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22 Abstract

23 Ecosystem simulation models are valuable tools for strengthening and promoting 

24 ecosystem-based fisheries management (EBFM). However, utility of these models in 

25 practical fisheries management is often undermined by lack of simple means to test the 

26 effect of uncertainty on model outputs. Recently, the use of multiple ecosystem models has 

27 been recommended as an ‘insurance’ against effects of uncertainty that comes with 

28 modelling complex systems. The assumption is that if models with different structure and 

29 formulation give consistent results, then, policy prescriptions are robust (i.e. less sensitive to 

30 model choice). However, information on the behaviour of trends from structurally-distinct 

31 ecosystem models with respect to changes in fishing conditions is limited, especially for 

32 freshwater systems. In this study, we compared outputs of two ecosystem models, Ecopath 

33 with Ecosim (EwE) and Atlantis, for Lake Victoria under different fishing pressure scenarios. 

34 We compared model behaviour at the ecosystem level, and also at a level of functional 

35 groups. At functional group level, we determined two questions: what is the change in the 

36 targeted group, and what are the consequent effects in other parts of the system? Overall 

37 results suggest that different model formulations can provide similar qualitative predictions 

38 (direction of change), especially for targeted groups with similar trophic interactions and 

39 adequate data for parameterization and calibration. However, considerable variations in 

40 predictions (where models predict opposite trends) may also occur due to inconsistencies in 

41 the strength of the aggregate multispecies interactions between species and models, and 

42 not necessarily due to model detail and complexity. Therefore, with more information and 

43 data, especially on diet, and comparable representation of feeding interactions across 
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44 models, ecosystem models with distinct structure and formulation can give consistent policy 

45 evaluations for most biological groups.

46

47 Introduction

48 Ecosystem modelling for ecosystem-based fisheries management 

49 (EBMF)

50 In the recent years, calls for the implementation of ecosystem-based fisheries 

51 management (EBFM) have increased [1], despite the slow progress towards its adoption [2, 

52 3]. The slow adoption of EBFM has largely been due to divergences in the interpretation 

53 among professionals [4, 5]. The advantages of EBFM are clearly understood.  For example, it 

54 considers how fishing impacts entire ecosystem and fisheries through both direct and 

55 indirect mechanisms when formulating fisheries management strategies and actions [5].

56 Ecosystem simulation models can be used to evaluate ecosystem properties and 

57 provide information on the potential effects that changes in EBFM practices would have on 

58 the ecosystems [6]. Within the last two decades, ecosystem models have become popular 

59 tools for influencing and strengthening EBFM [7]. However, ecosystem models differ in detail 

60 of their biological processes and how they are represented, projection length and solution 

61 time steps [8]. This variation in model detail and assumptions introduces varying levels of 

62 uncertainty that often undermine utility of end-to-end models in practical fisheries 

63 management [9]. 

64 The high levels of uncertainty inherent in some ecosystem models means that no 

65 ecosystem model is perfect for all purposes under the EBFM framework [10]. This is 

66 exacerbated by the subjective nature of the modelling process as parameter estimation 
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67 within the models is not possible. Although these models are constructed based on the 

68 knowledge of the system (i.e. to minimize process uncertainty), and also utilizing the best 

69 available data, these are not adequate safeguards to uncertainty that comes with modelling 

70 complex systems. In ecosystem models with intermediate complexity such as Ecopath with 

71 Ecosim (EwE), Monte Carlo algorithm is applied to examine the sensitivity of simulation 

72 results to the initial input parameters [11]. However, for complex end-to-end ecosystem 

73 models, such as Atlantis with thousands of parameters, full-scale sensitivity analysis is not 

74 feasible. 

75

76 The use of multiple ecosystem models

77 To limit on the effect of model uncertainty on policy recommendations, the use of 

78 multiple and complementary ecosystem models to provide input for management is strongly 

79 recommended [12, 13]. However, this requires a clear understanding of the level of 

80 robustness of results from different model formulations. Robustness here is considered to 

81 refer to consistency of performance across alternative model formulation, model 

82 uncertainty, and levels of perturbation intensity [14].

83 Multi-species models are multi-dimensional, and comparing them is generally a 

84 complex task. Consequently, recent investigations have focused on simpler approaches to 

85 understand how ecosystem impacts of fishing are sensitive to model choice using a range of 

86 indicators [15—19]. At the broadest level, these studies have found considerable coherence 

87 in general predictions (i.e. direction of change) across models but still with major differences 

88 observed for the multi-species effects. Whereas the general causes of discrepancies have 

89 been identified, including model structure and differences in representation of diets, some 

90 variations are ecosystem-specific [19]. 
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91 The structural and functional differences between the multi-species models are huge. 

92 For example, EwE is a whole ecosystem biomass model, which is not spatially resolved unless 

93 coupled with Ecospace, where predation is regulated by explicit diet parameters and 

94 foraging vulnerability [11]. On the other hand, Atlantis is a whole ecosystem, age- and size-

95 structured population model that is resolved in three dimensions with user-defined 

96 polygonal model zones and multiple depth layers [20, 21]. Predation in Atlantis is regulated 

97 by a diet preference matrix, but the actual resulting diet is subject to mouth-gape limitations 

98 and prey availability. The two modelling approaches have no systematic variation in 

99 assumptions; yet, they are designed almost to achieve the same ultimate goal: evaluation of 

100 system-level trade-offs of alternative management strategies. Determining whether the 

101 different model formulations predict similar outcomes in response to changes in fishing 

102 conditions is important in the EBFM context. Even where models predict different outcomes, 

103 such comparisons are useful in highlighting areas where different assumptions may lead to 

104 varying predictions, which can be used to improve the models. 

105

106 Ecosystem models of Lake Victoria (East Africa)

107 Considerable attempts have been made towards constructing ecosystem models for 

108 Lake Victoria to understand ecosystem dynamics (structure and functioning) as well as 

109 ecosystem-level effects of alternative fishery policies. Emphasis has been put on use of EwE 

110 and Atlantis modelling frameworks because of their popularity across the African Great 

111 Lakes [22], and generally across the globe [10, 23]. 

112 EwE and Atlantis models of Lake Victoria have been constructed to answer specific 

113 questions that are common to both models: food web structure and function and ecosystem 

114 effects of fishing [22]. However, to improve our confidence in results from these models, 
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115 there is need for systematic analysis of sensitivity of ecosystem impacts of fishing to model 

116 structure and formulation. 

117 In this paper, we compared the behaviour of EwE and Atlantis model simulations of 

118 the Lake Victoria ecosystem. We compared model behaviour at the ecosystem level, and 

119 also at a level of functional groups. The work described here is not intended to recommend 

120 one model over another. Rather, the main objective is to investigate how ecosystem effects 

121 of fishing are sensitive to model choice, and which ecosystem indicators are most sensitive 

122 to model uncertainty and complexity. Because the outputs of complex ecosystem models 

123 such as the Atlantis are huge, to ease comparisons, we aggregated the results and 

124 concentrated on comparing the behaviour of ecosystem indicators. For biomass-based 

125 indicators, results from Atlantis were aggregated to show trends through time, with no 

126 spatial and age-structure considerations. 

127

128 Materials and Methods

129 Study area 

130 Lake Victoria, located in East Africa (Fig 1), is the most productive freshwater lake in 

131 the world, with annual fish landings of about one million tonnes, and the second largest in 

132 terms of size (with a surface area of about 68,800 km2). The fishery currently employs more 

133 than one million people directly in fishing and other value-chain related activities; when 

134 their dependents are included, Lake Victoria supports local livelihoods of about four million 

135 people [24]. 

136

137 Fig 1. Location of Lake Victoria (East Africa) within Africa. 
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138

139 The present-day Lake Victoria fishery represents a massive transformation from the 

140 traditional and highly species-diverse fishery (i.e. before 1960s), known for its 500+ species 

141 of haplochromines, to a less species-diverse but highly productive and lucrative fishery 

142 dominated by introduced species especially Nile perch (Lates niloticus). An elaborate 

143 account of changes that have occurred, and how the fishery has persisted amidst multiple 

144 stressors e.g. species introductions, fishing, habitat degradation, eutrophication, and climate 

145 variability and change can be found in published literature [25—27]. 

146

147 Modelling frameworks

148 Ecopath with Ecosim (EwE)

149 The EwE modelling suite has been widely documented [11]. Briefly, EwE has an 

150 ecosystem trophic mass balance routine (Ecopath), where an ecosystem is partitioned into 

151 functional groups based on ecological roles and feeding interactions. Biomass flows in an 

152 ecosystem are regulated by gains (consumption, production, and immigration) and losses 

153 (mortality and emigration), through predator-prey relationships. For each functional group, 

154 the net difference between gains and losses is equal to the instantaneous rate of biomass 

155 change, which is parameterized with Biomass Accumulation. Key model parameters include 

156 biomass per unit of habitat area, production rate per unit of biomass, consumption rate per 

157 unit of biomass of predator, and ecotrophic efficiency (EE, the proportion of production that 

158 is utilized in the system). The model uses the input data along with algorithms and a routine 

159 for matrix inversion to estimate one missing basic parameter for each functional group, 

160 usually the EE. The Trophic level (TL) of each functional group is calculated on the basis of 
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161 average annual predation by aggregating diet data. Primary producers and detritus are 

162 assigned a TL of 1, and the TL of consumer groups is calculated as the biomass-weighted 

163 average TL of its prey +1. 

164 The time dynamic routine of EwE, Ecosim, uses Ecopath parameters to provide 

165 predictions of biomass and catch rates of each group as affected directly by fishing, 

166 predation, and change in food availability, and indirectly by fishing or predation on other 

167 groups in the system. Predation is governed by the concept of foraging arena, where species 

168 are divided into vulnerable and non-vulnerable components, such that the overall feeding 

169 rate is somehow limited by prey density. Calibration is achieved by adjusting diet and 

170 vulnerabilities until satisfactory fits are achieved. 

171

172 Atlantis

173 The Atlantis modelling framework has also been described elsewhere [20, 21]. 

174 Briefly, Atlantis is a deterministic, spatially resolved tool that is based on dynamically 

175 coupled biophysical and fisheries sub models (consumption, biological production, waste 

176 production, reproduction, habitat dependency, age structure, mortality, decomposition, and 

177 microbial cycles). Biophysical and biological processes are modelled in interconnected cells 

178 representing major features of the physical environment. The spatial domain is resolved in 

179 three dimensions using irregular polygons defined by the modeller to represent 

180 biogeographic features. Exchange of biomass occurs between polygons according to 

181 seasonal migration and foraging behaviour, while water fluxes (which control advection of 

182 nutrients and plankton), heat, and salinity flux across boundaries are represented by a 

183 coupled hydrodynamic model. 
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184 Functional groups, as with EwE, are determined based on ecological roles, 

185 ontogenetic behaviour and feeding interactions, except that vertebrates in Atlantis are 

186 represented as age-structured groups and lower trophic groups as biomass pools. The flow 

187 of energy is tracked as nitrogen, which in all vertebrate groups is partitioned into structural 

188 and reserve nitrogen. Structural nitrogen determines growth, while reserve nitrogen (whose 

189 amount varies depending on the food intake) is used for reproduction. The model simulates 

190 dynamic feeding interactions, with all functional feeding responses based on a modified 

191 Holling type II response. Trophic levels of model groups are computed on the same basis as 

192 in EwE.

193

194 Operating models

195 In this study, we used the EwE and Atlantis models constructed for Lake Victoria as 

196 operating models. The models were constructed with an ultimate goal of exploring the 

197 ecosystem impacts of fishing, making it possible to compare the model behaviour under 

198 various fishing pressure scenarios. Fig 2 shows a summarized representation of the major 

199 features for the two models used in this study. The two models are similar in spatial extent 

200 (3.05°S to 0.55°N and 31.5° to 34.88°E), covering the area of approximately 68,800 km2, and 

201 were constructed to represent the ecosystem of Lake Victoria during the period when most 

202 of non-native species had just been introduced i.e. 1958 for Atlantis and 1960 for EwE. The 

203 calibration approach in two models differs substantially, but the period is comparable. 

204

205 Fig 2. Schematic diagram showing the major features of EwE and Atlantis models for Lake 

206 Victoria used in this study.

207
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208 The detailed EwE model used in this study (including set up, parameterization, and 

209 calibration) can be found at https://doi.org/10.6084/m9.figshare.7306820.v2. The model 

210 comprises 25 groups, including fish eating birds, the Nile crocodile, 15 fish groups (either as 

211 individual fish species or several species grouped together based on similarity in life history, 

212 habitat or diet), three invertebrate groups, two producer groups, and a detrital group (Table 

213 1). Haplochromines, which is a group of major ecological importance (forage group), are 

214 modelled in one group, differing from Atlantis where haplochromines are modelled in three 

215 groups (Table 1). Nile perch, another group of focus in the fishing scenarios (see below), is 

216 also modelled as a single group, despite the species’ dietary preferences related to size [29]. 

217 Although Nile perch is also modelled as one in Atlantis model, it is divided into 10 age classes 

218 [31]; and therefore, the juvenile and adult individuals can have different diet and spatial 

219 distribution. In EwE, this is only modelled implicitly by including all possible prey for juvenile 

220 and adult Nile perch in the same diet matrix. 

221

222 Table 1. Functional groups used in the Lake Victoria EwE and Atlantis models.

Common name EwE Atlantis Species included

Birds Yes Yes Fish–eating birds

Crocodiles Yes Yes Crocodylus niloticus

Nile perch Yes Yes Lates niloticus

North African catfish Yes Yes Clarias gariepinus

Semutundu Yes Yes Bagrus docmak

Marbled lungfish Yes Yes Protopterus aethiopicus

Squeakers Yes Yes Synodontis victoriae, S. afrofisheri

Snout fishes Yes Yes Predominantly Momyrus kanume

Silver catfish Yes Yes Schilbe intermedius

Rippon barbel Yes Yes Labeobarbus altianalis
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Small barbs Yes Yes Enteromius spp.

Robbers Yes Yes Brycinus jacksoni, B. sadleri

Ningu Yes Yes Labeo victorianus

Haplochromines Aggregated Three groups Phytoplanktivorous, Benthivorus, 

Piscivorous

Silver cyprinid Yes Yes Rastrineobola argentea

Nile tilapia Yes Yes Oreochromis niloticus

Other tilapias Yes Yes O. esculentus and O. variabilis

Freshwater shrimp Yes Yes Caridina nilotica

Insects and molluscs Aggregated Five groups Macroinvertebrates, Benthic filter 

feeder, Shallow filter feeder, 

Deep filter feeder 

Microphtybenthos

Zooplankton Aggregated Two groups Microzooplankton, 

Mesozooplankton, 

Phytoplankton Aggregated Four groups Macroalgae, Large 

phytoplankton, Dinoflagellates, 

Pico-phytoplankton

Macrophytes Yes No

Bacteria No Two groups Pelagic and sediment bacteria

Detritus Aggregated Two groups Labile and refractory detritus

223

224 The Atlantis model used in this study has been described in detail elsewhere [31, 32]. 

225 A complete set up of this model was retrieved from 

226 https://doi.org/10.6084/m9.figshare.4036077.v1.  The model has 12 unique spatial regions, 

227 each region with 1-3 depth layers depending on the total depth, and a total of 34 of 

228 biological groups (i.e. 17 fish groups, fish eating birds, Nile crocodile, nine invertebrate and 

229 six primary producer groups). The 19 vertebrate groups are modelled as age-structured 

230 components, while the remaining 15 lower trophic groups are modelled as biomass pools. 
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231 Except for haplochromines, which are separated into three groups in Atlantis (Table 

232 1), the choice of functional grouping at the vertebrate level for the two models is the same, 

233 although representation of diet is quite different (Fig 3). For the invertebrate and producer 

234 groups, the choice of functional groups differ substantially across models. Atlantis model has 

235 nine invertebrates groups and six producer groups compared to three invertebrate and two 

236 producer groups in the EwE model (Table 1).  The detrital group in the Atlantis model is also 

237 divided into refractory and labile detritus. Therefore, our analysis focuses on groups that are 

238 comparable across models (Fig 3), excluding fish eating birds and crocodiles. For 

239 haplochromines, results for the three groups from Atlantis are aggregated and presented as 

240 one group. 

241

242 Fig 3. Schematic representation of predation interactions in EwE and Atlantis models of 

243 the Lake Victoria ecosystem. Model groups shown here are only for fish species, which are 

244 fairly represented in both models, to ease comparisons. Note that arrows move towards the 

245 predators and arrow thickness is consistent with the contribution of prey to the predator’s 

246 diet. Thick and black arrows indicate that the prey species makes up more than 30% of the 

247 predator’s diet, while thin arrows indicate that the prey species makes up less than 5% of 

248 the predator’s diet. 

249

250 Fishing scenarios

251 We focused on Nile perch and haplochromines in our fishing scenarios because of 

252 their greatest economic and ecological importance in the Lake Victoria ecosystem [33]. In 

253 addition, these groups are the most studied on the lake; we assume their representation in 

254 both models is fairly grounded in data, and their projections are less affected by data 
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255 uncertainty compared to lesser-studied species. The fishing mortality for the last year of 

256 each historical model run (2015) was taken as the baseline fishing pressure. In the first and 

257 second scenarios, we reduced and increased, respectively, Nile perch fishing pressure by 

258 40% from the baseline level. For the third scenario, we halted fishing of haplochromines (the 

259 major prey for Nile perch, see Fig 3). We also included the status quo scenario, where we 

260 maintained fishing pressure for all functional groups at the baseline level (i.e. as of 2015). 

261 We included the status quo scenario because the ecosystem would be expected to change 

262 under any level of fishing, and therefore the final results of the status quo scenario may not 

263 necessarily be the same as baseline values. For each scenario, biomass and catch for the 

264 individual species/groups were projected for 20 years into the future, and results are 

265 presented at the end of the projection period relative to the baseline (2015) values. 

266

267 Ecosystem indicators for comparison

268 Ecosystem indicators spanning a wide range of processes and biological groups have 

269 been used in several studies to detect a range of impacts from fishing [14]. To compare the 

270 changes that occur at a species/group level in response to fishing pressure scenarios, we 

271 looked at biomass of individual groups for each model but focused only on fish groups as 

272 they were represented in both models. We calculated Pearson correlation coefficient (r) for 

273 every functional group to examine the consistency of trends from both models under each 

274 fishing scenario. Our focus was on the direction of change in relative projections; so our 

275 subsequent interpretation of we use the term “consistency” to refer to any positive value of 

276 r and “inconsistency” to refer to negative values r. 

277 Community-level indicators, on the other hand, are useful for detecting ecosystem-

278 level changes [14]. These include relative abundance of key functional groups (e.g. piscivores 
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279 and planktivores), mean TL in community and catch. Aggregating model groups into feeding 

280 guilds of fish species with broadly similar diets i.e. piscivores and planktivors is important 

281 because these feeding guilds are expected to respond to fishing pressure more predictably 

282 than individual species [28]. For instance, relative biomasses of piscivores and planktivores 

283 can indicate a change in the trophic structure of the system, as can shift in TL of the catch. 

284 Functional groups in the piscivorore guild included Nile perch, North African catfish, 

285 Semutundu, Silver catfish, and piscivorus haplochromines (TL>3.0). The planktivore guild 

286 included groups such as Silver cyprinid, Nile tilapia, other tilapia, Robbers, Ningu, Small 

287 barbs, phytoplanktivorous/Benthivorous haplochromines. Since the haplochromines in EwE 

288 are not segregated, we used relative abundance of Lake Victoria’s haplochromine trophic 

289 guilds [34] to assign biomass to each group. 

290 We calculated Mean TL in community (MTLbiomass) as the average TL of the model 

291 groups, weighted by their biomass according to equation 1

292  (1)𝑀𝑇𝐿𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = ∑
𝑖𝑇𝐿𝑖 x 

𝐵𝑖

𝐵

293 where TLi and Bi are the trophic level and biomass of model group i, and B is the total 

294 biomass of all the fish groups (see Table 1). We only considered fish groups to avoid the 

295 influence of lower trophic planktonic groups (zooplankton and phytoplankton) that have 

296 comparatively greater biomasses. We preferred this approach because all the planktonic 

297 groups are not represented in all the models; therefore, focusing only on fish groups keeps 

298 the analysis comparable. Besides, the biomasses of planktonic groups can vary greatly with 

299 environmental effects, and such fluctuations may not be relevant to fisheries management. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 6, 2018. ; https://doi.org/10.1101/489260doi: bioRxiv preprint 

https://doi.org/10.1101/489260
http://creativecommons.org/licenses/by/4.0/


15

300 We also calculated mean TL in catch (MTLcatch) using the same approach as with 

301 MTLbiomass, but using the biomass of catch for each model group rather than stock biomass 

302 i.e. as the mean TL of all landed fish, weighted by the biomass of catch (equation 2). 

303  (2)𝑀𝑇𝐿𝑐𝑎𝑡𝑐ℎ = ∑
𝑖𝑇𝐿𝑖 x 

𝐵𝐶𝑖

𝐵𝐶

304 where BCi is the biomass of catch of model group i. This indicator is important as it can signal 

305 to the depletion of high-trophic-level species i.e. ‘fishing down the food web’ [30].

306

307 Results

308 Biomasses of individual model groups

309 Fig 4 shows correlation values representing the change of trend of relative biomass 

310 of functional groups under different fishing pressure scenarios. Qualitative similarities 

311 (change in the same direction) between the two models are shown by functional groups with 

312 positive correlation values. Overall, the response to shifts in fishing pressure scenarios for 

313 individual functional groups was diverse across models, depending on the fishing pressure 

314 scenario in question. Projections with similar trends were observed for targeted groups and 

315 their prey/predator (depending on the strength of the feeding interaction), but large 

316 discrepancies were also observed especially for the indirect effects of the fishing pressure 

317 scenarios on non-target ‘distant’ groups. Only two groups (Nile perch and Nile tilapia) 

318 showed similar biomass trajectories (consistent trends) simultaneously in all the four 

319 scenarios. 

320
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321 Fig 4. Correlation between the relative biomasses of species/groups projected by the two 

322 models under four different fishing scenarios. Haplos stands for haplochromines, M. 

323 lungfish is Marbled lungfish, and N.A. catfish is North African catfish.

324

325 The scenario of increasing Nile perch fishing pressure by 40% from baseline showed 

326 the highest level of consistency in biomass projections among functional groups (i.e. 11 out 

327 of the 14 model groups showed similar trends across models). The three groups whose 

328 trends differed were Robbers, Semutundu and snout fishes, where relative biomass 

329 increased in EwE but decreased in Atlantis. However, when Nile perch fishing pressure was 

330 instead reduced by 40% from the baseline, the number of groups with similar trends across 

331 models reduced to nine, although Robbers, Semutundu and snout fishes showed similar 

332 trends under this scenario. Only six groups (Nile perch, haplochromines, North African 

333 catfish, Nile tilapia, Ningu, and squeakers) showed similar direction of change across models 

334 under the two contrasting Nile perch fishing pressure scenarios. 

335 The scenario of halting haplochromine fishing yielded the least number of groups 

336 with similar direction of change in biomass (i.e. six out of the 14 model groups). 

337 Unexpectedly, the response of haplochromines was also inconsistent, although the response 

338 of its major predator, Nile perch, was consistent under this scenario. The response of 

339 individual model groups under this fishing scenario was quintessentially similar to the status 

340 quo scenario. With the exception other tilapias, where Atlantis and EwE predicted an 

341 increase and decrease, respectively, the rest of the groups (Marbled lungfish, North African 

342 catfish, Ningu, Silver cyprinid, small barbs) decreased in Atlantis but increased in EwE. 

343 Fig 5 shows change in predicted biomass by the two models under fishing pressure 

344 scenarios at the end of the simulation, relative to baseline. All outcomes of fishing pressure 
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345 scenarios are compared at the end of 20 years, where values of zero indicate no change in 

346 biomass (relative to baseline levels). Qualitative agreements between models are shown by 

347 predictions in the same direction, indicated by bars on the same side of the zero line (either 

348 positive or negative sign). Quantitative agreements between models are shown by 

349 predictions with similar magnitude, indicated by bars with the same height. Generally, 

350 qualitative agreements were higher for the target groups (e.g. Nile perch, Nile tilapia, 

351 haplochromines, Silver cyprinid, Semutundu, and snoutfishes) than the non-target groups, 

352 although the magnitude of predictions differed substantially. Except for the scenario where 

353 Nile perch fishing was increased by 40% from baseline, Atlantis was generally more 

354 responsive to shifts in fishing pressure than EwE. 

355

356 Fig 5. Relative change in biomass of functional groups at the end of forecasting period as 

357 predicted by Atlantis and EwE models. 

358

359 Under the scenario of increasing Nile perch fishing pressure, Nile perch decreased 

360 both in EwE and Atlantis; however, the magnitude of the decrease was six times higher in 

361 EwE than Atlantis. As expected, the major prey for Nile perch (haplochromines) increased in 

362 both models, although Atlantis was more responsive than EwE. The response in other 

363 groups, except for Ningu and other tilapias, was highly variable, with EwE predicting an 

364 increase in biomass of most groups and Atlantis predicting a decrease. 

365 Under the scenario of decreasing Nile perch fishing pressure, Nile perch increased 

366 while haplochromines decreased in both models, although the magnitude of decrease for 

367 haplochromines was higher (47%) in Atlantis than EwE (20%). For the rest of the groups, 

368 apart from Marbled lungfish and other tilapias, whose biomasses respectively increased and 
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369 decreased in EwE and Atlantis (by at least 3%), the biomasses of other groups decreased in 

370 both models. 

371 In the two other scenarios (maintaining status quo and halting haplochromine 

372 fishing), the predicted biomasses at the end of the simulation were highly variable across 

373 models, except for Nile perch, whose biomass increased, and three other groups 

374 (Snoutfishes, Semutundu, and Robbers) whose biomasses decreased consistently across 

375 models. Under these two scenarios, the responsiveness of the two models to shifts in fishing 

376 pressure was clearly higher in Atlantis than EwE.

377

378 Ecosystem-level indicators

379 Fig 6 shows the proportional change in system-level indicators across the models 

380 under at the end each fishing pressure scenario. All indicators are shown as relative change 

381 from 2015 to 20135 for each scenario, where zero indicates no difference. Overall, 

382 ecosystem-level indicators were more consistent across models compared to the individual 

383 biomass-based indicators.

384

385 Fig 6. Relative change in system-level indicators in EwE and Atlantis under the four 

386 different fishing pressure scenarios. pisciv:planktiv stands for piscivorous to planktivorous 

387 ratio, MTLbiomass and MTLcatch are mean trophic level in community and catch, respectively. ; 

388

389 The biomass of piscivore guild relative to planktivore guild increased across models, 

390 except for the scenario of increasing Nile perch fishing, where Atlantis predicted a massive 

391 increase and EwE predicted a decrease. However, overall fish biomass decreased 

392 consistently across models. 
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393 MTLbiomass showed consistent direction of change across the models except under the 

394 scenario of halting haplochromine fishing, where the indicator value increased in Atlantis 

395 and decreased in EwE. MTLbiomass increased with the reduction Nile perch fishing and 

396 maintaining status quo, but decreased with an increase in Nile perch fishing. Similarly, 

397 MTLcatch was consistent across models, except the scenario of increasing Nile perch fishing 

398 pressure where Atlantis predicted an increase and EwE predicted a decrease. For the 

399 remaining scenarios, MTLcatch increased either by halting haplochromine fishing or 

400 maintaining status quo, but decreased by reducing Nile perch fishing pressure.

401

402 Discussion

403 Biomass of individual model groups

404 Ecosystem models are predominantly used to gain understanding of ecosystem-level 

405 processes and (in most cases) to indicate qualitative trends associated with changes in 

406 fishing (or some other form of forcing) conditions. Studies exploring consistency of 

407 ecosystem effects of fishing across models that have already taken place indicate that 

408 consistent general predictions (in terms of direction of change) can emerge from different 

409 model formulations, although considerable variations may occur in detailed model results 

410 especially for multispecies effects [14—19]. This is consistent with our general findings from 

411 this study. Our results suggest that the direction of change in biomass predictions is driven 

412 by trophic interactions, while the magnitude of change in predicted biomass depends on 

413 both the processes included in the model (model detail and complexity) as well as the 

414 strengths of feeding interactions. 
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415 The choice of biological groupings and representation of diets can greatly influence 

416 the level of connectivity between groups. This in turn has an effect on the projected 

417 magnitude of one species’ biomass or catch affected by other species’ fishing mortality. In 

418 our study, the effect of feeding interactions is illustrated by the two Nile perch fishing 

419 scenarios. Fig. 3 shows that the greatest proportion of Nile perch diet in both models is 

420 contributed by haplochromines. Reducing fishing pressure on Nile perch causes an expected 

421 increase in the abundance of Nile perch, which subsequently causes a decline in their 

422 preferred prey (haplochromines). The reverse is true as well owing to high fishing pressure 

423 and predation release on Nile perch and haplochromines, respectively. Although Nile perch 

424 feeds on other fishes such as Mabbled lungfish, Ningu, North African catfish, other tilapias, 

425 Robbers, Semutundu and squeakers, which all showed wide discrepancies in predicted 

426 biomass across models; these are weak feeding interactions, where each group contributes 

427 less than 3% in Nile perch diet. However, one striking feature about these groups (Mabbled 

428 lungfish, Ningu, North African catfish, other tilapias, Robbers, Semutundu and squeakers) is 

429 that they are all bentho-pelagic, largely feeding on invertebrates (not shown in Fig. 3) at the 

430 bottom sediment. Given that these groups don’t constitute a significant prey at the top of 

431 the food chain, changes in their abundance are governed by abundance of the lower TL 

432 invertebrate groups, whose grouping differs considerably across models (Table 1). Atlantis 

433 has nine invertebrate groups, while EwE has only three, with different feeding connections 

434 to high TL dependant groups. The discrepancies in biomass trend for these groups that 

435 depend on invertebrate prey can therefore be attributed to the differences in choice of 

436 functional groups at the bottom of the food chain, and not necessarily differences in model 

437 processes. This is especially true considering that Atlantis predicts a uniform decline in these 

438 groups under every fishing scenario.
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439 Whereas the direction of change in model forecasts is largely governed by feeding 

440 interactions, model sensitivity to perturbation and the resulting magnitude of change in 

441 individual group biomasses seem to be driven both by the modelled processes and strength 

442 of the feeding dependencies. Studies that have previously compared Atlantis and EwE have 

443 found Atlantis to be less sensitive to changes in fishing pressure compared to EwE [16—18, 

444 35, 36]. The authors have attributed the lower responsiveness of Atlantis to flexibility in 

445 feeding and incorporation of age structure and reproductive behaviour, which can delay the 

446 reproductive response of the population. In Atlantis predation is regulated by a diet 

447 preference matrix, although the actual resulting diet a function of mouth-gape and prey 

448 availability, while predation in EwE is regulated by a fixed diet matrix and foraging 

449 vulnerability. Fig 3 shows Atlantis model of Lake Victoria with more feeding linkages 

450 amongst compartments than EwE. This feeding flexibility in the Atlantis model, in addition to 

451 the ‘delaying’ model processes, were expected to dampen the sensitivity of predators to 

452 shifts in abundance of prey and result into lower responsiveness of Atlantis than EwE. 

453 However, this only occurred for Nile perch under the scenario where Nile perch fishing 

454 pressure was reduced; the magnitude of change for Nile perch in Atlantis was lower than in 

455 EwE (Fig. 5). For the rest of the groups, Atlantis was largely more sensitive to fishing than 

456 EwE, despite incorporating the delaying features of age structure and reproductive 

457 behaviour as well as allowing for diet flexibility. In this case, the strengths of diet 

458 dependencies likely outweighed the delaying system features. 

459

460 Ecosystem-level indicators

461 The shifts in biomass-weighted TL in community and catch, especially for the two 

462 contrasting Nile perch scenarios, were all consistent with expectation. Nile perch is a 
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463 voracious predator at the top of the food chain; intensifying exploitation of this group 

464 decrease the average TL of the community, and the reverse occurs when Nile perch 

465 increases following a reduction in fishing.  However, the sensitivity of the indicator is very 

466 low, which is caused by the large biomass of Silver cyprinid (a high-biomass pelagic 

467 zooplanktivore) that dampens the change in MTLbiomass. 

468 Under the ‘fishing down’ the food web hypothesis [30], TL of catch is expected to 

469 decline in response to fishing due to the preferential depletion of high-trophic-level species. 

470 In EwE, the direction of change of this indicator with respect to increased exploitation of Nile 

471 perch (top predator) was consistent with the ‘fishing down’ hypothesis. In Atlantis, however, 

472 TL of catch increased with increasing fishing pressure on Nile perch. Whereas this seems 

473 counter-intuitive, it is not entirely surprising because the increase in catches of the predator 

474 in the short-term can increase TL of the catch, which seems to be the case with the scenario 

475 of increasing exploitation on Nile perch.  

476 By examining the feeding guilds, we expected to observe a fishing-driven decline in 

477 the piscivore guild under the scenario of increased fishing pressure on Nile perch. In turn, we 

478 expected this to cause an increase in the planktivore guild, which are major prey for the 

479 piscivore guild. Whereas results of EwE were consistent with this expectation, Atlantis 

480 predicted the opposite. The piscivorous to planktivorus ratio increased (substantially) in 

481 Atlantis even under heavy exploitation of Nile perch. This can be attributed to the rapid 

482 decline in Silver cyprinid, a dominant pelagic planktivore, possibly due to competition with 

483 haplochromines following predation release from intensively fished Nile perch. The rapid 

484 decline of Silver cyprinid cancels out any effect of small decline in Nile perch because when 

485 this indicator is calculated without the Silver cyprinid under the same scenario, the results 

486 are consistent with the above expectation. 
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487

488 Conclusions

489 The overall model structure and formulation can provide similar qualitative 

490 predictions (direction of change), especially for groups with similar trophic interactions, 

491 although considerable variations may arise due to the differences in the strength of the 

492 aggregate multispecies interactions between species and models. Whereas qualitative 

493 model results depend on feeding interactions, model sensitivity to perturbation and the 

494 resulting magnitude of change in individual group biomasses are driven both by modelled 

495 processes and strength of the feeding dependencies. Availability of data for model 

496 parameterization and calibration also plays a role in the consistency of results across models. 

497 For example, Nile perch, Nile tilapia, and haplochromines (whose qualitative trends across 

498 models were all consistent in the scenarios tested) have been widely studied and 

499 documented, given their ecological and economic importance. The attention given to these 

500 species means that they are less likely to be affected by data uncertainty compared to 

501 lesser-studied species. Therefore, with more information and data, and comparable 

502 representation of trophic interactions across models, ecosystem models with distinct 

503 structure and formulation can easily give consistent policy evaluations for most of biological 

504 groups. 

505 In the Lake Victoria Atlantis model, the strengths of diet dependencies exert bigger 

506 influence on model outcomes than any of the ‘delaying’ ecosystem features, such as age- 

507 and size structure or reproductive behaviour, which are common to Atlantis models. This is 

508 in regard to the higher sensitivity of Atlantis model to fishing pressure scenarios than EwE. 

509 Therefore, confidence in results from multiple models can be greatly enhanced by improving 
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510 the accuracy of diet data through rigorous diet studies, especially for the less studied groups, 

511 and accurate definition of biological groups across models.

512 Ecosystem-level indicators are less sensitive to model choice compared to biomass of 

513 individual model groups; therefore, the actual ecosystem impacts of fishing from changes in 

514 these aggregated indicators needs to be interpreted with caution. This is true especially 

515 where the magnitude of change in indicator is small, as seen in this study, which could arise 

516 from opposite trends in several biological groups cancelling each other. Biomass information 

517 at the species level is still important for interpreting dynamics in ecosystem response to 

518 fishing. Even where models seem to give diverging results, this evaluation provides an 

519 account of possible changes from reference state and points to areas where different model 

520 considerations may lead to varying predictions, which can be used to improve the models. 

521
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