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Brain-Computer Interfaces (BCIs) enable users to control a computer
by using pure brain activity. Recent BCIs based on visual evoked po-
tentials (VEPs) have shown to be suitable for high-speed communi-
cation. However, all recent high-speed BCIs are synchronous, which
means that the system works with fixed time slots so that the user is
not able to select a command at his own convenience, which poses
a problem in real-world applications. In this paper, we present the
first asynchronous high-speed BCI with robust distinction between
intentional control (IC) and non-control (NC), with a nearly perfect NC
state detection of only 0.075 erroneous classifications per minute.
The resulting asynchronous speller achieved an average information
transfer rate (ITR) of 122.7 bit/min using a 32 target matrix-keyboard.
Since the method is based on random stimulation patterns it allows
to use an arbitrary number of targets for any application purpose,
which was shown by using an 55 target German QWERTZ-keyboard
layout which allowed the participants to write an average of 16.1 (up
to 30.7) correct case-sensitive letters per minute. As the presented
system is the first asynchronous high-speed BCI speller with a ro-
bust non-control state detection, it is an important step for moving
BCI applications out of the lab and into real-life.

Electroencephalography (EEG) | self-paced | EEG2Code

Introduction

Brain-Computer Interfaces (BCIs) enable users to control a
computer by using brain activity. Their main purpose is to
restore several functionalities of motor disabled people, for
example, patients who suffered a stroke or have amyotrophic
lateral sclerosis (ALS). Probably the most important purpose
is to restore the communication ability, therefore, BCI spellers
are intensively researched to increase the communication speed.
Recent BCI spellers are mainly based on event related poten-
tials (ERPs) or visual evoked potentials (VEPs). The latter
are brain responses to visual stimuli and the idea has been
proposed by Sutter in 1984 (1), who stated that "the electrical
scalp response to a modulated target is largest if the target is
located within the central 1◦ of the visual field" and that "this
makes it possible to construct a gaze-controlled keyboard".

Although recent BCI spellers (2, 3) show high communi-
cation speed, they are based on synchronous control, which
means that commands are executed in a certain time interval
controlled by the BCIs. However, those BCIs are not suitable
for real world applications as they cannot differentiate between
control and non-control state. Therefore, those BCIs will give
a random output if a user is taking a break to think or does
not want to control the BCI for other reasons. Therefore, a
practical BCI should be asynchronous, or also called self-paced,
and should be able to identify the user’s intent to control the
system, which is called the "Midas Touch" problem (4). The
BCI has to distinguish efficiently between the intentional con-
trol (IC) state and the non-control (NC) state, which has been
tackled by several methods (5–19).

Some methods make use of hybrid BCIs combining sev-
eral brain activities, for example, using ERPs (like P300) to
distinguish between IC state and NC state in combination
with steady-state VEPs (SSVEPs) for classification (6, 12).
Others use threshold methods, like Cecotti(15) who devel-
oped an asynchronous SSVEP BCI distinguishing between
IC state and NC state by normalizing frequency powers for
each stimulus frequency following a minimum energy combi-
nation approach.Another approach was proposed by Suefusa
and Tanaka (14) who developed an asynchronous SSVEP
BCI using multiset canonical correlation analysis (MCCA)
and a multi-class support vector machine to distinguish be-
tween 28 IC classes and the NC class. However, compared
to synchronous methods, the current asynchronous BCIs are
substantially slower, with 67.7 bit/min being the fastest asyn-
chronous system (14) to date.

The comparison of those methods is difficult, partly because
the term "asynchronous" is not uniformly defined, as it is
sometimes used for early stopping methods disregarding the
NC state detection and sometimes for distinguishing between
IC and NC. It also should be mentioned that no unified criteria
exist for the evaluation of NC state detection, which makes it
difficult to compare the methods between papers. Furthermore,
as there are NC state detection methods with fixed trial lengths
for synchronous BCIs and approches without fixed trial length
for asynchronous BCIs, comparability is even more diffuclt.
For the former it is possible to specify the NC detection
accuracy and recent works (5–10) achieved accuracies between
76.94 % and 98.91 %. For the latter it is possible to specify
the number of erroneous classifications during the NC state
per time unit and recent works (11–13) achieved 0.7 to 0.49
erroneous classifications per minute. In summary, all of them
did not achieve a reliable NC state detection, as the BCI
still executes random commands during the NC state, which
decreases the user experience.

In this paper, we present an asynchronous BCI suitable
for real-life application. It is an extension of our previous
EEG2Code method (20) which predicts the stimulation pattern
of an arbitrary VEP response. The method is based on random
stimulation patterns which allows to create layouts with an
arbitrary number of targets for any application purpose. The
presented asynchronous BCI speller achieved a robust NC state
detection under different conditions, like reading or looking at
another monitor, with only 0.075 erroneous classification per
minute. Furthermore, with an average ITR of 122.7 bit/min
and up to 205 bit/min it is the first asynchronous high-speed
BCI speller.
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Fig. 1. Setup of the asynchronous BCI experiment. The matrix-keyboard layout is as shown on the monitor, it has 32 targets labeled alphabetically from A to Z followed by ’_’
and numbers 1 to 5. The targets are separated by a blank black space and above targets is the text field showing the written text. Each target is modulated with its own random
stimulation pattern. During a trial, the participant has to focus a target. A spatial filter is applied to the measured EEG. For each 250 ms window (slided sample-wise) of the
spatially filtered EEG signal (blue line), the EEG2Code model predicts a real value (orange line) which highly correlates to the stimulation pattern. For simplicity, it is only shown
for 3 exemplary windows (magenta, green, cyan). Note that the model prediction is delayed by 250 ms because of the sliding window approach. The resulting model prediction
is now continuously compared to the stimulation patterns of all targets, not by using the whole trial, but sub-trials (grey lines). We defined, that a sub-trial has a user-specific
maximum length (calculated beforehand), once the maximum length is reached, the sub-trial window will be shifted, meaning the beginning of the trial will be discarded. The
comparison is done by calculating the p-values with the hypothesis that the correlation coefficient is greater than zero, for simplicity it is only shown for targets A, B, 4 and 5. If at
any time one of the p-values is lower than a user-specific threshold (calculated beforehand), the trial stops and the corresponding target will be selected, this is indicated to the
participant by highlighting the target in yellow and the corresponding letter is appended to the text field above the keyboard. After an inter-trial time of 0.5 s the next trial starts.
Picture modified from (20)

Results

Spelling with an asynchronous EEG2Code BCI. Fig. 1 depicts the
components and procedure of the presented asynchronous BCI.
It consists of a presentation layer representing a keyboard, an
EEG recorder/amplifier, and the asynchronous model that
predicts the user-intended target in real-time. The model
(EEG2Code) is based on our previous study (20) and is able
to predict arbitrary visual stimulation pattern using the spa-
tially filtered EEG. The model prediction is then compared
to all possible target patterns to identify the attended target,
which is done continuously in an asynchronous fashion. By
determining a user-specific threshold, it is detected if the user
wants to control the BCI or if the BCI should remain in a
non-control state.
Online lexicographic spelling performance. For testing the system
under optimal conditions, a lexicographic spelling with a

4 × 8 matrix-keyboard (Fig. 1) was used. The left part of
Table 1 lists the target prediction accuracy, the average trial
time, the corresponding ITR and the corresponding num-
ber of correct targets (CT) per minute. The average accu-
racy was 99.3% ± 0.43% with an average trial duration of
2.61 s ± 0.78 s (including an inter-trial time of 0.5 s), which
corresponds to an average ITR of 122.7 bit/min ± 33.2 bit/min
and 24.7 CT/min ± 6.8 CT/min, respectively. Across all par-
ticipants, the minimal and maximal performance ranges from
76.2 bit/min (S08) to 170.9 bit/min (S02).

Online non-control detection performance. As mentioned, the dif-
ferentiation between IC and NC is important for real-life
applications. Therefore, we tested NC states under 4 different
conditions, furthermore, both transitions were tested: IC to
NC and vice versa. While each IC state was always recognized
for all participants, the NC state worked without errors for 8
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Table 1. Results of the online asynchronous BCI speller.

Matrix-Layout (lexicographic) QWERTZ-Layout (case-sensitive copy-spelling)
Subject CT/min Accuracy [%] ITR [bit/min] Time [s] NC errors/min CL/min CT/min Accuracy [%] ITR [bit/min] Time [s]

S01 25.3 99.5 125.9 2.35 0 6.2 9.5 95.2 52.4 5.99
S02 34.6 99.0 170.9 1.72 0 30.7 35.5 100.0 205.0 1.69
S03 27.3 99.5 136.2 2.19 0 21.8 25.2 100.0 145.6 2.38
S04 15.9 100.0 80.0 3.76 0 7.6 9.8 94.3 53.2 5.80
S05 30.5 98.4 151.1 1.94 0.25 24.3 28.0 100.0 161.9 2.14
S06 19.7 99.5 99.5 3.02 0 11.7 13.5 97.8 76.2 4.34
S07 32.4 99.5 161.5 1.84 0.5 19.5 24.5 94.2 133.4 2.31
S08 15.3 99.5 76.2 3.91 0 4.6 5.3 100.0 30.8 11.26
S09 19.7 99.5 99.0 3.02 0 13.6 15.7 100.0 90.9 3.81
S10 25.7 99.0 126.9 2.31 0 21.3 24.5 100.0 141.8 2.45

mean 24.7 99.3 122.7 2.61 0.075 16.1 19.2 98.2 109.1 4.22

Shown are the results for both the lexicographic spelling (matrix-layout, 32 targets, 192 trials) and the case-sensitive copy-spelling (German
QWERTZ-layout, 55 targets, spelling 3 times "Asynchron BCI"). For both the number of correct targets (CT) per minute, the target prediction
accuracy, the information transfer rates (ITR) and the average trial duration (including an inter trial time of 0.5 s) are given. Using the
matrix-layout, several non-control (NC) states were tested (4 min in total), the results are given as the average number of erroneous classifications
per minute during the NC state. Additionally, for the copy-spelling, the number of correct letters (CL) per minute is given, whereas CL takes
corrections and case-sensitive letters into account. Best results are in bold font.

of the 10 subjects, with 1 error for subject S05 and 2 errors
for subject S07. Averaged over all subjects, the NC state
detection resulted in 0.075 erroneous classifications per minute
(Table 1).
Online case-senstitive copy-spelling performance. A matrix-
keyboard with lexicographic order has the advantage of equal
sized targets, but most participants/end-users are familiar
with established keyboard layouts. To also evaluate the sys-
tem under conditions similar to a real-life scenario, we tested
the performance using a 55 target German QWERTZ-layout
(Fig. S2) by spelling 3 times "Asynchron BCI" (case sensitive).
In case of errors, the participants had to correct them by choos-
ing the backspace-target to delete the previous character.

The right part of Table 1 lists the same performance mea-
sures as for the matrix-layout, but additionally the num-
ber of correct letters (CL) per minute, which includes cor-
rections and case-sensitive letters. The average accuracy
was 98.2 % ± 2.56 % with an average trial duration of
4.22 s ± 2.91 s (including an inter-trial time of 0.5 s), which cor-
responds to an average ITR of 109.1 bit/min ± 56.6 bit/min,
19.2 CT/min ± 9.7 CT/min, and 16.1 CL/min ± 8.7 CL/min,
respectively. Interestingly, compared to the matrix layout,
for some of the participants the average trial time is highly
increased, especially for S01 and S08, which could be explained
in part by the reduced target size (5 × 5 cm vs. 3 × 3 cm).
Offline threshold optimization. In general, the threshold is used
to identify the correct target and to distinguish between IC
and NC state. For the online experiment, the threshold was
optimized for NC state detection. In order to optimize it for
spelling performance, we tested several thresholds by simu-
lating the asynchronous BCI using the lexicographic trials.
Fig. 2 shows the accuracies, ITRs, the number of erroneous
classifications during NC state and the average trial durations,
averaged over all participants. The results show that the
communication speed can be optimized to an ITR of 132.4
bit/min with an average trial duration of 1.93 s including 0.5 s
inter-trial time. However, using the corresponding threshold
during the NC state results in 14.4 erroneous classifications

per minute.
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Fig. 2. Effects of different p-value thresholds. Shown are the accuracies, information
transfer rates (ITRs), erroneous classifications during the non-control state per minute
and the average trial duration including an inter-trial time of 0.5 s. The results using
the threshold determined during the experiment is marked as "online". The threshold
parameter value defines the percentile of allowed miss-classifications and the resulting
threshold is the highest p-value that leads to it (see Methods for details).

Discussion

For real-life applications, the following factors must be met
by a BCI: high communication speed, asynchronous control
and non-control state detection. While all three aspects were
adressed individually in different publications, the presented
system is unique as it combines all three aspects. The pre-
sented EEG2Code BCI speller is an asynchronous system that
achieves high communication speed (average of 122.7 bit/min),
as well as a robust NC state detection with only 0.075 erroneous
classifications per minute during the NC state. Compared to
the previously fastest asynchronous BCI speller (14) (67.7
bit/min) the ITR is nearly doubled.

As mentioned, among communication speed, an end-user
suitable BCI has to distinguish between intentional control
(IC) and non-control (NC). Otherwise the BCI will execute
random commands during NC states, which highly reduces
the user experience. For recent comparable methods for NC
state detection (11–13), the best value was 0.49 erroneous
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classifications per minute during the NC state, which could
be reduced by a factor of 6.5 by our method. Here it is worth
mentioning that 8 of the 10 participants had a perfect NC
state detection without any errors. Since the performance of
the NC detection only depends on the threshold, it can easily
be optimized for a perfect NC detection. For example, instead
of using only a 2 min NC run for threshold determination,
the run-time could be increased in order to get the lowest
p-value that can occur during a NC state. Indeed, this would
reduce the spelling performance by increasing the required
trial duration, but this can be counteracted by defining two
thresholds: one optimized for IC state and one optimized for
NC state. For example, if the user intends to go from IC
to NC state a special target has to be gazed, which sets the
corresponding threshold to an optimum for NC state. Once
the user intends to go back to IC state, the classification of the
first intended target takes longer, but afterwards the threshold
will automatically be set to the threshold optimized for IC
state, which in turn allows to spell faster. We have shown
that an optimized threshold results in an increased ITR (132.4
bit/min vs. 122.7 bit/min). Using other methods for threshold
optimization could increase the performance even more.

The spelling results revealed high variances between the
participants: For example, using the QWERTZ-layout, S02
achieved 205.0 bit/min while S08 achieved only 30.8 bpm.
Aside from the physiological difference that can cause such
variation, the determination of the optimal maximal sub-trial
length is also an important factor. For determination of the
optimal sub-trial length we only tested durations between
0.5 s to 3.0 s, but it turned out, that 3.0 s is not enough for
participants with a generally bad performance. As shown in
Fig. S1, increasing the maximum sub-trial length to 6 s results
in a faster classification for S08. Increasing the maximum sub-
trial length has only one negative effect, it will increase the
first classification time after the NC state, but the advantage
of faster classifications during the IC state outweighs the
disadvantage.

Furthermore, as shown in our previous work (20), the
EEG2Code method can be used with an arbitrary number
of targets without additional training. We have confirmed
that in the present study, although trained using a 32 target
matrix-keyboard, the method also works using a 55 target
German QWERTZ layout. The results are slightly worse than
using the matrix keyboard (109.1 bit/min vs 122.7 bit/min),
but this is mainly due to the reduced target size, as this results
in lower VEP responses. On the other side, 4 participants
achieved an even higher ITR using the QWERTZ-keyboard.
Especially, S02 achieved 205.0 bpm resulting in 30.7 correct
case-sensitive letters per minute. Furthermore, all partici-
pants have noted that a well-known keyboard layout gives a
more natural spelling experience, which therefore is another
important fact for end-user application.

To summarize, with an average ITR of 122.7 bpm, or
an average of 16.1 correctly spelled case-sensitive letters in a
realistic scenario, this is the first asynchronous high-speed BCI.
It is fully flexible regarding the number of targets and has a
near perfect NC state detection. With those properties, the
EEG2Code BCI can not only be used for spelling applications,
but could also be used for directly controlling mouse and
keyboard of the computer (21), and thereby make a huge step
towards the application of BCIs in a real-life scenario.

Materials and Methods

EEG2Code model. The EEG2Code method was presented in our
previous work (20), but for the sake of completeness is described
here again, along with the new extensions for asynchronous BCI
control and non-control state detection.
Training. The model is based on a ridge regression model, which
uses the EEG signal to predict the stimulation pattern during an
arbitrary stimulation. During the experiment, the binary stimula-
tion patterns were presented at a rate of 60 frames per seconds (see
section Modulation patterns).

The most prominent parts of a VEP are N1, P1 and N2, the
negative/positive potentials with peaks at around 70 ms, 100 ms
and 140 ms (post-stimulus), respectively. As the complete VEP
lasts for around 250 ms, we use a 250 ms window of spatially filtered
EEG data as predictor and the corresponding bit of the stimulation
pattern (0=black, 1=white) as response to train the ridge regression
model. The window is shifted sample-wise over the data during a
trial, meaning that it is required to use 250 ms of EEG data after
trial end, otherwise the last 250 ms of a stimulation pattern can not
be predicted. Fig. 3 depicts this procedure with a bit-wise window
shifting for simplicity. The ridge regression model β̂ and its bias
term β0 can be calculated by

β̂ =
((
XTX + λI

)−1
XT y

)
/σ(X) [1]

β0 = ȳ − X̄β̂ [2]

where X (the predictor) is a n × k-matrix with n the number of
windows and k the window length (number of samples). y (the
responses) is a n× 1-vector containing the corresponding bit of the
stimulation sequence for each window. I is the identity matrix and
λ the regularization parameter, which was not optimized but set
to 0.001. Since a window has a length of k = 150 samples, at the
used sampling rate s = 600Hz, the output β̂ is a coefficient vector
of length 150, one for each input sample and the constant bias term
β0. The number of windows n depends on the number of trials N ,
the average trial duration d, the window length k and the sampling
rate s:

n = N (d · s− k) [3]
As described in section Data acquisition, we used N = 96 and d = 4s
resulting in n = 216, 000 windows used to train the EEG2Code
model.

0 100 200 300 400 500

250 ms

Spatially filtered EEG

Stimulation pattern

Fig. 3. Training of the regression model. Each 250 ms window of the spatially filtered
EEG data will be projected to its corresponding bit (1 or 0) of the corresponding
stimulation pattern.

Prediction. After training, the EEG2Code model is able to predict
a sequence of real values, based on the spatially filtered EEG, that
highly correlates with the stimulation pattern. The lower part of
Fig. 1 depicts the procedure how the EEG2Code model is used
to predict a real value yi for each 250 ms window i (sample-wise
shifted) of the spatially filtered EEG.

yi = β0 + β1x1 + . . .+ βkxk [4]

where β0 is the constant term and β1...k the coefficients for each
window sample xk. The sequence y of predicted real values highly
correlates with the stimulation pattern. For better understanding, y
could be transformed to a binary sequence which fits to the binary
stimulation pattern with a certain accuracy.
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Asynchronous BCI control. For the asynchronous BCI control, we
need a method to choose the correct target out of others based on
the EEG2Code model prediction y and the classification should
only be done if y arises from one of the stimulation patterns with a
certain probability. As y highly correlates with its corresponding
stimulation pattern, we calculate the correlation coefficient rt be-
tween the model prediction y and the modulation pattern mt for
each target t. The target with the highest rt should be the correct
target. Since the correlation coefficient doesn’t take the length of y
into account, we calculate the p-value pt for each target t under the
hypothesis that the correlation coefficient rt is greater than zero.
The correct target can the be identified by finding the lowest pt

and pt can also be used as an estimate for the certainty that the
selection will be correct.

For better understanding, the complete procedure is depicted
in the lower part of Fig. 1. As our approach is not based on a
fixed trial length, the p-values are calculated continuously using
sub-trial windows. We called those windows sub-trials, on the
hand to avoid mix-ups with the windows used for the EEG2Code
model prediction (250 ms) and on the other hand to show that the
maximum trial length can be longer than the maximum sub-trial
length (3 s). If a sub-trial window reaches its maximum length,
the sub-trial window will be shifted, which means the beginning of
the trial will be discarded. As soon as a p-value pt is lower than
a user-specific threshold (calculated beforehand), the trial stops
and the corresponding target t will be selected. After an inter-trial
time of 0.5 s the next trial starts. If none of the p-values reach
the threshold, the trial will continue, which is the case during a
non-control phase or if a target can not be classified with a certain
probability.
p-Value threshold and upper sub-trial duration. As different partici-
pants do not have exactly the same VEP responses, a user-specific
threshold is determined. Furthermore, for better performing partic-
ipants, shorter sub-trial durations are sufficient, which is why we
also determined a user-specific upper sub-trial duration.

We made the assumption that a minimum sub-trial length of 500
ms and a maximum sub-trial length of 3000 ms should be sufficient
for all participants. Based on this assumption, we determined the
optimal individual sub-trial length for each participant by evaluating
different sub-trial length from 500 ms to 3000 ms in 250 ms steps.
For each sub-trial length the data was split into corresponding
sub-trials and the p-values were calculated as explained above.

We defined the p-value threshold as the p-value of the first
percentile out of all sub-trials that lead to a miss-classification. For
better understanding, this means that 99 % of all miss-classifications
should be excluded by this threshold. The optimal sub-trial length
is defined as the shortest duration for which 99 % of all correctly
classified sub-trials using that duration have lower p-values as the
threshold. If this is not the case for any sub-trial duration, it is
set to 3000 ms. This process should find the shortest sub-trial
length, for which we can guarantee a IC state detection using the
corresponding threshold.

To further optimize the threshold for NC state detection, the
participants had to perform a single 2 minute trial where they
had to look below the monitor. Using that trial we simulated
the asynchronous procedure with the determined upper sub-trial
duration. If any p-value occurs which is lower as the determined
threshold, it becomes the new threshold. This threshold was then
used in the online BCI.

For the offline analysis in the paper, we tested different thresholds.
For this, we introduced a threshold parameter, which defines, as
explained above, the percentile out of all sub-trials that lead to
a miss-classification. The analysis was performed using threshold
parameter values between 1 and 5 (in steps of 0.1). The resulting
thresholds are no longer optimized for non-control state detection
but for optimal spelling performance.

Modulation patterns. Even thought the EEG2Code model is able to
predict arbitrary (random) stimulation patterns, we found that the
bit change probability is a crucial property of stimulation patterns
that leads to different performances (22). Therefore, we generated
a set of 15 bit long (250 ms) sequences with 7 bit changes (50 %
bit change probability). This results in a total number of 6,864
bit sequences. As we use a correlation measure to determine the
correct target, we generated 100,000 subsets of 150 randomly chosen

sequences out of the 6,864 bit sequences and took the subset with
lowest average absolute correlation between the sequences in the
subset. The resultant subset has an average correlation of -0.004
(SD = 0.276) between any sub-sequence to all others. During the
experiment (except for the spatial filter runs), those sequences are
randomly assigned to each target. Once the sequence is presented, a
new one will be assigned. Therefore, the subset allows to modulate
150T/250ms different targets, where T denotes the trial duration in
milliseconds. The modulation patterns are presented with a rate of
60 bit/s.

Experimental setup.
Hardware & Software. The BCI consists of a g.USBamp (g.tec, Aus-
tria) EEG amplifier, two personal computers (PCs), Brainproducts
Acticap system with 32 channels and a LCD monitor (BenQ XL2430-
B) for stimuli presentation. Participants are seated approximately
80 cm in front of the monitor.

PC1 is used for the presentation on the LCD monitor, which is
set to refresh rate of 60 Hz and its native resolution of 1920 × 1080
pixels. A stimulus can either be black or white and is synchronized
with the refresh rate. The timings of the monitor refresh cycles are
synchronized with the EEG amplifier by using the parallel port.

PC2 is used for data acquisition and analysis. BCI2000 (23) is
used as a general framework for recording the data of the EEG
amplifier and the data processing is done with MATLAB (24). The
amplifier sampling rate was set to 600 Hz, resulting in 10 samples
per frame/stimulus. Additionally, a TCP network connection was
established to PC1 in order to send instructions to the presentation
layer and to get the modulation patterns of the presented stimuli.
Furthermore, the EEG block-size was set to 32 samples, meaning
that a classification is possible each 53,33 ms.

We used a 32 electrodes layout, 30 were located at Fz, T7,
C3, Cz, C4, T8, CP3, CPz, CP4, P5, P3, P1, Pz, P2, P4, P6,
PO9, PO7, PO3, POz, PO4, PO8, PO10, O1, POO1, POO2, O2,
OI1h, OI2h, and Iz. The remaining two electrodes were used for
electrooculography (EOG), one between the eyes and one left of the
left eye. The ground electrode (GND) was positioned at FCz and
reference electrode (REF) at OZ.
Presentation layout. We used MATLAB (24) and the Psychtool-
box (25) for the presentation layer. One layout is a 4 × 8 matrix
keyboard layout (32 targets in total) as shown on the monitor in
Fig. 1, whereas the targets are labeled alphabetically from A to Z
followed by ’_’ and numbers 1 to 5. The targets have a size of 5 × 5
cm are separated by a blank black space and above targets is a
text field showing the written text. The second layout is a German
QWERTZ-layout, as shown in Fig. S2, including number/symbol
row, 2 × shift, caps, tab, backspace, enter, and space (55 targets in
total), therefore, it allows to write uppercase and lowercase. The
targets with letters/numbers have a size of 3 × 3 cm.
Participants. To test the system, 10 healthy subjects were recruited,
each participated in one session and completed the whole experiment.
All had normal or corrected-to-normal vision and the age ranged
from 22 to 34 years. The study was approved by the local ethics
committee of the Medical Faculty at the University of Tübingen
and conformed to the guidelines of the Declaration of Helsinki. A
written informed consent was obtained from all participants.
Data acquisition. Initially, the participants performed a run to gen-
erate a spatial filter (see Preprocessing). The training phase was
split into 3 runs (32 trials each) with 4 s trial duration and 1 s
inter-trial time, those runs are used for the regression model training
and threshold determination. To optimize the threshold for NC
state detection, the participants performed a run with a single 2
minute trial where they had to look down (away from the monitor).
To test the asynchronous classification, the participants performed
6 runs (32 trials each) with 500 ms inter-trial time. To test the NC
state the participants performed 4 runs, each starting with 30 s NC
phase followed by 32 IC trials and an additional NC phase with
30 s length. During NC phases, different conditions were tested:
monitor was covered, or the participants had to look at the bottom,
or they had to look at the left of the monitor, or they had close their
eyes. During all mentioned runs the the matrix-keyboard layout
was used, 32 trials each in lexicographic order.

Afterwards, each participant had to perform 3 runs using the
German QWERTZ-keyboard layout. The participants were asked
to write "Asynchron BCI" (case-sensitive) and they should correct
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any errors that occur. "Asynchron" is the German word for "asyn-
chronous". It was not prescribed how the participants should spell
upper-case or lower-case letters (shift-key or caps-key).

Preprocessing.
Frequency filter. The recorded EEG data is bandpass filtered by the
amplifier between 0.1 Hz and 60 Hz using a Chebyshev filter of
order 8 and an additional 50 Hz notch filter was applied.
Correcting raster latencies. Standard computer monitors (CRT,
LCD) cause raster latencies because of the line by line image build-
up dependent on the refresh rate. As VEPs are affected by these
latencies, resulting in a decreased BCI performance, we corrected
the raster latencies by shifting the EEG data in respect to its ver-
tical position on the screen (26). For example, with a refresh rate
of 60 Hz, the image build-up takes about 16 ms. A target in the
(vertical) center of the screen is thereby shown 8 ms after the first
pixel is shown, which means that the EEG has to be shifted by 8 ms
to correct for that latency. During BCI control, it is not known
what character the user wants to select and thereby its position
is unknown. Therefore the EEG data is shifted in respect to the
target against which it is compared. A more detailed description is
given in our previous work (26).
Spatial filter. Recent studies (27, 28) have shown increased classifica-
tion accuracy by using spatial filters to improve the signal-to-noise
ratio of the brain signals. As random stimulation is not suitable
for spatial filter training, a m-sequence with low auto-correlation is
used for target modulation. The training was done using canonical
correlation analysis (CCA) as described in a previous work (29), but
the presentation layout was as described above and the participants

had to perform 32 trials (one per target) whereas one trial lasts for
3.15 s followed by 1.05 s for gaze shifting. As the used m-sequence
has a length of 63 bits (1.05 seconds), we got 96 m-sequence cycles
per participant, which in turn are used for spatial filter training.
The spatial filter is then used for the following experiment.

Performance evaluation. The BCI control performance is evaluated
using the accuracy of correctly predicted targets, the number of
correctly predicted targets per minute and the information transfer
rates (ITRs) (30). The ITR can be computed with the following
equation:

ITR =
(

log2 N + P log2 P + (1 − P ) log2
1 − P

N − 1

)
·

60
T

[5]

with N the number of classes, P the accuracy, and T the time
in seconds required for one prediction. The ITR is given in bits
per minute (bit/min). For asynchronous BCI control N equals the
number of targets (depending on the layout) and T the average
trial duration including the inter-trial time.

For the NC state, we analyzed the number of erroneous classifica-
tion per minute during the non-control phases. For the case-sensitive
copy-spelling runs (QWERTZ-layout), we also evaluated the number
of correct letters which takes corrections and case-sensitive letters
into account.
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Fig. S1. Comparison of the classification speed using different sub-trial durations. The blue line represents the corresponding p-values of the correct target of one of the trials
of participant S08 using a sub-trial duration of 3 s which was determined during the online experiment, whereas the red line represents the p-values of the same trial using a
sub-trial duration of 6 s. The grey dashed line indicates the p-value threshold used for S08. It clearly shows that using a sub-trial duration of 6 s results in a faster classification
speed (approximately 8 s vs. 4.5 s), indicating that a maximum sub-trial length of 3 s is too short for participant S08.

Fig. S2. The German QWERTZ-layout, including number/symbol row, 2× shift, caps, tab, backspace, enter, and space (55 targets in total). The targets are separated by a
blank black space and above targets is a text field showing the written text.
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