
Sparse Bayesian Learning for Predicting Phenotypes and
Ranking Influential Markers in Yeast

Maryam Ayat1, Michael Domaratzki1,

1 Department of Computer Science, University of Manitoba, Winnipeg, Canada

* mdomarat@cs.umanitoba.ca

Abstract

Genomic selection and genome-wide association studies are two related problems that
can be applied to the plant breeding industry. Genomic selection is a method to predict
phenotypes (i.e., traits) such as yield and drought resistance in crops from high-density
markers positioned throughout the genome of the varieties. In this paper, we employ
employ sparse Bayesian learning as a technique for genomic selection and ranking
markers based on their relevance to a trait, which can aid in genome-wide association
studies. We define and explore two different forms of the sparse Bayesian learning for
predicting phenotypes and identifying the most influential markers of a trait,
respectively. In particular, we introduce a new framework based on sparse Bayesian and
ensemble learning for ranking influential markers of a trait. Then, we apply our
methods on a real-world Saccharomyces cerevisiae dataset, and analyse our results with
respect to existing related works, trait heritability, as well as the accuracies obtained
from the use of different kernel functions including linear, Gaussian, and string kernels.
We find that sparse Bayesian methods are not only as good as other machine learning
methods in predicting yeast growth in different environments, but are also capable of
identifying the most important markers, including both positive and negative effects on
the growth, from which biologists can get insight. This attribute can make our proposed
ensemble of sparse Bayesian learners favourable in ranking markers based on their
relevance to a trait.

Introduction 1

Genomic Selection (GS) and Genome-Wide Association Study (GWAS) are two related 2

problems in bioinformatics that represent two different aspects of a quantitative trait. 3

GS predicts phenotypes such as growth and fertility in livestocks [1, 2], and yield and 4

drought resistance in crops [3], using genetic information of individuals, that is, 5

sequences of genome-wide molecular markers. Single Nucleotide Polymorphisms (SNPs) 6

are the most common type of genetic markers. GS is ideal for complex traits, which are 7

controlled by many genes with different effects across the genome [4]. GS in plants or 8

animals are mainly used in the breeding industry to facilitate the selection of superior 9

genotypes and accelerate the breeding cycle [5, 6]. 10

On the other hand, GWAS helps to investigate the genetic architecture of causal 11

interpretation of phenotypic variations in humans [7], plants [8], or animals [9]. GWAS, 12

particularly in humans, has yielded the “missing heritability” problem [10], though it is 13

also present in other organisms (e.g., [11, 12]). Missing heritability is the gap between 14

known and predicted heritability. In other words, GWAS has identified many genetic 15
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loci for a wide range of traits, but these markers do not account for all of the observed 16

traits, implying the existence of the other undiscovered genetic factors [13]. An example 17

of this missing heritability is a complex disease in human (e.g., Alzheimer’s disease [14]), 18

and disease resistance in crops [12]. Devising new approaches and proper tools may help 19

to uncover this missing heritability. 20

Previous work on GS and GWAS has focused primarily on statistical models, 21

including Best Linear Unbiased Prediction (BLUP) and its variants [13,15–18]. 22

However, machine learning methods, such as random forests [19] and Support Vector 23

Machines (SVMs) [20], have also seen an increasing interest in GS research on 24

plants [21–26] and animals [27–29]. Also, random forests have been applied to GWAS 25

on human or simulated data to identify markers that influence disease [30–33]. In this 26

research, we employ sparse Bayesian learning [34] for predicting phenotypes and 27

identifying influential markers on growth in the yeast Saccharomyces cerevisiae. This 28

learning method uses Bayesian inference to obtain sparse solutions for regression and 29

classification tasks. It is also called the Relevance Vector Machine (RVM), as it can be 30

viewed as a kernel-based model of identical form to the SVM, which is a theoretically 31

well-motivated classification algorithm in modern machine learning [35]. Although the 32

prediction performance of RVMs practically competes with SVMs, they have some 33

advantages that SVMs lack, such as having probabilistic outputs and the ability to work 34

with arbitrary kernel functions. More importantly, RVMs construct much sparser 35

models based on identifying more meaningful representatives of training data compared 36

to the SVMs [34]. We use these representatives to help link phenotype predictions and 37

identification of important markers in the yeast genome. 38

In this work, we consider the association problem as an embedded feature ranking 39

problem wherein features are biological markers (e.g., SNPs), and the feature selection 40

process is part of the predictive model construction. Then, the ranks of features based 41

on their relevance to the trait will give candidate markers which can be further 42

investigated in a GWAS. Motivated by the sparse solution property of sparse Bayesian 43

learning, we investigate a novel ensemble architecture for feature selection and ranking. 44

More precisely, we merge sparse Bayesian learning, ensemble and bagging techniques for 45

ranking influential SNP markers on a quantitative trait. Note that there are also limited 46

studies that used sparse Bayesian method for feature selection in bioinformatics [36–39]. 47

However, this work, specifically on genes associated with disease, was only for 48

classification, and did not incorporate ensemble techniques. 49

Data and Methods 50

Dataset 51

Bloom et al. [13] developed 1,008 haploid strains of Saccharomyces cerevisiae as a result 52

of crosses between laboratory and wine strains of the yeast. The parent strains had 53

sequence level differences of 0.5%. The genotypes consist of SNP markers that 54

correspond to 11,623 sequence locations in the genome. The locations are coded as 1 if 55

the sequence variation came from the wine strain parent, or 0 if it came from the 56

laboratory strain parent. 57

Bloom et al. modified the environment of 1,008 yeast strains in 46 different ways 58

(first column in Table 1), and measured the population growth under those different 59

conditions. For example, they varied the basic chemicals used for growth (e.g. galactose, 60

maltose), or added minerals (e.g. copper, magnesium chloride), then they measured 61

growth in that condition. Precisely, Bloom et al. calculated the radius of the colonies 62

from an image taken after approximately 48 hours of growth. Some results, such as 63

irregular colonies, were removed and treated as missing data. Most traits have more 64

November 11, 2018 2/21

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2018. ; https://doi.org/10.1101/489245doi: bioRxiv preprint 

https://doi.org/10.1101/489245
http://creativecommons.org/licenses/by/4.0/


than 90% of readings included. 65

Sparse Bayesian Learning 66

The sparse Bayesian modelling [34,40] is an approach for learning the prediction 67

function y(x; w), which is expressed as a linear combination of basis functions: 68

y(x; w) =
M∑
m=1

wmφm(x) = wTφ(x), (1)

where φ(x) = (φ1(x), ..., φM (x))T are basis functions, generally non-linear, and 69

w1, ..., wM are the adjustable parameters, called weights. Given a dataset of 70

input-target training pairs {(xi, ti)}Ni=1, the objective of the sparse Bayesian method is 71

to estimate the target function y(x; w), while retaining as few basis functions as 72

possible. The sparse Bayesian algorithm often generates exceedingly sparse solutions 73

(i.e., few non-zero parameters wi). 74

In a particular specialization of (1), such as the one that SVM uses, M = N and the 75

basis functions take the form of kernel functions, one for each data point xm in the 76

training set, so that φm(x) = K(x,xm), where K(., .) is the kernel function. This 77

exemplification of the sparse Bayesian modelling is called the Relevance Vector Machine 78

(RVM). Tipping [41] introduced the RVM method as an alternative to the SVM method 79

of Vapnik [42]. However unlike SVMs, where the kernel functions must be Positive 80

Definite Symmetric (PDS) [43], we can use arbitrary basis sets in the RVM. 81

Assuming that the basis functions have the form of kernel functions, we illustrate the 82

sparse Bayesian algorithm for regression in the following. Corresponding algorithms for 83

arbitrary basis functions can be easily induced from them. 84

Relevance Vector Regression 85

We follow the framework developed by Tipping [34]. In the regression framework, the 86

targets t = (t1, ..., tN )T are real-valued labels. Each target ti is representative of the 87

true model yi, but with the addition of noise εi: ti = y(xi) + εi, where εi ∼ N
(
0, σ2

)
. 88

This means p(ti | xi,w, σ2) = N(y(xi), σ
2), or 89

p
(
t | w, σ2

)
= (2πσ2)

−N/2
exp

{
− 1

2σ2
‖t−Φw‖2

}
, (2)

where w = (w1, ..., wN )T , and the data is hidden in the design matrix (kernel matrix) 90

Φ = [φ(x1), ...,φ(xN )]
T

, wherein φ(xi) = [K(xi,x1), ...,K(xi,xN )]
T

. For clarity, we 91

omit the implicit conditioning on the set of input vectors {xi} in (2) and subsequent 92

expressions. 93

We infer weights using a fully probabilistic framework. Specifically, we define a 94

Gaussian prior distribution with zero mean and αi
−1 variance over each wi: 95

p (wi | αi) = N
(
0, αi

−1
)
, or: 96

p (w | α) =
N∏
i=1

N
(
0, αi

−1
)
. (3)

The sparsity of the RVM is a result of the the independence of the hyperparameters 97

α = (α1, ..., αN )T one per basis function (i.e., weight), which moderate the strength of 98

the prior information [44]. 99
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Using Bayes’ rule and having the prior distribution and likelihood function (3) and
(2), the posterior distribution over the weights would be a multivariate Gaussian
distribution:

p(w | t,α, σ2) =
p(t | w, σ2)p(w | α)

p(t | α, σ2)
= N(µ,Σ), (4)

where the covariance and the mean are: 100

Σ = (σ−2ΦTΦ + A)−1, (5)

µ = σ−2ΣΦT t, (6)

and A = diag(α1, ..., αN ). 101

The likelihood distribution over the training target t, given by (2), is marginalized 102

with respect to the weights to obtain the marginal likelihood for the hyperparameters: 103

p(t | α, σ2) =

∫
p(t | w, σ2)p(w | α)dw = N(0,C), (7)

where the covariance is given by C = σ2I + ΦA−1ΦT . Values of α and σ2 which 104

maximize (7) cannot be obtained in closed form, thus the solution is derived via an 105

iterative maximization of the marginal likelihood p(t | α, σ2) with respect to α and σ2: 106

αi
new = 1−αiΣii

µi
2 , (8)

(σ2)
new

= ‖t−Φµ‖
N−

∑N
i=1(1−αiΣii)

. (9)

By iterating over (5), (6), (8), and (9), the RVM algorithm reduces the 107

dimensionality of the problem when αi is larger than a threshold (note that αi has a 108

negative power in (3)) [45]. The algorithm stops when the likelihood p(t | α, σ2) stops 109

increasing. The non-zero elements of w are called Relevance Values. The input vectors 110

which correspond to the relevance values are called Relevance Vectors (RVs) as an 111

analogy to Support Vectors in the SVM [45]. Having the relevance vectors, {xr}|RV s|r=1 , 112

and the relevance values, {wr}|RV s|r=1 , the RVM makes prediction on a new data instance 113

x∗: 114

y∗ =

|RV s|∑
r=1

wrK(x∗,xr),

where |RV s| denotes the cardinality of the set of relevance vectors. 115

The regression framework can be extended to the classification case using the 116

approximation procedure presented in [41]. 117

Kernel RVM versus Basis RVM 118

Kernel methods are flexible techniques that can be used to extend algorithms such as 119

SVMs to define non-linear decision boundaries [46]. For example, consider a binary 120

classification problem in which input patterns are not linearly separable in the input 121

space (i.e., inputs cannot be separated into two classes with passing a hyperplane 122

between them). In such a case, one solution is to use a non-linear mapping of the inputs 123

into some higher-dimensional feature space in which the patterns are linearly separable. 124

Then, we solve the problem (i.e., finding the optimal hyperplane) in the feature space, 125

and consequently, we will be able to identify the corresponding non-linear decision 126

boundary for the input vectors in the input space. To do this procedure, a kernel 127
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method only requires a function K : X ×X −→ R, which is called a kernel over the 128

input space X. For any two input patterns xi,xj ∈ X, K(xi,xj) is the dot product of 129

vectors ϕ(xi) and ϕ(xj) for some mapping ϕ : X −→ H to a feature space H: 130

∀xi,xj ∈ X, K(xi,xj) = 〈ϕ(xi), ϕ(xj)〉 .

In this research, we define sparse Bayesian learning in such a way that we can 131

discriminate between kernel and basis functions, i.e., “kernel” RVM versus “basis” RVM. 132

The basis RVMs, which do not have counterparts in SVMs, will be mainly used to 133

enable feature selection. For example, we define two types of linear RVMs, which we 134

call linear kernel RVMs and linear basis RVMs. In a linear kernel RVM, the basis 135

functions in (1) are linear kernel functions, i.e., 136

φm(x) = K(x,xm) = 〈x,xm〉.

When we use linear kernels, in fact we have no mapping. In other word, there is no 137

feature space (as we use input vectors directly), so our estimator tries to pass a 138

hyperplane through input vectors in the input space (e.g., in the case of regression). 139

In our linear basis RVM, the basis functions are linear and equal to the features of 140

the input vectors, i.e., 141

φm(x) = x[m],

where x[m] refers to the m-th feature in an input vector x with M dimensions. We can 142

view it as if we have no basis function in a linear basis RVM, as we use input vectors 143

directly in (1) instead: 144

y(x; w) = wTx.

Therefore, we can restate (2) with weights w = (w0, w1, ..., wM )T , where M is the 145

number of features, and the design matrix is 146

ΦN×(M+1) =


1 x1

[1] x1
[M ]

1 x2
[1] x2

[M ]

· · ·
1 xN

[1] xN
[M ]

 , (10)

where the first column handles the intercept w0, and N is the number of training 147

individuals. 148

Thus, this linear basis RVM will find the RVs which corresponds to the features; i.e., 149

the obtained sparsity will be in the feature set rather than the training individuals. 150

This is exactly what we expect from a feature selection method. Therefore, this RVM 151

can perform target prediction as well as feature selection. For example, in a GS in crop 152

breeding, the individuals are breeds of a crop, the features are the markers (SNPs), and 153

a phenotype is a target. Then, a linear basis RVM would identify a subset of relevant 154

markers to that phenotype, while it is trained for phenotype prediction. 155

Similar to linear RVMs, we can define any other non-linear RVMs (i.e., Gaussian 156

RVM as Gaussian kernel RVM or Gaussian basis RVM). In our experiments, we apply 157

kernel RVMs with different PDS kernel types to investigate how they perform in 158

predicting phenotypes. However, we only examine linear basis RVMs for phenotype 159

prediction and influential marker identification. 160

Compared to the SVM method, we should note that there is not an SVM 161

counterpart for a basis RVM, as the design matrix (10) resembles a non-PDS function 162

which specifically cannot be used in an SVM. In a kernel RVM, we can use PDS kernels, 163

such as polynomial and Gaussian kernels, or non-PDS kernels, such as sigmoid kernels 164

(neural network kernels [47]). In the case of using PDS kernels, the kernel RVM 165

prediction accuracies will be comparable to the SVM results. 166
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Kernel Types 167

In our experiments with kernel RVMs, we use both sequence and non-sequence kernel 168

functions. A non-sequence kernel refers to a kernel that can handle binary or numerical 169

data types (e.g., gene expression data). Gaussian kernel and polynomial kernel are 170

among non-sequence kernels: For any constant γ > 0, Gaussian kernel is the kernel 171

K : RN → R: 172

∀x,x′ ∈ RN , K(x,x′) = exp(−γ‖x− x′‖2),

where ‖x‖ is the norm of the vector x. Also, a polynomial kernel of degree d such as K 173

is defined by: 174

∀x,x′ ∈ RN , K(x,x′) = (x · x′ + c)d,

for a fixed constant c ≥ 0. A linear kernel is a polynomial kernel with c = 0 and d = 1. 175

In contrast to a non-sequence kernel, a sequence kernel operates on strings, or finite 176

sequences of symbols. Intuitively speaking, we can say that the more similar the two 177

strings x and y are, the higher the value of a string kernel K(x,y) will be. The n-gram 178

kernel [48] is an example of a sequence kernel. The n-gram kernel of the two strings x 179

and y counts how often each contiguous string of length n is contained in the strings: 180

Kn(x,y) =
∑
u∈An

ψu(x)ψu(y),

where ψu(x) denotes the number of occurrences of the subsequence u in the string x, 181

and An is the set of all possible subsequence of length n, given the alphabet A. For 182

instance, suppose we are given two DNA sequences with the alphabet A = {A,C,G,T}: 183

x = AACCT and y = GACAC. The bi-gram (2-gram) subsequences in x and y are 184

{AA,AC,CC,CT} and {GA,AC,CA}, respectively. Therefore, K2(x,y) = 1× 2 = 2, as 185

only one subsequence AC is common in both sequences, which it has been repeated once 186

in x and twice in y. Higher kernel values mean two sequences are more similar. 187

The sequence kernels used in applications such as computational biology are rational 188

kernels [49]. Rational kernels [46,50], which are based on finite-state transducers [51], 189

present an efficient general algorithm for manipulating variable-length sequence data. 190

For computing rational kernels, we use OpenFST (Open Finite-State Transducer) 191

library [52,53] and OpenKernel library [54]. 192

RVM as a Phenotype Predictor 193

We consider the yeast dataset as 46 separate regression problems: we construct a 194

separate RVM model for predicting growth under each of 46 conditions. We train each 195

RVM with linear basis function, linear kernel, Gaussian kernel (with different values of 196

γ parameter), and a set of n-gram kernels. Using the coefficient of determination (R2) 197

as measure, and running 10 times of 10-fold cross-validation (each time with random 198

different folds), we evaluate the results of RVM models. As the process for this dataset 199

along with repeating cross-validations is computationally heavy, the process is done in 200

parallel on the WestGrid (www.westgrid.ca) platform. 201

Ensemble RVM 202

In an ensemble, a set of classifiers is trained and for new predictions, the results of each 203

of the classifiers is combined to obtain a final result [55]. Ensembles are often produce 204

better predictive performance than a single model by decreasing variance (bagging), 205

bias (boosting), or improving predictions (stacking) [56]. Moreover, ensemble techniques 206
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have the advantage of handling large data sets and high dimensionality because of their 207

divide-and-conquer strategy. Random Forests [19] and Gradient Boosting Machines 208

(GBMs) [57] are examples of ensemble methods. 209

In this research, we employ ensemble RVM with bagging approach. Bagging 210

(bootstrap aggregating [58]) is based on bootstrapping, where sample subsets of a fixed 211

size are drawn with replacement from an initial set of samples. In bagging, a large 212

number of separate classifiers in an ensemble are trained on separate bootstrap samples 213

and their predictions are aggregated through majority voting or averaging. Bagging is 214

commonly used as a resolution for the instability problem in estimators. 215

We use ensembles of basis RVMs for feature selection and ranking. Each RVM model 216

in an ensemble finds a set of representatives (the RVs) which represent important 217

features. Then, aggregating RVs of the ensemble lets rank the features. The top ranked 218

markers are chosen based on a threshold. In other words, we define the most influential 219

markers as those who are chosen by a specific percentage of the RVMs in the ensemble 220

as RVs. Ranking mechanisms allow us to reduce dimensionality and enhance 221

generalization [59]. Furthermore, they enable us to recognize interpretable or insightful 222

features in the model. 223

We use SpareBayes software package for Matlab [60] to implement the RVMs in this 224

research. 225

Results and Discussion 226

Predicting Phenotypes 227

The prediction accuracies plus the standard deviation of cross-validation results in the 228

best RVM model are shown in Table 1. The value reported for the γ parameter of 229

Gaussian function in the table is the best of a range of values we tried for model 230

selection. Note that Gaussian kernel RVMs mostly produce promising results. Even in 231

traits such as Cisplatin and Mannose, the linear kernel RVM shows a slightly better 232

accuracy than the Gaussian. The only exception is Cadmium Chloride in which linear 233

basis RVM presents a significantly better accuracy. The RVM models are stable, based 234

on the standard deviations. In following subsections, we analyse the results with more 235

details. 236

Linear Kernel RVM versus Linear Basis RVM 237

As explained before, a linear basis RVM can be viewed as an RVM with no basis 238

function, as we use input vectors directly in the data model instead. Similarly when we 239

use linear kernels, it means we do not map the inputs into a higher dimensional feature 240

space, so our estimator tries to pass a hyperplane through input vectors in the input 241

space. Here, we might expect that both linear kernel and linear basis RVMs produce 242

similar results or with subtle difference, as both are linear and in the same space. 243

However, that is not the case, i.e., linear kernel RVM and linear basis RVM produces 244

different hyperplanes as we see in the results in Table 1. Consider Cadmium Chloride 245

and YPD:4C, as two extreme examples. In the former, the linear basis RVM has high 246

accuracy, while in the latter the linear kernel RVM shows higher accuracy. As a 247

corollary we can say that linear basis RVM produces results which classic linear SVM is 248

not able to. We know that the linear kernel cannot be more accurate than a properly 249

tuned Gaussian kernel [61], but we cannot conclude the same for the linear basis 250

function. Therefore, even if we have conducted a complete model selection using the 251

Gaussian kernel RVM for a problem, it is still valuable to consider the linear basis RVM, 252

just as we saw linear basis superiority to Gaussian kernel in Cadmium Chloride. 253
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Table 1. Coefficient of determination (R2) and standard deviation (std) of
RVM predictions among the 46 traits.

Trait Linear Basis Linear Gaussian Best RVM std

Cadmium Chloride 0.639 0.033 0.454 Linear Basis 0.005
Caffeine 0.074 0.216 0.233 Gaussian(γ3) 0.006
Calcium Chloride 0.113 0.273 0.287 Gaussian(γ3) 0.007
Cisplatin 0.133 0.29 0.287 Linear 0.006
Cobalt Chloride 0.258 0.439 0.466 Gaussian(γ2) 0.006
Congo red 0.327 0.467 0.491 Gaussian(γ1) 0.006
Copper 0.146 0.334 0.379 Gaussian(γ3) 0.01
Cycloheximide 0.317 0.473 0.514 Gaussian(γ1) 0.005
Diamide 0.277 0.473 0.483 Gaussian(γ2) 0.005
E6 Berbamine 0.211 0.375 0.414 Gaussian(γ2) 0.008
Ethanol 0.276 0.457 0.476 Gaussian(γ2) 0.006
Formamide 0.114 0.207 0.25 Gaussian(γ2) 0.006
Galactose 0.076 0.206 0.241 Gaussian(γ3) 0.008
Hydrogen Peroxide 0.234 0.343 0.397 Gaussian(γ2) 0.01
Hydroquinone 0.087 0.139 0.208 Gaussian(γ3) 0.009
Hydroxyurea 0.12 0.296 0.342 Gaussian(γ2) 0.01
Indoleacetic Acid 0.128 0.255 0.313 Gaussian(γ2) 0.007
Lactate 0.36 0.542 0.555 Gaussian(γ2) 0.005
Lactose 0.374 0.553 0.574 Gaussian(γ2) 0.008
Lithium Chloride 0.531 0.597 0.678 Gaussian(γ1) 0.006
Magnesium Chloride 0.102 0.245 0.255 Gaussian(γ3) 0.005
Magnesium Sulfate 0.187 0.366 0.41 Gaussian(γ3) 0.005
Maltose 0.409 0.484 0.523 Gaussian(γ2) 0.005
Mannose 0.079 0.213 0.197 Linear 0.007
Menadione 0.216 0.389 0.411 Gaussian(γ3) 0.006
Neomycin 0.422 0.583 0.596 Gaussian(γ2) 0.003
Paraquat 0.31 0.442 0.454 Gaussian(γ2) 0.005
Raffinose 0.185 0.385 0.388 Gaussian(γ3) 0.007
SDS 0.199 0.36 0.398 Gaussian(γ2) 0.004
Sorbitol 0.176 0.343 0.364 Gaussian(γ3) 0.009
Trehalose 0.326 0.48 0.503 Gaussian(γ2) 0.005
Tunicamycin 0.417 0.594 0.622 Gaussian(γ1) 0.006
4-Hydroxybenzaldehyde 0.23 0.34 0.367 Gaussian(γ2) 0.008
4NQO 0.44 0.496 0.512 Gaussian(γ2) 0.005
5-Fluorocytosine 0.215 0.323 0.378 Gaussian(γ2) 0.008
5-Fluorouracil 0.326 0.505 0.559 Gaussian(γ2) 0.005
6-Azauracil 0.152 0.3 0.304 Gaussian(γ3) 0.005
Xylose 0.282 0.455 0.478 Gaussian(γ3) 0.004
YNB 0.379 0.224 0.515 Gaussian(γ1) 0.009
YNB:ph3 0.059 0.18 0.177 Gaussian(γ3) 0.005
YNB:ph8 0.203 0.327 0.361 Gaussian(γ2) 0.006
YPD 0.368 0.266 0.511 Gaussian(γ1) 0.008
YPD:15C 0.211 0.334 0.356 Gaussian(γ2) 0.006
YPD:37C 0.473 0.566 0.611 Gaussian(γ2) 0.006
YPD:4C 0.18 0.406 0.438 Gaussian(γ2) 0.005
Zeocin 0.316 0.46 0.475 Gaussian(γ3) 0.004

Gaussian parameter: γ1 = 1e−4, γ2 = 2e−4, and γ3 = 3e−4.
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Investigating String Kernel RVM 254

We have also investigated the n-gram kernel, a form of string kernel, with the RVM, for 255

n = 3, 5, 7, 10. All string kernels showed poor accuracies on our dataset. The issue 256

arises from the fact that a typical n-gram kernel on this dataset gives us a kernel matrix 257

with almost all elements close to one. It intuitively indicates that the sequences are so 258

similar to each other that the predictor cannot discriminate between any pairs. One 259

possible explanation for the poor performance of the n-gram kernels is genetic linkage. 260

Genetic linkage describes an inheritance tendency in which two markers located in close 261

proximity to each other on the same chromosome are more likely to be inherited 262

together during meiosis [62]; i.e, the nearer two genes are on a chromosome, the lower 263

the chance of recombination between them, and the more likely they are to be inherited 264

together. N -gram kernels capture the short adjacent similarities in sequences. 265

Therefore, high similarity between sequences captured by n-gram kernels comes as no 266

surprise. That is, we expect the small 3-10 SNP sequences to be shared between 267

individuals because these sequences appear close to each other in the genome and are 268

similar due to genetic linkage. The genetic linkage phenomenon can also illustrate why 269

n-gram kernels previously helped for gene-scale problems such as metabolic network 270

prediction [63], but do not work for this problem which has a genome-scale attribute. 271

Heritability versus Accuracies 272

Bloom et al. [13] provided estimates for narrow-sense and broad-sense heritability for 273

the yeast dataset. They considered broad-sense heritability as the contribution of 274

additive genetic factors (i.e., narrow-sense heritability) and gene-gene interactions. 275

Thus, the broad-sense heritability is always greater than the narrow sense heritability, 276

and their difference can be interpreted as a measurement of gene-gene interactions [13]. 277

The broad-sense heritability estimates among the 46 traits ranged from 0.40 (YNB:ph3) 278

to 0.96 (Cadmium Chloride), with a median of 0.77. Also, the narrow-sense heritability 279

estimates ranged from 0.21 (YNB:ph3) to 0.84 (Cadmium Chloride), with a median of 280

0.52. Using the difference between two heritability measures, Bloom et al. estimated the 281

fraction of genetic variance due to gene-gene interactions, which ranged from 0.02 282

(5-Fluorouracil) to 0.54 (Magnesium Sulfate), with a median of 0.30. Therefore, the 283

genetic basis for variation in some traits, such as 5-Fluorouracil, is almost entirely due 284

to additive effects, while for some others, such as Magnesium Sulfate, approximately 285

half of the heritable component is due to gene-gene interactions. 286

To determine if there is a correlation between heritability and RVM prediction 287

accuracies, we calculated the Pearson correlation coefficient between estimates of 288

heritability and prediction accuracies. The correlation coefficients in three RVM 289

categories (Gaussian, linear, and linear basis) are shown in Fig 1. The values related to 290

the broad- and narrow-sense heritability (blue and orange bars) indicate that 291

heritability and RVM accuracies, particularly in Gaussian and linear basis RVMs, have 292

strong positive association. In other words, we will have better predictions when the 293

amount of heritability increases. In particular, a higher narrow-sense heritability yields 294

better prediction rates for the RVM predictor. 295

To determine if RVMs are less successful in predicting traits with larger non-additive 296

effects, we also calculated the correlation coefficient between RVM accuracies and 297

gene-gene interactions effects (green bars in the figure). These values indicate that 298

gene-gene effects and accuracies, particularly in Gaussian and linear RVMs, have small 299

negative association, indicating that we cannot infer the RVM performance is 300

deteriorating when gene-gene interactions effects increases. This confirms previous 301

results where non-parametric and semi-parametric machine learning techniques, such as 302

SVMs, RKHS, and random forests, have been shown to have good prediction abilities 303
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Fig 1. Pearson correlation coefficient between RVM accuracies and different
heritability measures.

for non-additive traits [64,65]. However, if we have narrow-sense heritability estimates 304

before constructing an RVM model, we are able to anticipate behaviour of the predictor, 305

due to the higher weight of additive effects (as most genetic variance in populations is 306

additive [66]). 307

Comparison with Related Work 308

Grinberg et al. [25] recently compared several learning methods including forward 309

stepwise regression, ridge regression, lasso regression, random forest, GBM, and 310

Gaussian kernel SVM with two classical statistical genetics methods (BLUP and a 311

linkage analysis done by Bloom et al. [13]). Grinberg et al. used the coefficient of 312

determination (R2) as accuracy measure, and evaluated their models with one run of 313

10-fold cross validation. In Table 2, the columns “G: Best of Others” and “G: SVM” 314

refer to Grinberg et al.’s results. Also, the R2 value in the RVM column belongs to the 315

best RVM given in Table 1. 316

Compared to the SVM, RVM models show better predictions overall. However, 317

Grinberg et al.’s approach for training and model selection in Gaussian SVM is not 318

proper. The authors trained an SVM with distinct parameters for each fold of 319

cross-validation. In other words, they trained 10 SVMs (10 sets of Gaussian kernel and 320

SVM parameters) for a trait. In this way, not only the accuracies are overestimated, but 321

also the model selection process appears problematic (e.g., the set of parameters that 322

should be used to predict a trait for new yeast individuals is unclear). 323

The RVM is comparable to the best of the methods tested by Grinberg et al., except 324

in six traits including Cadmium Chloride, Indoleacetic Acid, Magnesium Sulfate, 325

Maltose, 4NQO, and YPD:37C in which GBM or Bloom et al.’s method showed 326

superiority. However, the mean broad sense heritability of these six traits is 0.88, and 327

the mean narrow sense heritability is 0.66. This confirms that nonlinear techniques, 328

including GBM and RVM, are competitive for predictions involving traits with high 329

broad sense heritability. Also, we should note that we do not know about the stability 330

of the methods experimented by Grinberg et al., as they ran only one 10-fold 331

cross-validation, while the RVM shows high stability, as its standard deviations in 10 332
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runs of 10-fold cross-validation were small. 333

Identifying Influential Markers 334

For identifying the most influential markers (SNPs) on the traits, we used our RVM 335

ensemble architecture for ranking markers. An ensemble for a trait was composed of 400 336

linear basis RVMs, each with subsampling 50 to 60% of training data. As we are only 337

interested in a small set of top ranked markers, we observed that the size of subsampling 338

does not affect the results (data not shown). To demonstrate how well the ensemble 339

RVMs act in identifying influential markers, we present the top ranked markers in three 340

conditions (traits): Cadmium Chloride, Lithium Chloride, and Mannose. We chose 341

Cadmium Chloride and Mannose as samples which the linear basis RVM showed 342

excellent and poor phenotypic prediction accuracies (Table 1), respectively, while we 343

chose Lithium Chloride for comparison to the work of Bloom et al. [13]. Also, these 344

conditions are across a wide range of broad sense heritability: the broad sense 345

heritability of Cadmium Chloride is 0.98, Mannose is 0.42 and Lithium Chloride is 0.87. 346

The ensemble RVMs for each of the three traits ranked around 90% of the markers 347

with rank values in the range [1, 400]. The unranked markers indicate the markers that 348

do not have any effect (even minor) on a trait. We define the most influential markers 349

as those that are chosen by half of the RVMs in the ensemble as RVs, so in this dataset 350

we will have less than ten influential markers in the three traits. The ranked markers 351

indicate those who may have positive or negative effects on a trait. In other words, we 352

not only find the markers which have additive effects on yeast growth in an 353

environment, but also we find those which have adverse effects on growth. 354

Comparison with Related Work 355

Previously, Bloom et al. [13] conducted a linkage analysis with high statistical power to 356

map functional QTL in all 46 traits. They found that nearly the entire additive genetic 357

contribution to heritable variation (narrow-sense heritability) in yeast can be explained 358

by the detected loci. Bloom et al. specifically showed that for one trait (Lithium 359

Chloride), the loci detected by their method explained most of the heritability. 360

We compare our identified influential markers in three traits to Bloom et al.’s QTL. 361

Bloom et al. found 6, 22, and 10 additive QTL in Cadmium Chloride, Lithium Chloride, 362

and Mannose, respectively. Therefore, we chose the top 6, 22, 10 ranked SNPs in the 363

three traits as well. Figs 2, 3 and 4 show results in each of the three traits accordingly. 364

Each of the figures includes two parts (a) and (b) corresponding to the map of yeast 365

chromosomes 1-8 and 9-16, respectively. The results were demonstrate that the markers 366

identified by the RVM ensembles have similar distribution to the Bloom et al.’s QTL. 367

Also, the RVM ensembles were relatively successful in finding the exact markers in the 368

traits (33% match rate in Cadmium Chloride, 36% in Lithium Chloride, and 40% in 369

Mannose). We note that the highest match rate among the three traits belongs to 370

Mannose in which the linear basis RVM had poor prediction accuracy. This could be an 371

advantage of the RVM being capable of recognizing true “representatives” of a 372

population, despite unacceptable predictions. Another advantage is in the ranking 373

system, where we can always recognize the effect of a marker on a trait with its weight, 374

even in the small set of top-ranked markers. However, we can also go further and 375

conclude that those top ranked markers that are close to each other (e.g, markers at loci 376

649 kb, 656 kb, and 677 kb on Chromosome 12 in Fig 3) suggest to a higher impact of a 377

locus near to those markers on a trait due to genetic linkage. 378

For comparison purposes, we only provided an equal number of top ranked markers 379

to Bloom et al.’s QTL. However, when we decrease the threshold, the number of 380

influential markers would increase. For instance, Fig 5 shows the top ten (instead of six) 381

November 11, 2018 11/21

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2018. ; https://doi.org/10.1101/489245doi: bioRxiv preprint 

https://doi.org/10.1101/489245
http://creativecommons.org/licenses/by/4.0/


Table 2. RVM results versus Grinberg et al.’s (G) [25].

Trait G: Best of Others G: SVM RVM(std)

Cadmium Chloride GBM:0.797 0.565 0.639(0.005)
Caffeine GBM:0.250 0.234 0.233(0.006)
Calcium Chloride BLUP: 0.268 0.261 0.287(0.007)
Cisplatin GBM: 0.338 0.272 0.287(0.006)
Cobalt Chloride GBM: 0.460 0.448 0.466(0.006)
Congo red Lasso:0.504 0.487 0.491(0.006)
Copper GBM:0.452 0.338 0.379(0.01)
Cycloheximide SVM:0.529 0.529 0.514(0.005)
Diamide BLUP:0.498 0.486 0.483(0.005)
E6 Berbamine GBM:0.412 0.390 0.414(0.008)
Ethanol GBM:0.518 0.455 0.476(0.006)
Formamide GBM:0.350 0.240 0.25(0.006)
Galactose GBM:0.235 0.217 0.241(0.008)
Hydrogen Peroxide SVM:0.399 0.399 0.397(0.01)
Hydroquinone BLUP:0.225 0.188 0.208(0.009)
Hydroxyurea GBM:0.337 0.301 0.342(0.01)
Indoleacetic Acid Bloom et al.:0.480 0.3 0.313(0.007)
Lactate Lasso:0.568 0.557 0.555(0.005)
Lactose GBM:0.582 0.565 0.574(0.008)
Lithium Chloride GBM:0.711 0.680 0.678(0.006)
Magnesium Chloride Bloom et al.:0.278 0.267 0.255(0.005)
Magnesium Sulfate Bloom et al.:0.519 0.378 0.41(0.005)
Maltose GBM:0.809 0.522 0.523(0.005)
Mannose GBM:0.255 0.215 0.213(0.007)
Menadione GBM:0.432 0.402 0.411(0.006)
Neomycin Lasso:0.614 0.597 0.596(0.003)
Paraquat Lasso:0.496 0.479 0.454(0.005)
Raffinose GBM:0.383 0.364 0.388(0.007)
SDS Lasso:0.411 0.383 0.398(0.004)
Sorbitol Bloom et al.:0.424 0.318 0.364(0.009)
Trehalose GBM:0.515 0.477 0.503(0.005)
Tunicamycin SVM:0.634 0.634 0.622(0.006)
4-Hydroxybenzaldehyde GBM:0.397 0.36 0.367(0.008)
4NQO GBM:0.636 0.542 0.512(0.005)
5-Fluorocytosine GBM:0.399 0.364 0.378(0.008)
5-Fluorouracil Lasso:0.552 0.546 0.559(0.005)
6-Azauracil GBM:0.315 0.279 0.304(0.005)
Xylose GBM:0.516 0.460 0.477(0.004)
YNB GBM:0.543 0.525 0.515(0.009)
YNB:ph3 BLUP:0.195 0.166 0.177(0.005)
YNB:ph8 BLUP:0.356 0.334 0.361(0.006)
YPD GBM:0.556 0.524 0.511(0.008)
YPD:15C Bloom et al.:0.432 0.333 0.356(0.006)
YPD:37C Bloom et al.:0.711 0.603 0.611(0.006)
YPD:4C GBM:0.485 0.421 0.438(0.005)
Zeocin GBM:0.495 0.475 0.472(0.004)
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(a)

(b)

Fig 2. Top 6 influential markers on growth in Cadmium Chloride recognized by
ensemble RVMs versus Bloom et al.’s 6 QTL.
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(a)

(b)

Fig 3. Top 22 influential markers on growth in Lithium Chloride recognized by
ensemble RVMs versus Bloom et al.’s 22 QTL.
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(a)

(b)

Fig 4. Top 10 influential markers on growth in Mannose recognized by ensemble RVMs
versus Bloom et al.’s 10 QTL.
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most influential markers in Cadmium Chloride. In this case, another additive QTL in 382

chromosome 12 is identified (i.e., at position 464 kb). As not all influential markers 383

have additive effects, the identified markers which are distant from Bloom et al.’s QTL 384

present a good set of candidates for further investigation, to determine if they have 385

non-additive effects with other loci. 386

Conclusion 387

In this research, we studied how RVMs perform on growth prediction of yeast in 46 388

different environments, comparing its performance with other learning methods such as 389

SVM and GBM. Our obtained phenotype prediction accuracies suggest that RVM shows 390

positive results, and can be used as an alternative method in genomic selection. It is 391

well-known that no machine learning technique performs best in all datasets [25,67]. 392

We investigated different kernels in RVM. We illustrated how different linear RVMs, 393

i.e, linear kernel RVM and linear basis RVM, perform in phenotype prediction. We 394

observed that Gaussian RVMs had the best accuracies, while string kernel RVM, such as 395

n-gram, presented poor predictions. 396

We also investigated the relationship between different heritability measures and 397

RVM prediction accuracies. The results indicate an strong association between 398

narrow-sense heritability and prediction accuracy in RVMs. On the other hand, new 399

research points out that the most genetic variance in populations is additive [66]. 400

Therefore, if the heritability is known in advance, we can consequently anticipate the 401

performance of the model before constructing it. 402

The last part of the experiments was devoted to identifying most influential markers 403

on the traits, as well as non-relevant markers. We chose three traits with different 404

phenotype prediction accuracies as samples, and demonstrated how well our RVM 405

ensembles work to rank the markers in each trait, comparing the results with other 406

research which used a traditional linkage analysis to find additive QTL. The comparison 407

validates the results of RVM ensembles in finding markers with additive effects. 408

However, we can earn more from the RVM ensembles, as those are capable of identifying 409

both growth-increasing and growth-decreasing markers in yeast. 410

It may perhaps be observed that our ensemble linear basis RVM for feature selection 411

takes in to account only linear relationships. Although this linear separability is a 412

reasonable assumption for high dimensional data, it is desirable to investigate nonlinear 413

basis substitution, particularly Gaussian functions, to handle nonlinear relationships. 414

Gaussian basis RVM still gives feature RVs as each Gaussian basis in the model 415

operates on a different dimension (feature). However, employing Gaussian basis RVM 416

requires setting not only the variance (σm) in each Gaussian basis function in (1), but 417

also the mean or center (µm): φm(x) = exp(−(x[m] − µm)2/σm
2), where x[m] refers to 418

the m-th feature in an input vector x with M dimensions. Investigating any 419

appropriate approach, with acceptable computational complexity, for choosing 420

parameters in Gaussian basis RVMs, and employing these RVMs in an application 421

remain as future work. 422
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Campos G, et al. Genomic selection in plant breeding: methods, models, and
perspectives. Trends in plant science. 2017;.

6. Meuwissen T, Hayes B, Goddard M. Genomic selection: A paradigm shift in
animal breeding. Animal frontiers. 2016;6(1):6–14.

7. Bush WS, Moore JH. Genome-wide association studies. PLoS computational
biology. 2012;8(12):e1002822.

8. Brachi B, Morris GP, Borevitz JO. Genome-wide association studies in plants:
the missing heritability is in the field. Genome biology. 2011;12(10):232.

9. Zhang H, Wang Z, Wang S, Li H. Progress of genome wide association study in
domestic animals. Journal of animal science and biotechnology. 2012;3(1):26.

10. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al.
Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747.

11. Shen X. The curse of the missing heritability. Frontiers in Genetics. 2013;4:225.

12. Xiao Y, Liu H, Wu L, Warburton M, Yan J. Genome-wide association studies in
maize: praise and stargaze. Molecular plant. 2017;10(3):359–374.

13. Bloom JS, Ehrenreich IM, Loo WT, Lite TLV, Kruglyak L. Finding the sources
of missing heritability in a yeast cross. Nature. 2013;494(7436):234.

14. Ridge PG, Mukherjee S, Crane PK, Kauwe JS, et al. Alzheimer’s disease:
analyzing the missing heritability. PloS one. 2013;8(11):e79771.

15. Habier D, Fernando RL, Garrick DJ. Genomic-BLUP decoded: a look into the
black box of genomic prediction. Genetics. 2013; p. genetics–113.

16. You FM, Booker HM, Duguid SD, Jia G, Cloutier S. Accuracy of genomic
selection in biparental populations of flax (Linum usitatissimum L.). The Crop
Journal. 2016;4(4):290–303.

17. Zhang X, Lourenco D, Aguilar I, Legarra A, Misztal I. Weighting strategies for
single-step genomic BLUP: an iterative approach for accurate calculation of
GEBV and GWAS. Frontiers in genetics. 2016;7:151.

18. Spindel J, Begum H, Akdemir D, Collard B, Redoña E, Jannink J, et al.
Genome-wide prediction models that incorporate de novo GWAS are a powerful
new tool for tropical rice improvement. Heredity. 2016;116(4):395.

19. Breiman L. Random forests. Machine learning. 2001;45(1):5–32.

20. Schölkopf B, Guyon I, Weston J, Frasconi P, Shamir R. Statistical Learning and
Kernel Methods in Bioinformatics. Nato Science Series Sub Series III Computer
and Systems Sciences. 2003;(183):1–21.

November 11, 2018 18/21

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2018. ; https://doi.org/10.1101/489245doi: bioRxiv preprint 

https://doi.org/10.1101/489245
http://creativecommons.org/licenses/by/4.0/


21. Jannink JL, Lorenz AJ, Iwata H. Genomic selection in plant breeding: from
theory to practice. Briefings in functional genomics. 2010;9(2):166–177.

22. Blondel M, Onogi A, Iwata H, Ueda N. A ranking approach to genomic selection.
PloS one. 2015;10(6):e0128570.

23. Okser S, Pahikkala T, Airola A, Salakoski T, Ripatti S, Aittokallio T.
Regularized machine learning in the genetic prediction of complex traits. PLoS
Genet. 2014;10(11):e1004754.

24. Li L, Long Y, Zhang L, Dalton-Morgan J, Batley J, Yu L, et al. Genome wide
analysis of flowering time trait in multiple environments via high-throughput
genotyping technique in Brassica napus L. PloS one. 2015;10(3):e0119425.

25. Grinberg NF, Orhobor OI, King RD. An Evaluation of Machine-learning for
Predicting Phenotype: Studies in Yeast, Rice and Wheat. bioRxiv. 2018; p.
105528.

26. Grinberg NF, Lovatt A, Hegarty M, Lovatt A, Skøt KP, Kelly R, et al.
Implementation of genomic prediction in Lolium perenne (L.) breeding
populations. Frontiers in plant science. 2016;7.

27. Moser G, Tier B, Crump RE, Khatkar MS, Raadsma HW. A comparison of five
methods to predict genomic breeding values of dairy bulls from genome-wide SNP
markers. Genetics Selection Evolution. 2009;41(1):56.
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