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30 Abstract 

31 Background: Bovine tuberculosis (bTB) caused by Mycobacterium bovis is a re-

32 emerging problem in both livestock and humans. The association of some M. bovis 

33 strains with hyper-virulence, MDR-TB and disseminated disease makes it imperative to 

34 understand the biology of the pathogen. 

35 Methods: Mycobacterium bovis (15) among 1755 M. tuberculosis complex (MTBC) 

36 isolated between 2012 and 2014 were characterized and analyzed for associated patient 

37 demography and other risk factors. Five of the M. bovis were whole-genome sequenced 

38 and comparatively analyzed against a global collection of published M. bovis genomes.

39 Results: Mycobacterium bovis was isolated from 3/560(0.5%) females and 

40 12/1195(1.0%) males with pulmonary TB. The average age of M. bovis infected cases 

41 was 46.8 years (7-72years). TB patients from the Northern region of Ghana (1.9%;4/212) 

42 had a higher rate of infection with M. bovis (OR=2.7,p=0.0968) compared to those from 

43 the Greater Accra region (0.7%;11/1543). Among TB patients with available HIV status, 

44 the odds of isolating M. bovis from HIV patients (2/119) was 3.3 higher relative to non-

45 HIV patients (4/774). Direct contact with livestock or their unpasteurized products was 

46 significantly associated with bTB (p<0.0001,OR=124.4,95% CI=30.1-508.3). Two 

47 (13.3%) of the M. bovis isolates were INH resistant due to the S315T mutation in katG 

48 whereas one (6.7%) was RIF resistant with Q432P and I1491S mutations in rpoB. M. 

49 bovis from Ghana resolved as mono-phyletic branch among mostly M. bovis from Africa 

50 irrespective of the host and were closest to the root of the global M. bovis phylogeny. M. 

51 bovis-specific amino acid mutations were detected among MTBC core genes such as 

52 mce1A, mmpL1, pks6, phoT, pstB, glgP and Rv2955c. Additional mutations P6T in chaA, 

53 G187E in mgtC, T35A in Rv1979c, S387A in narK1, L400F in fas and A563T in eccA1 

54 were restricted to the 5 clinical M. bovis from Ghana.

55 Conclusion: Our data indicate potential zoonotic transmission of bTB in Ghana and 

56 hence calls for intensified public education on bTB, especially among risk groups.

57

58
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59 Introduction:

60 Among the Mycobacterium tuberculosis complex (MTBC), Mycobacterium bovis is the 

61 main causative agent of TB in cattle and sheep, albeit with the widest host range among 

62 other mammals including wildlife and humans [1]. M. bovis associated TB is a re-

63 emerging global problem affecting both livestock and humans alike. The World Health 

64 Organization reported 147,000 new Bovine TB (bTB)) cases and 12,500 deaths among 

65 humans in 2016 [2] . Despite the low incidence of M. bovis associated TB (~2% 

66 globally), the mortality rate is high, especially among children and HIV co-infected 

67 patients [1,3,4]. Human-to-human transmission of M. bovis is mostly rare [5] , thus 

68 human bTB is considered a zoonotic chronic disease characterized by lung infections and 

69 their draining lymph nodes as granulomatous necrotizing inflammatory disease [6,7]. 

70 Nevertheless, bTB among immunocompromised people and children are mostly 

71 extrapulmonary or disseminated affecting other organs other than the lungs and their 

72 draining lymph nodes. bTB in humans is mostly transmitted via the alimentary canal by 

73 the [4] consumption of unpasteurized dairy products from infected cattle [3,8,9] and or 

74 inhalation of aerosolised bacilli via direct contact with infected cattle and/or their 

75 carcasses [5] . However, a lack of knowledge or simply negligence of the dangers 

76 associated with being in close contact with livestock or wildlife and their unpasteurized 

77 products is apparent among some individuals who are constantly in direct contact with 

78 animals [10] . In addition, there is a growing association of M. bovis related TB cases 

79 with treatment failure due to intrinsic resistance to some commonly used anti-

80 tuberculosis drugs [11] . 

81 Even though M. bovis, being a member of the MTBC, is genetically homogenous 

82 compared to other bacteria [12] , molecular epidemiology of M. bovis infections in Great 

83 Britain has shown that they exhibit polymorphic metabolic profiles, such as differential 

84 rates of incorporation of propionate into membrane lipid components among different 

85 genotypes [13] as well as differential expression of some essential genes and 

86 accumulation of single nucleotide polymorphisms (SNPs) which could have functional 

87 implications [14]. 

88 About 85% of herds and 82% of humans live in close proximity in sub-Saharan Africa 

89 (SSA) in both rural and urban settings, driving the wide distribution of bTB compared to 

90 other global settings [15,16]. This is compounded by the inadequate sanitation practices 

91 such as the habit of sharing drinking water with beasts and consumption of non-

92 pasteurized milk and dairy products [17–19] (. Despite the economic and public health 
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93 importance of bTB, little knowledge exists on the epidemiology and biology of M. bovis 

94 in relation to the human adapted MTBC (hMTBC) lineages spanning M. tuberculosis 

95 sensu stricto (Mtbss) and M. africanum (Maf) [20,21]. However, such information is 

96 critical for development of effective control tools for bTB. 

97 We determined the prevalence of bTB among pulmonary TB patients passively reporting 

98 to selected TB diagnostic/treatment facilities in Ghana, determined potential risk factors 

99 associated with bTB in Ghana and explored genomic similarities and differences among 

100 M. bovis strains from around the globe, irrespective of the host, using whole genome 

101 sequencing.
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102 Materials and Methods

103 Ethical Statement and Participant Enrolment

104 The Institutional Review Board (IRB) of the Noguchi Memorial Institute for Medical 

105 Research (NMIMR) with Federal Wide Assurance number FWA00001824 reviewed this 

106 study and its protocols and accordingly gave ethical clearance in support of the work.

107

108 Mycobacterial Isolation, Drug Resistance Profiling and Genotyping.

109 Smear-positive sputum samples from the selected health centers in the Northern and 

110 Greater Accra regions of Ghana were decontaminated and inoculated on 2 pairs of 

111 Lowenstein Jensen (LJ) slants; one pair supplemented with 0.4% sodium pyruvate (to 

112 enhance growth of M. bovis and M. africanum (Maf)) the other with glycerol (for 

113 enhanced growth of M. tuberculosis sensu stricto (Mtbss) and incubated as previously 

114 described [22]. MTBC cells growing in confluence were harvested and heat inactivated at 

115 95 oC for 60 min in nuclease-free water. After heat inactivation, chromosomal DNA was 

116 extracted using previously described protocol [23]. The isolates were confirmed as 

117 MTBC by PCR amplification of IS6110 and spoligotyping was carried out for lineage 

118 classification [24]. Isolates classified as M. bovis were confirmed with a large sequence 

119 polymorphism (LSP) assay using PCR detection of deleted regions of difference RD9, 

120 RD4 and RD12 [25]. Drug susceptibility testing against isoniazid (INH) and rifampicin 

121 (RIF) was carried out using the micro-plate alamar blue assay [23,26]. 

122

123 Whole Genome Sequencing and Phylogenetic Analysis

124 Whole genome sequencing of 5 candidate M. bovis isolates was carried out as previously 

125 described [27]. The 5 genomes (ERR502499; ERR502526; ERR502529; ERR502538; 

126 ERR1203064) were added to a collection of 767 previously published clinical and 

127 veterinary M. bovis genomes (supplementary data S1) from around the world for analysis. 

128 Sequence reads were mapped to the Mycobacterium bovis AF2122/97 reference genome 

129 (NC0002945) using BWA (minimum and maximum insert sizes of 50 and 1000 

130 respectively) [28]. Single nucleotide polymorphisms (SNPs) were called using SAMtools 

131 mpileup and BCFtools (minimum base call quality of 50 and minimum root squared 

132 mapping quality of 30) as previously described [28,29]. Variant sites in the alignment 

133 were extracted using snp-sites [30] and a maximum likelihood phylogenetic tree was 

134 constructed using FastTree2 [31] (nucleotide general time-reversible tree). The resulting 

135 tree was annotated and rooted using iTOL [32]

136
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137 Comparative Mutational Analysis of Selected MTBC Core-Genes.

138 Coordinates of 147 MTBC core genes (Supplementary Table S2) previously reported to 

139 harbour amino acid mutations with phenotypic consequence on virulence and fitness of 

140 some laboratory strains of the MTBC [33–40] were compiled from the Tuberculist 

141 database [41]. Using the fasta file of H37Rv as reference, the paired end reads of the 5 

142 Ghanaian M. bovis genomes, 257 M. africanum [27] and global collection of 20 MTBC 

143 genomes [42] were screened for mutations within the compiled 147 core genes using 

144 ARIBA with default settings [43]. Amino acid mutations found to be present only among 

145 the 5 Ghanaian M. bovis genomes were suspected to be M. bovis specific. To confirm 

146 whether these mutations were widespread in M. bovis, the global collection of 767 

147 clinical and veterinary M. bovis genomes (Supplementary data S1) was screened for these 

148 specific mutations using ARIBA as described above. We further classified these amino 

149 acid mutations as M. bovis-specific if they were found in 100% of genomes in the global 

150 collection or core M. bovis mutations if found in at least 99% of genomes.

151

152 Statistical Analysis

153 Where applicable, chi-square and Fisher’s exact tests were used to establish statistical 

154 significance. P-values less than 0.05 were considered statistically significant with 95% 

155 confidence.

156

157

158

159
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160 Results

161 Demography and Biological Associations of TB Patients infected with M. bovis

162 A total of 1755 MTBC isolates were obtained from 2074 smear positive TB patients 

163 (84.6% isolation rate). Among the patients from whom a MTBC was isolated, 212 

164 (12.1%) were from the Northern region and 1543 (87.9%) from the Greater Accra region 

165 as previously described [27]. Fifteen (0.9%) of the isolates were genotyped as M. bovis 

166 whereas the remaining 1740 (99.1%) were members of the hMTBC (Mtbss and Maf). The 

167 average age of patients infected with M. bovis was 46.8 years (7 to 72 years) of which 

168 12/1195 (1.0%) were from males compared to 3/560 (0.5%) from females (p = 0.412, OR 

169 = 1.9). Four (1.9%) of the isolates from the Northern region (n = 212) were M. bovis 

170 compared to 11/1543 (0.7%) from the Greater Accra region (p = 0.0968, OR = 2.7). 

171 Among the patients with known HIV status (893; 50.3%), 119 (13.3%) were HIV-

172 positive compared to 774 (86.7%) HIV-negative. The incidence of bTB among HIV and 

173 non-HIV TB patients was 1.7% (2/119) and 0.5% (4/774) respectively with higher odds 

174 of isolating M. bovis from HIV patients relative to non-HIV TB patients (OR = 3.3). Six 

175 TB patients including 1 herdsman, 1 herds owner and 4 butchers representing 40% of 15 

176 patients with history of direct contact with livestock were infected with M. bovis. This is 

177 significantly higher compared to 0.5% (9/1740) of M. bovis infected TB patients without 

178 such history (p < 0.0001, OR = 124.4, 95% CI = 30.1-508.3)

179

180 Drug Resistance Profile of M. bovis Isolates

181 Most of the M. bovis isolates (13) were susceptible to all the drugs tested except two 

182 isolates resistant to INH and one isolate resistant to RIF (Table 1). The two INH resistant 

183 isolates both had the S315T mutation in katG while the RIF resistant isolate had Q432P 

184 and I1491S mutations in rpoB.

185 Table 1: Sensitivity of the MTBC Isolates to INH and RIF

Drug Total (1755) hMTBC (1740) M. bovis (15) P-value OR 95%CI

INHr 133; 7.6% 131;7.5% 2;13.3% 0.3163 1.9 0.2-8.5

RIFr 16; 0.9% 15;0.9% 1;6.7% 0.1288 8.2 0.2-61.0

MDR 40 (2.3%) 40;2.3% 0;0.0% - - -

ANY 189 (10.8%) 186;10.9% 3;20.0% 0.2139 2.1 0.4-7.8
186 NB: ANY: Total number of isolates resistant to at least one drug.
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187

188 Phylogenetic Distribution of Global Collection of M. bovis

189 The maximum likelihood phylogenetic tree of global collection of M. bovis spanning 

190 both clinical and veterinary isolates rooted on Maf L6 as an outgroup shows random 

191 distribution of both the clinical and veterinary M. bovis (Fig 1). The majority of the 

192 global collection of M. bovis analyzed were isolated from animals (predominately cattle). 

193 The M. bovis genomes of African origin (Ghana, Eritrea and South Africa) generally 

194 clustered together closest to the root of the phylogeny irrespective of the host. 

195 Nevertheless, there were few M. bovis from South Africa which were sporadically 

196 distributed far from the root of the tree. There were 2 major clusters of M. bovis from 

197 New Zealand and one major cluster each from the United Kingdom, Mexico and the 

198 United States of America. Interestingly, the 5 Ghanaian clinical M. bovis clustered 

199 together as a monophyletic branch among the African M. bovis group (Fig 1).

200

201 Fig 1: Phylogenetic tree of the Ghanaian clinical M. bovis amidst global collection of 

202 767 published M. bovis genomes. The whole genome phylogeny of 767 publicly 

203 available M. bovis genomes together with 5 clinical M. bovis from Ghana rooted on M. 

204 africanum as an outgroup, shows the 5 Ghanaian clinical M. bovis genomes as a 

205 monophyletic group siting in a clade consisting mostly of other African M. bovis isolates 

206 basal to the rest of the dataset.

207

208

209 In silico predicted M. bovis-Specific Amino Acid Mutations. 

210 We identified 41 M. bovis restricted amino acid mutations among 32 core-genes of the 5 

211 clinical M. bovis from Ghana when compared to 257 Maf [27] and 20 global MTBC 

212 genomes [42] (Supplementary data S3). However, when we screened our global 

213 collection of 772 M. bovis genomes (including the 5 from Ghana), only 8 of the 

214 mutations were found in all genomes, 20 mutations in 99.22% to 99.87% of the genomes 

215 and 7 mutations in 95.85% to 98.97% of genomes. A further 6 mutations (P6T in chaA, 

216 G187E in mgtC, T35A in Rv1979c, S387A in narK1, L400F in fas and A563T in eccA1) 

217 were restricted to the 5 clinical M. bovis from Ghana (Fig 2; Supplementary Table S4; 

218 Supplementary Figure S5).

219

220 Figure 2: Distribution of selected core-gene amino acid mutations among M. bovis.

221 95.85-98.97%%0.65% 99.22-99.87% 100%
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222

223 Among the 41 mutations identified uniquely among 32 core-genes M. bovis, 17 were 

224 among 15 essential genes associated with important physiological processes such as lipid 

225 metabolism, cell wall and cell processes, intermediate metabolism, and cellular 

226 respiration, virulence, detoxification and virulence as well as regulatory proteins (Table 

227 2). These include mce1A, phoT and eccA1 previously shown to be essential for the 

228 growth of Mtbss L4 strain H37Rv in primary murine macrophages [35]. In addition, 

229 mutations in other genes such as pks6, pknD, pks4 and glgP have been shown to be 

230 associated with no production of phthiocerol dimycocerosates (PDIM) among mutant 

231 strains [36], attenuation in the central nervous system of BALB/c mice [40], no 

232 production of mycolic acid derivatives (mycolipanoic, mycolipenic and mycolipodienoic 

233 acids) among mutant strains [38] and in vitro slow growth [34]. 
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234 Table 2: Description of M. bovis-Restricted Amino Acid Mutations among Essential Genes

Gene Common 
Name Mutation Proportion 

of M. bovis Function Essentiality Reference

Rv0169 mce1A P359S 100%
virulence, 
detoxification, 
adaptation

required for survival in primary murine 
macrophages 
required for growth in C57BL/6J mouse spleen

[35] 
[34]

Rv0405 pks6 A456fs 100% lipid metabolism
transposon mutant does not produce 
phthiocerol dimycocerosate (PDIM)
essential gene for in Mtbss CDC1551 strain

[36] 

[37]

Rv0820 phoT F35L 100% cell wall and cell 
processes

required for survival in primary murine 
macrophages in H37Rv [35]

Rv0931c pknD L376fs 99.9% Regulatory mutant Mtbss CDC1551 is attenuated in the 
central nervous system of BALB/c mice [40]

Rv1181 pks4 D505A 99.5% lipid metabolism

essential gene in Mtbss CDC1551 strain 
mutant aggregates in liquid culture and does 
not produce mycolipanoic, mycolipenic, or 
mycolipodienoic acids 

[37] 

[38]

Rv1328 glgP D532G 100%
intermediary 
metabolism and 
respiration

slow growth of Mtbss H37Rv mutant strain [34]

Rv1522c mmpL12 S947N 97.4% cell wall and cell 
processes

essential gene for in vitro growth of Mtbss 
H37Rv [44]

Rv1661 pks7 S1176P 95.9% lipid metabolism essential gene for in vitro growth of Mtbss 
H37Rv

[44] 
[34]

Rv1662 pks8 A808V 97.9% lipid metabolism essential gene for in vitro growth of Mtbss 
H37Rv

[44]
[37]

Rv1662 pks8 D78Y 97.8% lipid metabolism essential gene for in vitro growth of Mtbss 
H37Rv

[44]
[34]

Rv1662 pks8 Y1469C 99.6% lipid metabolism essential gene for in vitro growth of Mtbss 
H37Rv

[44]
[34]

Rv2339 mmpL9 A44V 99.9% cell wall and cell 
processes

essential gene for in vitro growth of Mtbss 
H37Rv [44]

Rv2524c fas L400F 0.7% lipid metabolism
essential gene in Mtbss H37Rv and CDC1551; 
essential gene for in vitro growth of Mtbss 
H37Rv

[34]
[37]
[44]

Rv2956 N.A I237T 99.6% information essential gene for in vitro growth of Mtbss [44]
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pathways H37Rv 

Rv3282 N.A A133S 99.7% conserved 
hypothetical Mtbss H37Rv mutants are slow growing [34]

Rv3666c dppA E451G 97.8% cell wall and cell 
processes essential gene in Mtbss H37Rv [34]

Rv3868 eccA1 A243V 99.5% cell wall and cell 
processes

required for survival of Mtbss H37Rv in 
primary murine macrophages [35]

235
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236 Discussion

237 The global aim of reducing the impact of tuberculosis by the year 2030 cannot be 

238 achieved without considering the impact of zoonotic transmission and biology of M. 

239 bovis, the main causative agent of TB among cattle. The prevalence and incidence of bTB 

240 among humans is significantly lower across the globe compared to TB caused by the 

241 hMTBC [2]. Nevertheless, the association of bTB with compromised immunity and the 

242 innate resistance of M. bovis to pyrazinamide (PZA) (one of the four first line anti-TB 

243 drugs) underscore the need to adapt and implement TB control programs that encompass 

244 both bTB and TB caused by the hMTBC. Compared to other geographical regions, Africa 

245 has the highest burden of zoonotic transmission of bTB due to close contact of humans 

246 and animals (domestic and wild-life) as well as relatively poor hygienic practices 

247 [2,17,45–47]. We identified 15 M. bovis isolates among a total of 1755 MTBC isolated 

248 from pulmonary TB patients. Further molecular epidemiological analysis of these 

249 together with global collections of M. bovis and hMTBC showed (1) an association 

250 between close contact with livestock/animal carcasses and bTB infection in Ghana, (2) 

251 clustering of M. bovis of African origin close to the root of the global phylogeny and (3) 

252 the presence of M. bovis-specific amino acid mutations among both essential and non-

253 essential core MTBC genes.

254 The finding of a significant association between bTB and close contact with animals (p < 

255 0.0001) suggests zoonotic transmission and this calls for the implementation of 

256 preventive policies and strategies to reduce zoonotic transmission of TB among these 

257 high-risk groups [45]. This observation also calls for intensive education to create 

258 awareness of the disease about the risks of infection, the detection of infected 

259 animals/carcasses and prevention among farmers, butchers and the general population. 

260 Further emphasis should be placed on training butchers and animal handlers on the 

261 importance of adequate infection control measures, including the use of personal 

262 protective equipment (PPE) and the disposal of infected organs to avoid transmission of 

263 bTB among such personnel. An experienced butcher suffering from bTB in Australia 

264 gave an account of slaughtering many animals suspected of bTB and further cutting out 

265 the lungs for over 35 years without any proper precaution [48] . Also, some butchers in 

266 Nigeria, suffering from bTB, admitted eating visibly infected parts of the lung of cattle 

267 out of ignorance in order to convince customers to buy meat [49]. These instances 

268 highlight the importance of public education in the fight against bTB. This education 

269 should include veterinarians because there are instances of these professionals getting 
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270 infected with bTB due to a lack of precautionary measures during execution of their work 

271 as was the case of a veterinary surgeon who suffered cutaneous bTB after performing 

272 several examinations without proper PPE [50]. 

273 Our observation also confirms the importance of the test and slaughter (TS) control 

274 strategy for bTB. In addition to pasteurisation of dairy products, bTB has been controlled 

275 in developed countries due to the successful implementation of the TS policy of all 

276 infected cattle and compensation of affected farmers by governments [51]. However, this 

277 has not been implemented in SSA due to the costs involved. Nevertheless, our findings 

278 call for a reconsideration of the TS strategy for bTB control in SSA and Governments 

279 must respond to this call. 

280 We found the proportion of M bovis infected patients among participants from the 

281 Northern region (1.9%) of Ghana to be relatively higher (OR =2.7) compared to those 

282 from the Greater Accra region of Ghana (0.6%). The Northern region is home to over 

283 70% of the national cattle population [52], confirming the observation that there is a 

284 relationship between close animal contact and bTB. Even though we found no clear 

285 association between the M. bovis isolates and drug resistance and HIV infection, the 

286 proportions were relatively higher than among the hMTBC. However, the lack of 

287 association may be because of the relatively limited number of M. bovis isolates thus 

288 further investigation using a larger number of isolates is required.

289 The global phylogeny of M. bovis clusters most of the M. bovis of African origin at the 

290 root of the tree (Fig 1) which might be an indication that they are closest to the progenitor 

291 of this successful member of the MTBC with the widest host range. However, the limited 

292 number of genomes from Africa does not allow inference of ancestry. With the exception 

293 of the five clinical M. bovis from Ghana which clustered as a monophyletic branch at the 

294 base of the tree, the random distribution of M. bovis irrespective of the speciation of the 

295 host underscores the wide host range of M. bovis and indicates that there is no specific 

296 host adaptation. However, the geographical distribution may suggest transmission of 

297 specific clones within certain geographical locations which agrees with earlier reports 

298 [53–55]. 

299 The identification and implications of M. bovis-specific amino acid mutations among 

300 genes such as mce1A, phoT and eccA1 [35], pks6 [36,38] as well as glgP [34] highlights 

301 the potential attenuated virulence of M. bovis relative to the hMTBC [56]. It would be 

302 interesting to test the effects of these mutations on fitness of mutants using ex vivo human 

303 cell lines or in vivo bovine models. In addition to the potential phenotypic implications of 

304 the identified mutations among essential genes, the 8 M. bovis-specific mutations could 
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305 be utilized in developing either a rapid lateral flow diagnostic tool or a PCR-based tool 

306 specific for differential diagnosis of bTB among TB patients to advice an appropriate 

307 treatment regimen since M. bovis is innately resistant to pyrazinamide, a component of 

308 the DOTS regimen. 

309

310 The scarcity of M. bovis genomes from African limited our ability to infer ancestry of the 

311 Ghanaian clinical isolates. Nevertheless, our data indicates a potential zoonotic 

312 transmission of bTB hence highlights the need for public education among people at risk. 

313 Moreover, the identified M. bovis-specific mutations could be utilized in the development 

314 of rapid diagnostic assays for differential diagnosis of bTB.

315
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