 methods, via extensive simulation and analysis of a behavioral genetics experiment 41 in 258 Diversity Outbred mice involving two independent sets of anxiety-related 42 behaviors and hippocampal gene expression. After splitting the dataset and hiding

43	one set of anxiety-related traits in half the samples, we identified transcripts
44	correlated with the hidden traits using the other set of anxiety-related traits and
45	exploiting the highest canonical correlation ($R = 0.69$) between the trait datasets.
46	We demonstrate that this approach outperforms TWAS in identifying associated
47	transcripts. Together, these results demonstrate the validity, reliability, and power
48	of the reference trait method for identifying relations between complex traits and
49	their molecular substrates.

51 AUTHOR SUMMARY

52

53	Systems genetics exploits natural genetic variation and high-throughput
54	measurements of molecular intermediates to dissect genetic contributions to
55	complex traits. An important goal of this strategy is to correlate molecular features,
56	such as transcript or protein abundance, with complex traits. For practical,
57	technical, or financial reasons, it may be impossible to measure complex traits and
58	molecular intermediates on the same individuals. Instead, in some cases these two
59	sets of traits may be measured on independent cohorts. We outline a method,
60	reference trait analysis, for identifying molecular correlates of complex traits in this
61	scenario. We show that our method powerfully identifies complex trait correlates
62	across a wide range of parameters that are biologically plausible and experimentally
63	practical. Furthermore, we show that reference trait analysis can identify
64	transcripts correlated to a complex trait more accurately than approaches such as
65	TWAS that use genetic variation to predict gene expression. Reference trait analysis
66	will contribute to furthering our understanding of variation in complex traits by
67	identifying molecular correlates of complex traits that are measured in different
68	individuals.

70 INTRODUCTION

72	A major goal of complex trait analysis is to discover pathways and mechanisms
73	associated with disease. By definition, these traits exhibit hallmarks of genetic
74	complexity including pleiotropy, epistasis, and gene-environment interaction.
75	Genetic mapping is a powerful approach for detecting quantitative trait loci that
76	influence complex trait variation, but it has limited power for detecting small effect
77	loci and can suffer from poor mapping resolution, hindering the identification of
78	causal genes. Moreover, these causal genetic variants do not always reside in
79	relevant therapeutic targets. Therefore, many systems genetic strategies have
80	emerged to correlate complex traits directly with molecular phenotypic variation,
81	with the goal of constructing molecular networks that are correlated with trait
82	variation from a trait-relevant tissue or cell population.
83	
84	Ideally, trait correlation networks are constructed using direct phenotypic
85	measurements for each member of a population. However, there are wide-ranging
86	questions for which this approach is infeasible or impossible because it is physically,
87	technically, or financially impossible to obtain all of the measures in the same
88	individuals. To refer to phenotypes whose measurement on the same individual is
89	infeasible or impossible, we will use the term incompatible phenotypes.
90	Incompatible phenotypes arise in common experimental designs such as studies of
91	susceptibility to exposure effects where the exposure affects physiology (e.g.
92	predisposition to psychostimulant addiction) or studies of disease that relate early

93	stage changes to late stage outcomes (e.g. early molecular correlates predictive of
94	Alzheimer's disease risk). Moreover, incompatible phenotypes arise when the
95	original study population no longer is available but there is a desire to extend the
96	study to a new set of traits, a situation that is common in human genetic analyses.
97	Finally, phenotypes could be incompatible for strictly financial or logistical reasons,
98	for example due to prohibitively high costs of genomic assays in large cohorts,
99	leading to fractional collection of data on some samples and more thorough
100	characterization of others.
101	
102	One emerging approach for relating gene expression and complex traits measured
103	in different cohorts of genetically diverse individuals is to exploit genetic variants
104	that affect gene expression (eQTL) to impute transcript abundance from genotypes
105	alone (Gamazon <i>et al.</i> 2015; Gusev <i>et al.</i> 2016a; b; Mancuso <i>et al.</i> 2017; Barbeira <i>et</i>
106	al. 2017). This enables estimation of the association between imputed gene
107	expression and complex traits, an approach that has been called a transcriptome-
108	wide association study (TWAS; Gusev et al. 2016a). However, the TWAS approach
109	suffers from several limitations, most notably a reliance on strong local (presumably
110	<i>cis</i> -acting) eQTL and consequent inability to impute transcript abundance for genes
111	without detected eQTL. In contrast to using sparse, discrete genotypes to impute
112	per-individual gene expression and infer correlation to complex traits, our approach
113	uses shared variation across a rich set of quantitative, multidimensional phenotypes
114	to infer gene expression correlates of phenotypic variability.
115	

116	Rather than impute gene expression from genetic data, another strategy is to impute
117	phenotypic data from other phenotypes. Hormozdiari et al. (2016a) used this
118	approach to impute unmeasured phenotypes in the context of genome-wide
119	association studies (GWAS; Hormozdiari et al. 2016a). Specifically, the method of
120	Hormozdiari et al. (2016a) uses the correlation structure in one set of traits to
121	predict a single unmeasured target trait in a second cohort using only phenotypic
122	data. In the present study, we extend this strategy to multivariate phenotyping and
123	apply it to transcriptomics, providing a precise transcript-to-trait correlation
124	approach that can be compared to the TWAS method.
125	
126	We outline a simple method, reference trait analysis, to study relations between a
127	set of complex traits of interest (<i>target traits</i>) and a set of high-dimensional
128	molecular traits obtained in disjoint subsets of individuals. Reference trait analysis
129	relates these two incompatible, multidimensional sets of phenotypes indirectly
130	through the use of a shared set of <i>reference traits</i> measured in all individuals. Since
131	target and molecular traits are not measured in the same individuals, direct
132	comparisons are impossible. Instead, we relate these traits through reference traits.
133	Reference traits are best chosen with <i>a priori</i> knowledge that they share biological
134	underpinnings with target traits. This relationship between reference and target
135	traits is exploited to compute scores from reference traits that capture variation in
136	unmeasured target traits and can be directly related to transcriptional profiles. By
137	design, our method is robust to the detection of transcript-trait associations for
138	which the regulation is not genetic or is characterized by multiple weak, indirect

139	genetic effects. Therefore, it captures biological variability associated with both
140	genetic and environmental sources of vulnerability, and has the potential to identify
141	molecular networks of complex trait variation even when there is insufficient power
142	to detect a quantitative trait locus or genome-wide significant SNP association.
143	
144	In this study we develop and evaluate the reference trait analysis method using data
145	from a previously published behavioral study of Diversity Outbred mice (Logan <i>et</i>
146	al. 2013). Diversity Outbred mice are genetically unique; consequently, per subject
147	terminal traits such as brain gene expression can only be obtained in a single
148	exposure condition. However, the approach we propose can be useful in any
149	heterogeneous population for which a common reference set of traits is assessed.
150	Our assessment data set consists of multiple measures of anxiety-related traits in a
151	sample of Diversity Outbred mice, all of whom have been subjected to brain
152	transcriptional profiling as well as measurements of two sets of related behaviors.
153	We present an overview of our method, use these data to assess sample size
154	requirements, and quantify the method's reliability across a range of target-
155	reference trait correlations. Finally, we test whether the reference trait method
156	more faithfully recovers trait-gene expression correlations than the TWAS
157	approach.
158	
159	

10 /

161 RESULTS AND DISCUSSION

162

- 163 *Outline of Approach*
- 164

182

165	The reference trait analysis procedure is straightforward, and relies on well-
166	characterized canonical correlation analysis. Beginning with a population of
167	individuals, reference traits (labeled using the variable U) are measured on all
168	individuals, target traits (labeled with <i>V</i>) on the <i>training</i> cohort, and high
169	dimensional molecular traits (labeled with <i>M</i>) on the <i>testing</i> cohort (Figure 1).
170	Although target traits and their molecular correlates are of primary interest, the
171	choice of reference traits is an important aspect of the method. First, as we will
172	show, the strength of the multivariate relationship between target and reference
173	traits is a key parameter determining the power to detect trait-transcript
174	correlations. Second, because our method leverages shared variation between target
175	and reference traits, it identifies trait-transcript correlations driven by the portion
176	of target trait variation that is shared with reference traits. For example, studying
177	addiction-related traits using novelty behaviors as reference traits would be
178	expected to uncover transcripts associated with addiction behaviors through
179	biological pathways that also contribute to the etiology of novelty-seeking
180	behaviors.
181	

183 1936), which can be thought of as a parent analysis of the more familiar multiple

To conduct reference trait analysis, we employ canonical correlation (Hotelling

184	regression. A multiple regression of Y on X models the relationships between
185	multiple X measures X_1, X_2, \dots, X_p and univariate Y. In contrast, canonical correlation
186	reveals the magnitude and nature of relationships between multivariate U and V , e.g.
187	U_1, U_2, \dots, U_p and V_1, V_2, \dots, V_q . Specifically, canonical correlation identifies linear
188	combinations of two multivariate measures U and V such that the (univariate) linear
189	combinations of each measure $ec{u}$ and $ec{v}$, known as canonical variables, are maximally
190	correlated. In this study we use canonical correlation to build linear combinations of
191	reference traits (transforming U to $ec{u}$) that maximize shared variance with target
192	traits (V) in the set of training individuals. The possible number of canonical
193	variables is limited to the size of the smaller of U and V , and each successive
194	covariate captures a diminishing proportion of the shared variance between the
195	traits. In this study we focus on the first canonical variable, $ec{u}_1$ or $ec{v}_1$, which explains
196	the largest fraction of shared variance between U and V . This quantity can be
197	thought of as a summary of each set of traits analogous to their first principal
198	component, but rather than being aligned with the axis of maximal variation <i>among</i>
199	a single set of variables, it is aligned in the direction of maximal shared variation
200	<i>between</i> the two sets of traits <i>U</i> and <i>V</i> . For datasets with a very large number of
201	reference and/or target traits (i.e. <i>p</i> >> <i>n</i>), sparse canonical correlation analysis
202	(Witten and Tibshirani 2009; Wilms and Croux 2016) may reduce over-fitting, but
203	this situation is not common when relating two sets of traits U and V that contain
204	organism-level phenotypes as opposed to molecular features.
205	

206	The analysis of training data defines canonical coefficients that can be used to
207	compute first canonical variables from individual-level trait data (i.e. transform U to
208	$ec{u}_1$ or V to $ec{v}_1$). We use these coefficients learned from the training data (Figure 1, top)
209	to transform reference trait data from the testing cohort U' , which projects these
210	data in the direction of maximal shared variation with target traits. Thus, these
211	"projected" traits $ec{u}_1'$ optimally capture the portion of variation shared between
212	reference and target traits due to their underlying genetic and environmental
213	covariation. Projected traits are then compared to high-dimensional genomic
214	measurements to extract molecular phenotypes in one sample set that co-vary with
215	target traits from another group (Figure 1, bottom right).
216	
217	Transitive reliability captures global patterns of covariation between incompatible
218	traits
219	
220	Reference trait analysis reveals covariation between molecular phenotypes and
221	target trait variation. There are many possible applications of this strategy. For
222	example, in addiction research, many studies evaluate transcriptional response to
223	drug exposure but are unable to evaluate the predisposing characteristics of a drug
224	naïve brain that associate with addiction-related behaviors. Using a reference trait
225	strategy, one can evaluate the transcriptomes of drug naïve brains and relate them
226	to the response to drug self-administration through a set of reference traits that do
227	not involve drug eveneques. We have previously estimated the accordination of nevelty

227 not involve drug exposure. We have previously estimated the association of novelty

228 seeking and drug self-administration in mice, revealing a canonical correlation of

229 0.61 among these sets of traits (Dickson *et al.* 2015).

231	To evaluate whether the reference traits strategy could be applied to find
232	transcriptional correlates of drug self-administration, we used a dataset where
233	reference, target, and molecular trait profiling were performed on the same
234	individuals to allow for assessment of the accuracy and robustness of the method. In
235	this data set, transcriptional profiles, target traits, and reference traits are available
236	for all individuals. This allows evaluation of the properties of the reference trait
237	strategy, including robustness and sample size requirements. Specifically, we
238	studied relationships between two distinct sets of anxiety-related traits and
239	hippocampal gene expression, where all traits were measured in each of $N = 258$
240	Diversity Outbred mice (Logan et al. 2013). The anxiety-related traits consisted of
241	eleven measurements of open-field arena exploration behaviors and five
242	measurements of light-dark box behaviors (Supplementary Table 1). A canonical
243	correlation analysis of these two sets of traits yielded a statistically significant
244	model (F _{55,1123.75} = 4.48, $p < 2 \times 10^{-16}$, Wilk's λ = 0.400) that had a first canonical
245	correlation coefficient of magnitude 0.69. This was higher than all univariate
246	correlations between open-field and light-dark box traits (median 0.11, maximum
247	0.65), and similar in magnitude to the shared variation revealed by the first
248	canonical variable in the motivating analysis of novelty-related behaviors and
249	cocaine self-administration (Dickson et al. 2015). We arbitrarily designated the
250	open-field traits as target traits and light-dark box traits as reference traits. For

reference trait analysis, we hid gene expression data for some mice (training set)and open-field data for the remaining mice (testing set).

253

254	In this evaluation of reference trait analysis, we know the true values of all hidden
255	data and can directly evaluate the power of the method to reveal gene expression
256	patterns associated with target trait variation. Specifically, we estimate canonical
257	coefficients (weights to calculate canonical variables) from the training set and use
258	them to calculate projected traits $ec{u}_1'$ in the testing set. To quantify the performance
259	of reference trait analysis when the true answer is known, we computed
260	correlations in testing set animals between gene expression E and either (1) the first
261	projected trait \vec{u}_1' , cor (<i>E</i> , \vec{u}_1') or (2) the first canonical variable computed using
262	hidden target traits $ec{v}_1'$, cor(<i>E</i> , $ec{v}_1'$). The latter quantity, the "truth", is unavailable in a
263	real application of reference trait analysis. A set of reference traits that perfectly
264	captures all variation in target traits would result in a vector of gene expression-
265	trait correlations that is identical whether the target traits were known or projected
266	from reference traits (i.e. the reference traits serve as a perfect surrogate for target
267	traits). We define <i>transitive reliability</i> as the correlation between these vectors i.e.
268	cor[cor(<i>E</i> , \vec{u}'_1), cor(<i>E</i> , \vec{v}'_1)]. High transitive reliability would indicate that strong
269	correlations between gene expression and target traits are likely to be identified
270	using projected traits.

271

272 Transitive reliability, estimated using real gene expression data and simulated273 canonical variables with known correlation, scales linearly with the magnitude of

274 the canonical correlation coefficient (Figure 2A), confirming our intuition that 275 greater sharing of variation between target and reference traits increases the utility 276 of leveraging reference traits to understand target trait variation. We divided the 277 anxiety dataset into equally sized subsets (partially overlapping for larger sample 278 sizes) to examine the dependence of transitive reliability on sample size. The 279 canonical correlation was upwardly biased for small sample sizes (N < 90; data not 280 shown), as has previously been recognized (e.g. Thompson 1990). When we used 281 Wherry's correction as suggested by Thompson (1990), canonical correlations no 282 longer depended on sample size (linear model; p > 0.8). Overall, transitive reliability 283 asymptotically approached the magnitude of the canonical correlation coefficient 284 calculated from the full dataset (Figure 2B, black line), demonstrating that global 285 patterns of trait-gene expression correlation can be recovered with relatively 286 modest sample sizes using the reference trait approach. In contrast, weights from 287 the smallest (fifth) canonical covariate, which captures little shared variation 288 between datasets, produced low transitive reliabilities (median 0.11). 289 Reference trait analysis successfully identifies known trait correlations 290 291

292 Ultimately, the primary goal of reference trait analysis is to identify molecular

293 correlates of unmeasured phenotypes. To discover these correlates, individual gene

- 294 expression levels are correlated to projected traits. To test this strategy, we first
- 295 employed reference trait analysis on the anxiety-related phenotype data described
- above. After randomly splitting the dataset and withholding open-field data

297	(arbitrarily designated as target traits) in half the individuals, we identified gene
298	expression levels correlated to projected reference traits. We found high overlap
299	between the genes most strongly correlated with hidden target trait canonical
300	variable 1 and those most strongly correlated with projected traits (23% overlap
301	among genes with top 5% of correlations to each trait, compare to 2.5% expected
302	overlap; $p < 1 \times 10^{-15}$, Fisher's Exact Test). Across all genes, including those with
303	weaker correlations, we found that the vector of trait-gene expression correlations
304	computed using reference trait analysis showed significant similarity to the true
305	correlations ($p < 0.001$, permutation test using generalized Jaccard similarity
306	statistic). Moreover, in contrast to the alternative methods for identifying trait-gene
307	expression correlations discussed above, some correlations detected using
308	reference trait analysis involved genes with no significant eQTL (e.g. 42% of top 50
309	correlations). These genes, which are demonstrably associated with trait variation,
310	would not be detectable using TWAS type approaches.
311	
312	To examine the power and robustness of reference trait analysis across a wide
313	range of biologically plausible parameter values, we conducted extensive
314	simulations. We simulated data across a range of sample sizes (100, 200, 300,,
315	1000, 1200, 1400,, 2000) and enforced a similar covariance structure to the
316	observed data. Specifically, data were simulated using observed covariances within
317	each set of anxiety traits, but we perturbed covariances between the two sets of
318	traits in order to generate datasets with varying canonical correlations. We then
319	simulated gene expression levels with known correlation to the first target trait

320 canonical variable, \vec{v}_1 ($\rho = 0.2, 0.225, 0.25, ..., 0.9$ with 20 genes each). We simulated 321 trait data and gene expression data at random for each of 1,000 simulations for each 322 sample size.

323

324	For each simulation, after hiding target traits in half the individuals and gene
325	expression data in the other half, we conducted reference trait analysis. We
326	computed projected reference traits, correlated to gene expression, and quantified
327	performance as the fraction of true trait-gene expression correlations that were
328	detected using a 10% false discovery rate (FDR) threshold. For high trait-gene
329	correlations (ρ > 0.6) and strong target-reference trait canonical correlations (R =
330	0.7 or 0.9), the correlation of interest was essentially always detected (Figure 3). For
331	lower target-reference trait canonical correlations (R = 0.5), even relatively modest
332	true trait-gene expression correlations (e.g. ρ = 0.3) were often detected with
333	sample sizes above \sim 300 individuals (Figure 3). Thus, reference trait analysis was a
334	highly effective means for identifying trait-gene expression correlations across a
335	diverse range of practical sample sizes, typical values for trait-to-gene expression
336	correlation, and canonical correlation parameters.
337	
338	Comparison of reference trait analysis to related approaches

339

340 An alternative approach to identifying genes associated with complex traits is to

341 make use of known genetic variation that regulates gene expression (gene

342 expression QTL or eQTL). There has been considerable recent interest in methods

343	that integrate complex trait associations and gene expression genetics in order to
344	identify genes whose expression is associated with trait variation (Nica et al. 2010;
345	Wallace <i>et al</i> . 2012; He <i>et al</i> . 2013; Gamazon <i>et al</i> . 2015; Gusev <i>et al</i> . 2016a; Zhu <i>et</i>
346	<i>al.</i> 2016; Hormozdiari <i>et al.</i> 2016b; Wen <i>et al.</i> 2017; Hauberg <i>et al.</i> 2017). Several
347	methods perform tests of the hypothesis that genome-wide association (GWA)
348	signals and eQTLs are truly colocalized versus independent but appearing
349	colocalized due to linkage disequilibrium (Nica <i>et al.</i> 2010; Wallace <i>et al.</i> 2012;
350	Giambartolomei <i>et al.</i> 2014; Fortune <i>et al.</i> 2015; Zhu <i>et al.</i> 2016; Hormozdiari <i>et al.</i>
351	2016b; Wen <i>et al.</i> 2017; Hauberg <i>et al.</i> 2017). Another approach that is more
352	directly applicable to the experimental designs studied herein is to harness strong
353	genetic predictors of gene expression variation (eQTL) to impute transcriptomes in
354	genotyped and phenotyped cohorts, which allows detection of trait-expression
355	correlations (the TWAS approach; Gamazon <i>et al.</i> 2015; Gusev <i>et al.</i> 2016a; b;
356	Mancuso <i>et al.</i> 2017; Barbeira <i>et al.</i> 2017). TWAS is an approach that is
357	complementary to reference trait analysis, and has been a particularly powerful
358	method for discovery of candidate genes driving GWA signals detected in very large
359	human cohorts (tens or hundreds of thousands of individuals). Supplementary
360	Figure 1 provides a comparison of genotype, phenotype, and gene expression data
361	in the reference traits and TWAS strategies. One weakness of the TWAS approach is
362	that it hinges on the presence of detectable eQTL (typically local, presumably cis-
363	acting eQTL; but see He <i>et al.</i> 2013; Vervier and Michaelson 2016). In humans, even
364	panels of 1,000 individuals with gene expression measurements only result in a
365	modest number of genes (500-4,000) with significant <i>cis</i> -heritability that can be

366 imputed in the cohort lacking gene expression data (Gusev et al. 2016a). In contrast, 367 reference trait analysis has no requirement for detection of eOTLs, and therefore it 368 is amenable to detect of correlation of transcripts with complex expression 369 regulatory mechanisms to traits of similarly complex regulation, and retains 370 performance across lower sample sizes, as we demonstrate below. 371 372 Although TWAS and reference trait analysis utilize different data types, both are 373 tools inferring relations between complex traits and transcript abundance, so we 374 sought to compare their performance on the same dataset. For TWAS, we used 375 methods implemented in the software suite PrediXcan (Gamazon *et al.* 2015). We 376 randomly divided our anxiety dataset in half and considered open-field 377 measurements as target traits. We withheld gene expression measurements in half 378 the animals; therefore, only genotype and reference trait data were visible for all 379 animals. We built predictive models of gene expression from the training cohort of 380 mice, applied these models to impute gene expression in the testing cohort, and 381 calculated correlations between imputed gene expression and a summary measure 382 of the target traits (first canonical variable). We conducted 1,000 permutations with 383 random 50:50 divisions of the anxiety dataset to account for stochastic sampling 384 effects. For each replicate, we compared global trait-gene expression correlations 385 for PredictDB-imputed gene expression versus those computed using projected 386 traits obtained with our new method. In the former case, trait data is available and 387 gene expression data is imputed, while in the latter case gene expression data is 388 available and trait data is imputed.

389

20.0	Ean divert compositions hot was a reference tweit on alwais and TMAC was not				
390	For direct comparisons between reference trait analysis and TWAS, we ran				
391	reference trait analysis using only genes that were significantly predicted by the				
392	PredictDB module of PrediXcan (FDR < 5%; see Methods). Across the 1,000				
393	permutations, we imputed gene expression for a mean 12,250 genes (range 11,640-				
394	12,750; mean represents \sim 70% of total 17,539 genes measured), indicating that a				
395	substantial fraction of genes has insufficient local genetic signal for accurate				
396	imputation. An advantage of reference trait analysis is that it is not limited by the				
397	presence of strong eQTL and all genes can be tested for association with projected				
398	reference traits. For each of the 1,000 permutations, we computed the transitive				
399	reliability of TWAS and of reference trait analysis. Reference trait analysis more				
400	accurately captured global patterns of trait-transcript correlation than TWAS				
401	(Figure 4). Specifically, transitive reliability for target trait first canonical covariate-				
402	gene expression correlations was higher using the reference trait approach				
403	(measured gene expression and projected reference traits) compared to the TWAS				
404	approach (imputed gene expression and measured traits) for 92.7% of simulations				
405	(Figure 4; Supplementary Figure 2 shows an example of results from one				
406	permutation). Thus, we show empirically that reference trait analysis outperforms				
407	TWAS in the mouse anxiety dataset.				
408					
409	In addition to the quantitative comparison of the methods, we sought to determine				

410 which approach provided the best retrieval of known anxiety related genes. To

411 perform this analysis we made use of GeneWeaver's database of gene sets curated

412 from multiple sources (Baker *et al.* 2016). The top four hundred genes identified 413 using each analysis method were entered as three gene lists, and each gene list was 414 compared to every gene set in the GeneWeaver database via Jaccard similarity. For 415 each, the top 249 similar gene sets were exported, and a rater with expertise in 416 behavioral neuroscience who was blind to the analysis methods scored a combined 417 list of all similar gene sets obtained in these three analyses. Gene sets were 418 categorized discretely based on relevance to anxiety, with categories including 419 irrelevant, generally relevant to brain or behavior, and specifically relevant to 420 anxiety. We found that true open-field first canonical variable—gene expression 421 correlations had highest relevance to anxiety. The top truly correlated genes were 422 similar to gene sets more relevant to anxiety than those genes identified using 423 reference traits or those using TWAS (p = 0.0065 and $p = 1.5 \times 10^{-14}$, respectively; 424 two-sided Fisher's Exact Test). Nevertheless, reference trait analysis performed 425 significantly better than TWAS at identifying genes with similarity to anxiety-426 relevant gene sets ($p = 7.3 \times 10^{-6}$).

427

Finally, another alternative to relating traits and transcripts between population
cohorts is to make use of polygenic risk predictors trained using genome-wide
genotypes and phenotypes, and applied to individuals with genotypes but missing
phenotypes (in this case, samples with only transcriptional profiles available)
(Makowsky *et al.* 2011; Dudbridge 2013; Wray *et al.* 2013). However, theoretical
considerations and empirical results suggest that this approach generally requires
sample sizes much larger than 1,000 individuals to obtain accurate predictions

- 435 (Dudbridge 2013). In the context of reference trait analysis, relating complex
- 436 reference and target traits that share high canonical correlation implicitly leverages
- 437 the common polygenic or omnigenic (Boyle *et al.* 2017) basis of these traits by
- 438 making use of all of the information contained in continuous quantitative variation.

439

441 Conclusions

442

443	We have described a general method for exploring trait covariation among
444	incompatible and independently collected phenotypes studied in disjoint samples of
445	genetically diverse individuals to extract molecular networks associated with
446	disease. Our method utilizes canonical correlation analysis, a standard multivariate
447	statistical method, to relate incompatible phenotypes using a set of reference traits
448	measured on all individuals. Our analyses demonstrate that this approach performs
449	well over a range of parameters typically encountered in the study of trait
450	correlations, and under sample size requirements that are practical to obtain. This
451	approach can be useful both for capturing global patterns of covariation between
452	target traits and high-dimensional molecular phenotypes, as well as for identifying
453	specific molecular correlates to target traits. Our method identifies trait-gene
454	expression associations and we do not assert that these associations are necessarily
455	causal, as has been recognized by studies relating GWAS results and eQTL (Gamazon
456	<i>et al.</i> 2015; Gusev <i>et al.</i> 2016a; Hauberg <i>et al.</i> 2017).
457	

458 When will reference trait analysis be a useful tool? Intuitively, and as demonstrated

459 in Figure 3, large sample sizes, precise trait measurements, and high shared

460 variance between reference and target traits would allow for the most accurate

461 estimation of canonical correlation coefficients and high power to detect

462 correlations to molecular phenotypes. Although our method could be applied in a

463 wide variety of scenarios, it is likely to be particularly useful for studies of highly

464	complex, polygenic, multidimensional traits (e.g. behavior, physiology, and
465	morphology) in cohorts of modest size. As with any method that applies information
466	learned from one cohort to biological measures from another cohort, reference trait
467	analysis requires the absence of systematic differences (i.e. heterogeneity in
468	population characteristics) between the training and testing cohorts. For very large
469	cohorts of individuals where obtaining suitable reference traits may be difficult,
470	polygenic scores based on either genetic predictors alone or on a combination of
471	genetic and environmental risk factors (Dudbridge <i>et al.</i> 2017) may be a valuable
472	approach for predicting phenotypic variation in a test cohort that can then be
473	correlated with molecular networks.
474	
475	Although our application of reference trait analysis involves correlations to high
476	dimensional molecular phenotypes, the method could, in principle, be applied to any
477	sets of phenotypes that are multivariate in nature. Moreover, the high relative
477 478	sets of phenotypes that are multivariate in nature. Moreover, the high relative performance of our method underscores the importance of extensive phenotyping
478	performance of our method underscores the importance of extensive phenotyping
478 479	performance of our method underscores the importance of extensive phenotyping using quantitative traits rather than relying on binary indicators of disease and
478 479 480	performance of our method underscores the importance of extensive phenotyping using quantitative traits rather than relying on binary indicators of disease and disease-related phenotypes that may mask complex underlying etiologies. We
478 479 480 481	performance of our method underscores the importance of extensive phenotyping using quantitative traits rather than relying on binary indicators of disease and disease-related phenotypes that may mask complex underlying etiologies. We anticipate that the framework outlined in this study will be increasingly useful as
478 479 480 481 482	performance of our method underscores the importance of extensive phenotyping using quantitative traits rather than relying on binary indicators of disease and disease-related phenotypes that may mask complex underlying etiologies. We anticipate that the framework outlined in this study will be increasingly useful as studies of diverse, genetically unique populations become more widespread. A
478 479 480 481 482 483	performance of our method underscores the importance of extensive phenotyping using quantitative traits rather than relying on binary indicators of disease and disease-related phenotypes that may mask complex underlying etiologies. We anticipate that the framework outlined in this study will be increasingly useful as studies of diverse, genetically unique populations become more widespread. A useful future extension to this approach would incorporate statistical techniques

- 487 particularly important in functional genomics studies, those utilizing post-mortem
- 488 subjects, and large population studies in which individuals are unavailable for
- 489 further characterization.
- 490
- 491

493 Materials and Methods

494

- 495 Mouse rearing and phenotyping
- 496

497	Diversity Outbred mice (J:DO, The Jackson Laboratory) are a heterogeneous stock
498	derived from the same eight founder strains as the Collaborative Cross (Svenson <i>et</i>
499	al. 2012; Churchill et al. 2012; Gatti et al. 2014; Chesler et al. 2016). In this study we
500	used a subset ($N = 258$) of the 283 Diversity Outbred mice studied by Logan et al.
501	(2013) with hippocampal gene expression profiled by RNA-Seq (see below). Mice in
502	this study were from generations 4 to 5 (G4-G5) of the DO population. Briefly, each
503	mouse was acclimated to the housing area, and subject to a brief testing battery
504	which included a 20 minute novel open-field test and a 10 minute light-dark test,
505	among other common behavioral tasks. The open-field and light-dark tests are used
506	to measure exploratory activity and approach-avoidance behavior. Many complex
507	trait measures can be extracted from these tasks. For this analysis, we chose two
508	sets of informative measures (Supplementary Table 1). Complete details of animal
509	rearing, husbandry and phenotyping are presented in Logan et al. (2013). Mice were
510	sacrificed using decapitation which was necessary to preserve fresh brain tissue in
511	the absence of drug or asphyxiation. All procedures and protocols were approved by
512	The Jackson Laboratory Animal Care and Use Committee, and were conducted in
513	compliance with the National Institutes of Health Guidelines for the Care and Use of
514	Laboratory Animals.

516 Genotyping

517

518	DNA was prepared from	ı tail biopsies and	l samples were	egenotyped	l using the Mouse
-----	-----------------------	---------------------	----------------	------------	-------------------

- 519 Univeral Genotyping Array (MUGA) (Morgan *et al.* 2016). We obtained genotypes at
- 520 7,802 markers from arrays processed by GeneSeek (Lincoln, NE). We used
- 521 intensities from each array to infer the haplotype blocks in each individual DO

522 genome using a hidden Markov model (Gatti *et al.* 2014).

523

524 Gene expression profiling

525

526 Total hippocampal RNA was isolated using the TRIzol® Plus RNA purification kit

527 (Life Technologies Corp., Carlsbad, CA) with on-column DNase digestion. Samples

528 for RNA-Seq analysis were prepared using the TruSeq kit (Illumina Inc., San Diego,

529 CA) according to the manufacturer's protocols and subjected to paired-end 100 base

530 pair sequencing on the HiSeq 2000 (Illumina) per manufacturer's

531 recommendations. RNA sequencing was performed in nine sequencing runs with

two technical replicates for each sample, resulting in an averaging sequencing depth

533 of approximately 24 million reads per sample after pooling technical replicates. To

534 obtain estimates of gene expression, we aligned reads to individualized diploid

535 genomes using the bowtie aligner (Langmead *et al.* 2009) and quantified transcript

536 abundance by allocating multi-mapping reads using the EM algorithm with RSEM (Li

and Dewey 2011) as described in Munger et al. (2014). Raw counts in each sample

538 were normalized to the upper quartile value and transformed to normal scores.

539 Reference trait analysis

541	We conducted reference trait analysis using R version 3.3.2 (R Core Team 2016).
542	Canonical correlation analysis was carried out using the cancor function in base R.
543	We regressed out the effect of sex on each phenotype because it is not of primary
544	interest in this study. An example walk-through of a reference trait analysis and
545	code to carry out the analyses described in this paper are available at
546	https://daskelly.github.io/reference_traits/reference_trait_analysis_walkthrough.ht
547	ml.
548	
549	To examine the power and robustness of reference trait analysis, we simulated data
550	with varying sample sizes and canonical correlation coefficients. We based our
551	simulations on the anxiety phenotype data, consisting of open-field exploration and
552	light-dark box behavioral measures. Specifically, for each of 1,000 simulations we
553	started with the covariance matrix computed from five open-field and five light-dark
554	box traits and randomly increased or decreased each of the $5 \times 5 = 25$ inter-dataset
555	covariances by 20%. We then simulated multivariate normal phenotype data with
556	the specified covariance matrix. This procedure resulted in two multivariate
557	datasets (simulated open-field and light-dark box traits), where the covariance
558	structure <i>within</i> each dataset was similar to that in the real data but with different
559	covariances <i>between</i> datasets. When a canonical correlation analysis was carried out
560	on each pair of simulated datasets, the magnitude of the first canonical correlation

561 coefficient varied between R = 0.35 and R = 0.98, due to the variation in inter-

- 562 dataset covariances.
- 563

000	
564	We simulated gene expression traits with exact correlation to the first target trait
565	canonical variable $ec{v}_1$ in the simulated dataset. In order to simulate a random vector
566	of observations with defined correlation to an existing vector, we took advantage of
567	the geometric property that the cosine between two mean-centered vectors equals
568	their correlation. Therefore, a random vector with defined correlation to an existing
569	vector can be computed by starting with random draws from a normal distribution,
570	mean-centering, and applying standard linear algebra operations.
571	
572	After hiding target traits in half the individuals and gene expression data in the
573	other half, we conducted reference trait analysis and quantified performance as the
574	fraction of the time true trait-gene expression correlations were detected using a
575	10% FDR threshold. <i>P</i> -values for trait-gene expression correlations were calculated
576	using a two-sided T statistic and correlations deemed significant at a 10% FDR were
577	identified using q-values (Storey and Tibshirani 2003).
578	
579	Imputing gene expression using TWAS
580	

581 We divided the anxiety dataset in half and considered open-field measurements as

582 target traits, hiding gene expression measurements for the animals where we did

not hide open-field traits. For the TWAS strategy, our training cohort consisted of

584	animals with genotypes and gene expression data, and our testing cohort consisted
585	of animals with genotypes and open-field traits (i.e. training/testing labels are
586	reversed from reference trait analysis, see Supplementary Figure 1). Diversity
587	Outbred mice are an outbred population with genomic ancestry derived from eight
588	inbred founder strains. We used methods implemented in R/qtl2 software
589	(http://kbroman.org/qtl2/) to impute single nucleotide polymorphism (SNP)
590	variation in each mouse from array-based genotypes obtained at coarser resolution
591	(see above) using known SNP genotypes present in founder haplotypes. This
592	resulted in genotypes for ${\sim}30$ million SNPs. Given the limited number of
593	generations of outbreeding, haplotype blocks in Diversity Outbred mice typically
594	stretch for megabases (Svenson <i>et al.</i> 2012), leading to strong local linkage
595	disequilibrium (LD). As such, we used PLINK version 1.9 (Purcell <i>et al.</i> 2007) to
596	prune variants in very strong LD in the eight founder strains, using the parameters -
597	-indep-pairwise 200kb 40kb 0.95. This procedure reduced the number of SNPs to
598	235,335 with minimal loss of information.
599	
600	To impute gene expression, we used the PredictDB module of PrediXcan (Gamazon

To impute gene expression, we used the PredictDB module of PrediXcan (Gamazon *et al.* 2015) to build predictive models of gene expression from local genotypes within 10Mb of each gene, with sex included as a covariate. We conducted 1,000 permutations with random 50:50 divisions of the anxiety dataset to account for stochastic sampling effects. For each replicate we obtained predictive models of gene expression by running PredictDB on the training cohort and applied them to the testing cohort in order to impute gene expression. Following Gamazon et al.

607	(2015; https://github.com/hakyimlab/PrediXcan), we considered only genes with
608	models that were significantly predictive of gene expression (FDR \leq 5%). Finally, we
609	calculated correlations between imputed gene expression and a summary measure
610	of the target traits (first canonical variable) in the testing cohort. Results were
611	nearly identical whether we correlated to the first canonical variable or first
612	principal component of the target traits (median transitive reliability 45% vs. 44%),
613	but correlations to first canonical variable allow for direct comparison with results
614	from reference trait analysis.
615	
616	Scoring gene sets to assess retrieval of known anxiety-related genes
617	
618	To score gene sets for relevance to anxiety, a rater with expertise in behavioral
618 619	To score gene sets for relevance to anxiety, a rater with expertise in behavioral neuroscience who was blind to the analysis methods scored a combined list of all
619	neuroscience who was blind to the analysis methods scored a combined list of all
619 620	neuroscience who was blind to the analysis methods scored a combined list of all gene sets obtained herein. We assigned a score of zero to irrelevant data sets, a
619 620 621	neuroscience who was blind to the analysis methods scored a combined list of all gene sets obtained herein. We assigned a score of zero to irrelevant data sets, a score of two to gene sets with general brain or behavior relevance, and a score of
619 620 621 622	neuroscience who was blind to the analysis methods scored a combined list of all gene sets obtained herein. We assigned a score of zero to irrelevant data sets, a score of two to gene sets with general brain or behavior relevance, and a score of four to anxiety relevant data sets in which either the gene set was generated in an
 619 620 621 622 623 	neuroscience who was blind to the analysis methods scored a combined list of all gene sets obtained herein. We assigned a score of zero to irrelevant data sets, a score of two to gene sets with general brain or behavior relevance, and a score of four to anxiety relevant data sets in which either the gene set was generated in an anxiety relevant experiment, the gene set consisted of genes interacting with a
 619 620 621 622 623 624 	neuroscience who was blind to the analysis methods scored a combined list of all gene sets obtained herein. We assigned a score of zero to irrelevant data sets, a score of two to gene sets with general brain or behavior relevance, and a score of four to anxiety relevant data sets in which either the gene set was generated in an anxiety relevant experiment, the gene set consisted of genes interacting with a compound known to be anxiolytic or anxiogenic, or the gene set was a Gene
 619 620 621 622 623 624 625 	neuroscience who was blind to the analysis methods scored a combined list of all gene sets obtained herein. We assigned a score of zero to irrelevant data sets, a score of two to gene sets with general brain or behavior relevance, and a score of four to anxiety relevant data sets in which either the gene set was generated in an anxiety relevant experiment, the gene set consisted of genes interacting with a compound known to be anxiolytic or anxiogenic, or the gene set was a Gene Ontology annotation set with direct biological relevance to anxiety. For compounds,

629 Data availability

630

631	Raw RNA-Seq gene	expression data fr	om the hippocampus of	f 258 Diversity Outbred
-----	------------------	--------------------	-----------------------	-------------------------

- 632 mice are available from ArrayExpress (accession number XXX). A processed and
- 633 normalized gene expression matrix is available as Supplementary Dataset 1.
- 634 Phenotype data acquired via the open-field and light-dark box paradigms are
- 635 available as Supplementary Datasets 2 and 3.
- 636
- 637 **Acknowledgements:** We thank Jackson Laboratory Genome Technologies for
- 638 assistance with library preparation and sequencing of RNA-Seq samples. We thank
- 639Daniel M. Gatti for assistance with processing mouse genotypes and obtaining
- 640 genotype probabilities for mapping, Juliet Ndukum for implementing an early
- 641 prototype of the reference trait analysis methodology, and Timothy Reynolds for
- 642 assistance with the GeneWeaver platform. This study was supported by National
- 643 Institutes of Health grants R01 DA037927 (EJC), R01 AA018776 (EJC), and P50
- 644 GM076468 (EJC) and by program funds to EJC from The Jackson Laboratory.
- 645

646 **Author contributions**:

- 647 DAS Conceptualization, Data Curation, Formal Analysis, Methodology, Software,
- 648 Visualization, Writing
- 649 NR Data Curation, Formal Analysis, Software
- 650 RFR Investigation, Methodology
- 651 JHG Formal Analysis

652 EJC – Conceptualization, Funding Acquisition, Methodology, Project Administration,

653 Supervision, Writing

655 References 656 657 Baker E., Bubier J. A., Revnolds T., Langston M. A., Chesler E. J., 2016 GeneWeaver: 658 data driven alignment of cross-species genomics in biology and disease. 659 Nucleic Acids Res. 44: D555-559. 660 Barbeira A. N., Dickinson S. P., Torres J. M., Bonazzola R., Zheng J., et al., 2017 661 Exploring the phenotypic consequences of tissue specific gene expression 662 variation inferred from GWAS summary statistics. bioRxiv: 045260. 663 Boyle E. A., Li Y. I., Pritchard J. K., 2017 An Expanded View of Complex Traits: From 664 Polygenic to Omnigenic. Cell 169: 1177–1186. 665 Chesler E. J., Gatti D. M., Morgan A. P., Strobel M., Trepanier L., *et al.*, 2016 Diversity 666 Outbred Mice at 21: Maintaining Allelic Variation in the Face of Selection. G3 667 Bethesda Md 6: 3893–3902. 668 Churchill G. A., Gatti D. M., Munger S. C., Svenson K. L., 2012 The Diversity Outbred 669 mouse population. Mamm. Genome Off. J. Int. Mamm. Genome Soc. 23: 713-670 718. 671 Dickson P. E., Ndukum J., Wilcox T., Clark J., Roy B., et al., 2015 Association of 672 novelty-related behaviors and intravenous cocaine self-administration in 673 Diversity Outbred mice. Psychopharmacology (Berl.) 232: 1011–1024. 674 Dudbridge F., 2013 Power and Predictive Accuracy of Polygenic Risk Scores. PLOS 675 Genet. 9: e1003348.

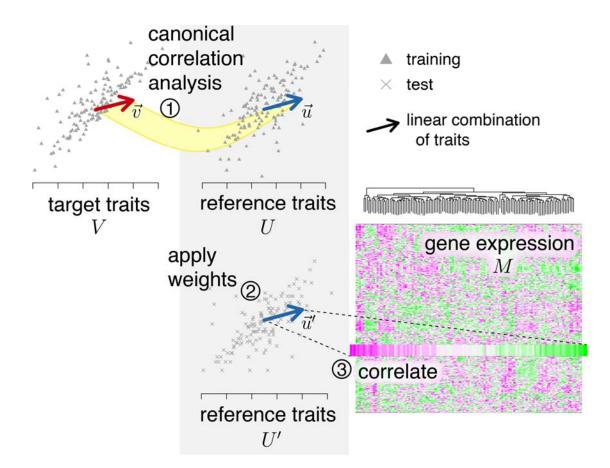
676	Dudbridge F., Pashayan N., Yang J., 2017 Predictive accuracy of combined genetic
677	and environmental risk scores. Genet. Epidemiol.: 1–16.
678	Fortune M. D., Guo H., Burren O., Schofield E., Walker N. M., et al., 2015 Statistical
679	colocalization of genetic risk variants for related autoimmune diseases in the
680	context of common controls. Nat. Genet. 47: 839–846.
681	Gamazon E. R., Wheeler H. E., Shah K. P., Mozaffari S. V., Aquino-Michaels K., et al.,
682	2015 A gene-based association method for mapping traits using reference
683	transcriptome data. Nat. Genet. 47: 1091–1098.
684	Gatti D. M., Svenson K. L., Shabalin A., Wu LY., Valdar W., et al., 2014 Quantitative
685	trait locus mapping methods for diversity outbred mice. G3 Bethesda Md 4:
686	1623–1633.
687	Giambartolomei C., Vukcevic D., Schadt E. E., Franke L., Hingorani A. D., <i>et al.</i> , 2014
688	Bayesian Test for Colocalisation between Pairs of Genetic Association Studies
689	Using Summary Statistics. PLOS Genet. 10: e1004383.
690	Gusev A., Ko A., Shi H., Bhatia G., Chung W., <i>et al.</i> , 2016a Integrative approaches for
691	large-scale transcriptome-wide association studies. Nat. Genet. 48: 245–252.
692	Gusev A., Mancuso N., Finucane H. K., Reshef Y., Song L., et al., 2016b Transcriptome-
693	wide association study of schizophrenia and chromatin activity yields
694	mechanistic disease insights. bioRxiv: 067355.

695	Hauberg M. E., Zhang W., Giambartolomei C., Franzén O., Morris D. L., <i>et al.</i> , 2017
696	Large-Scale Identification of Common Trait and Disease Variants Affecting
697	Gene Expression. Am. J. Hum. Genet. 100: 885–894.
698	He X., Fuller C. K., Song Y., Meng Q., Zhang B., et al., 2013 Sherlock: Detecting Gene-
699	Disease Associations by Matching Patterns of Expression QTL and GWAS. Am.
700	J. Hum. Genet. 92: 667–680.
701	Hormozdiari F., Kang E. Y., Bilow M., Ben-David E., Vulpe C., <i>et al.</i> , 2016a Imputing
702	Phenotypes for Genome-wide Association Studies. Am. J. Hum. Genet. 99: 89–
703	103.
704	Hormozdiari F., van de Bunt M., Segrè A. V., Li X., Joo J. W. J., <i>et al.</i> , 2016b
705	Colocalization of GWAS and eQTL Signals Detects Target Genes. Am. J. Hum.
706	Genet. 99: 1245–1260.
707	Hotelling H., 1936 Relations Between Two Sets of Variates. Biometrika 28: 321–377.
708	Langmead B., Trapnell C., Pop M., Salzberg S. L., 2009 Ultrafast and memory-efficient
709	alignment of short DNA sequences to the human genome. Genome Biol. 10:
710	R25.
711	Li B., Dewey C. N., 2011 RSEM: accurate transcript quantification from RNA-Seq data
712	with or without a reference genome. BMC Bioinformatics 12: 323.

713	Logan R. W., Robledo R. F., Recla J. M., Philip V. M., Bubier J. A., et al., 2013 High-
714	precision genetic mapping of behavioral traits in the diversity outbred mouse
715	population. Genes Brain Behav. 12: 424–437.
716	Makowsky R., Pajewski N. M., Klimentidis Y. C., Vazquez A. I., Duarte C. W., <i>et al.,</i>
717	2011 Beyond Missing Heritability: Prediction of Complex Traits. PLOS Genet.
718	7: e1002051.
719	Mancuso N., Shi H., Goddard P., Kichaev G., Gusev A., et al., 2017 Integrating Gene
720	Expression with Summary Association Statistics to Identify Genes Associated
721	with 30 Complex Traits. Am. J. Hum. Genet. 100: 473–487.
722	Morgan A. P., Fu CP., Kao CY., Welsh C. E., Didion J. P., <i>et al.</i> , 2016 The Mouse
723	Universal Genotyping Array: From Substrains to Subspecies. G3 Genes
724	Genomes Genet. 6: 263–279.
725	Munger S. C., Raghupathy N., Choi K., Simons A. K., Gatti D. M., <i>et al.,</i> 2014 RNA-Seq
726	Alignment to Individualized Genomes Improves Transcript Abundance
727	Estimates in Multiparent Populations. Genetics 198: 59–73.
728	Nica A. C., Montgomery S. B., Dimas A. S., Stranger B. E., Beazley C., et al., 2010
729	Candidate Causal Regulatory Effects by Integration of Expression QTLs with
730	Complex Trait Genetic Associations. PLOS Genet. 6: e1000895.

731	Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M. A. R., et al., 2007 PLINK: a
732	tool set for whole-genome association and population-based linkage
733	analyses. Am. J. Hum. Genet. 81: 559–575.
734	R Core Team, 2016 R: A Language and Environment for Statistical Computing. R
735	Foundation for Statistical Computing, Vienna, Austria.
736	Storey J. D., Tibshirani R., 2003 Statistical significance for genomewide studies. Proc.
737	Natl. Acad. Sci. U. S. A. 100: 9440–9445.
738	Svenson K. L., Gatti D. M., Valdar W., Welsh C. E., Cheng R., et al., 2012 High-
739	resolution genetic mapping using the Mouse Diversity outbred population.
740	Genetics 190: 437-447.
741	Thompson B., 1990 Finding a Correction for the Sampling Error in Multivariate
742	Measures of Relationship: A Monte Carlo Study. Educ. Psychol. Meas. 50: 15–
743	31.
744	Vervier K., Michaelson J. J., 2016 SLINGER: large-scale learning for predicting gene
745	expression. Sci. Rep. 6: 39360.
746	Wallace C., Rotival M., Cooper J. D., Rice C. M., Yang J. H. M., et al., 2012 Statistical
747	colocalization of monocyte gene expression and genetic risk variants for type
748	1 diabetes. Hum. Mol. Genet. 21: 2815–2824.

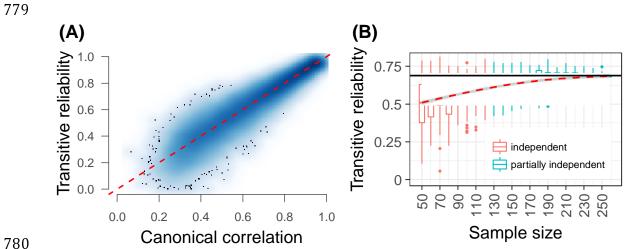
749	Wen X., Pique-Regi R., Luca F., 2017 Integrating molecular QTL data into genome-
750	wide genetic association analysis: Probabilistic assessment of enrichment
751	and colocalization. PLOS Genet. 13: e1006646.
752	Wilms I., Croux C., 2016 Robust sparse canonical correlation analysis. BMC Syst. Biol.
753	10:72.
754	Witten D. M., Tibshirani R. J., 2009 Extensions of Sparse Canonical Correlation
755	Analysis with Applications to Genomic Data. Stat. Appl. Genet. Mol. Biol. 8: 1–
756	27.
757	Wray N. R., Yang J., Hayes B. J., Price A. L., Goddard M. E., <i>et al.</i> , 2013 Pitfalls of
758	predicting complex traits from SNPs. Nat. Rev. Genet. 14: 507–515.
759	Zhu Z., Zhang F., Hu H., Bakshi A., Robinson M. R., <i>et al.</i> , 2016 Integration of summary
760	data from GWAS and eQTL studies predicts complex trait gene targets. Nat.
761	Genet. 48: 481–487.
762	



764 765

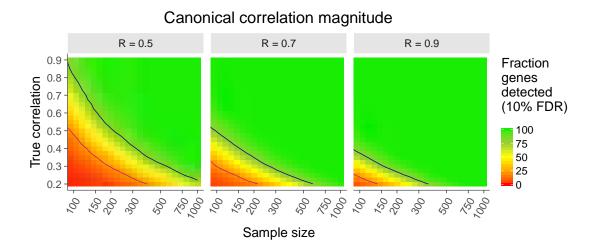
766 Figure 1: Overview of reference trait analysis. Target and reference traits are 767 measured in a set of training individuals (top plots; grey triangles), while reference 768 traits and gene expression are measured in test individuals (bottom plots and X 769 symbols). (1) Canonical correlation is used to identify a linear combination of 770 reference traits (top blue arrow) that best captures variation in the traits of interest 771 (red arrow; yellow curve connecting arrows represents canonical correlation 772 analysis). (2) The weights derived from canonical correlation analysis are applied to 773 reference traits in the testing population to derive reference trait scores for each 774 individual (projected reference traits; bottom blue arrow). (3) Projected reference 775 traits are correlated with molecular phenotypes. 776

- 777
- 778



782 Figure 2: Reference trait analysis reveals overall patterns of covariation between 783 incompatible traits. (A) Relationship between canonical correlation and transitive 784 reliability. To evaluate the mathematical relationship between these quantities, we 785 simulated two vectors with known correlation to represent the canonical covariates, 786 and calculated transitive reliability with real gene expression data. Canonical 787 correlation shown is absolute value, and transitive reliability is sign-matched. (B) 788 Sample size increases lead to higher and more precise transitive reliability. Plot 789 shows transitive reliability estimated using anxiety data with animals subsampled 790 as described in the main text. Sample size on x-axis indicates the number of 791 individuals used in each of the training and testing groups (the number of 792 individuals phenotyped for target traits and the number with high-dimensional 793 molecular phenotypes, respectively). Black line indicates magnitude of first 794 canonical correlation calculated from full dataset. Color indicates whether training 795 and testing groups were fully or partially independent. 796 797

799

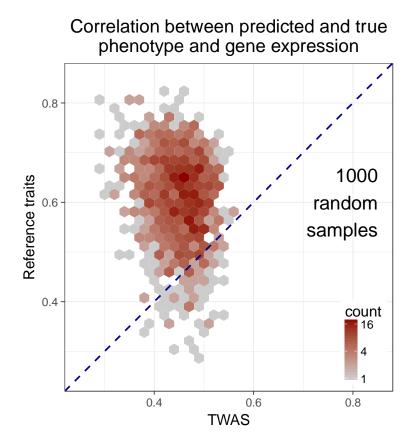


800

801

802 Figure 3: Reference trait analysis identifies simulated trait-gene expression 803 correlations across a wide variety of parameter values. Sample size plotted along x-804 axis is the number of individuals used in each of the training and testing groups 805 (equal sample size for the two groups, where the training group consists of individuals phenotyped for target traits and the testing group those with high-806 807 dimensional molecular phenotypes). True correlation (*y*-axis) indicates correlation 808 between first target trait canonical variable (\vec{v}_1) and simulated gene expression. 809 Facets indicate magnitude of canonical correlation coefficient between reference and target traits (*R* listed along grey strips, ±0.02). Navy and magenta contour lines 810 depict regions above/below which trait-gene expression correlations are detected 811 812 >80% and <20% of the time, respectively.

- 813
- 814



815

816

817 **Figure 4**: Reference trait analysis recovers true trait-gene expression correlations

818 more accurately than TWAS. Binned hexagon plot shows the results of 1,000

819 random samples where the anxiety dataset was split into two halves randomly

820 designated the training and testing groups. Reference trait analysis and TWAS were

used to recover trait-gene expression correlations. The true values of both the trait

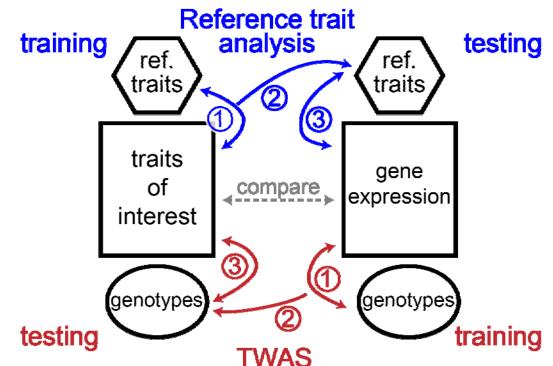
and gene expression are known in this dataset, but were hidden when running

823 reference trait analysis or TWAS. For each method, the correlation across all genes

824 between predicted and true values was computed.

Supplementary Table 1: Anxiety-related traits measured on 258 Diversity Outbred mice used in case study of reference trait analysis.

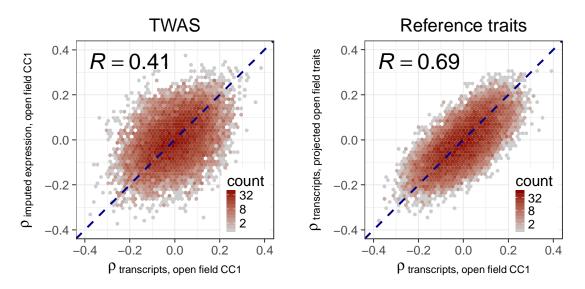
Group	Phenotype
Light-dark box	Distance traveled
Light-dark box	Light-dark transitions
Light-dark box	Percent time in light (first four minutes)
Light-dark box	Percent time in light (total)
Light-dark box	Percent time in light, slope
Open-field	Distance traveled (first four minutes)
Open-field	Distance traveled (total)
Open-field	Distance change (first – last)
Open-field	Percent time in corner
Open-field	Percent time in corner, slope
Open-field	Percent time in periphery
Open-field	Percent time in periphery, slope
Open-field	Percent time in center (square-root transformed)
Open-field	Percent time in center, slope
Open-field	Percent time mobile
Open-field	Fecal boli count



832

831

Supplementary Figure 1: Schematic comparing overall strategies of reference trait 833 834 analysis and TWAS. For reference trait analysis, canonical correlation analysis is 835 used to relate traits of interest to reference traits (blue, 1) and coefficients derived 836 from this model are applied to reference traits in the cohort without measurements 837 of traits of interest (blue, 2). Finally, these projected reference traits are compared 838 to gene expression to identify trait-gene expression correlations (blue, 3). In the 839 TWAS approach, genotypes are used to build models that predict gene expression 840 through eQTL (red, 1). These models are applied to genotypes in the cohort without 841 gene expression measurements (red, 2) and imputed gene expression is compared 842 with traits of interest to identify trait-gene expression correlations (red, 3). Note 843 that training and testing cohort labels are switched for the two methods but that the 844 end result of each is to compare traits of interest with gene expression (grey dashed 845 line, middle). 846



Supplementary Figure 2: Comparison of TWAS and reference trait analysis using a single random division of the mouse anxiety dataset. For both panels we take the true trait of interest to be the first canonical covariate of open-field traits (open-field CC1). For TWAS we used genotypes to impute gene expression. Left panel shows correlation of individual transcripts to the trait of interest, where the *x*-axis plots correlations based on true transcript abundance and the *y*-axis plots correlations based on imputed transcript abundance. Right panel shows the analogous result but

- using reference trait analysis, where gene expression is fixed and predictors of
- 858 open-field behavior are represented by projected traits.
- 859

860 Supplementary Datasets

861

Supplementary Dataset 1: Normalized hippocampal gene expression matrix. RNASeq data were processed as described (Methods). To obtain normalized gene
expression matrix, raw counts in each sample were normalized to the upper quartile
value and transformed to normal scores.

866

867 **Supplementary Dataset 2:** Traits derived from open-field arena exploration assay

and used in case study of reference trait analysis. Supplementary Table 1 provides
 basic information on phenotypes, while complete details of animal rearing,

husbandry and phenotyping are presented in Logan et al. (2013).

871

872 **Supplementary Dataset 3:** Traits derived from light-dark box behavior assay and

873 used in case study of reference trait analysis. Supplementary Table 1 provides basic

874 information on phenotypes, while complete details of animal rearing, husbandry

and phenotyping are presented in Logan et al. (2013).