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Abstract

Agriculture is a major driver of global biodiversity loss1,2, accounts for one

quarter of greenhouse gas emissions3, and is responsible for 70% of freshwa-

ter use4,5. How can land be used for agriculture in a way that minimises the

impact on the world’s natural resources while maintaining current production

levels? Here, we solved this more than 10 million dimensional optimisation

problem and find that moving current croplands and pastures to optimal

locations, while allowing then-abandoned areas to regenerate, could simul-

taneously decrease the current carbon, biodiversity and water footprint of

global agriculture by up to 71%, 91% and 100%, respectively. This would

offset current net CO2 emissions for half a century, massively alleviate pres-

sure on global biodiversity and greatly reduce freshwater shortages. Whilst

these achievements would require global coordination of agricultural poli-

cies, reductions of up to 59%, 78% and close to 100% are achievable by

relocating production within national borders, with the greatest potential

for carbon footprint reduction held by the world’s top three CO2 emitting

countries.

Main text

The conversion of almost half of the world’s ice-free land area6 to cropland and

pasture has contributed to three of humanity’s most pressing environmental chal-

lenges7,8: (1) agriculture accounts for a quarter of anthropogenic greenhouse gas

emissions3, largely from the release of carbon stored in vegetation and soils9,10;

(2) agriculture is the predominant driver of habitat loss, the greatest threat to
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global biodiversity1,2; and (3) agriculture is responsible for 70% of global freshwa-

ter usage for irrigation, leading to shortages of potable water in many arid areas

of the world4,5. A rising demand for animal products11 thwarts hopes that the

potential for dietary shifts to decrease the environmental footprints of food pro-

duction7,12,13,8 can be fully realised in the near future. Yield increases through

more resource-efficient practices, technological advancements and genetically en-

hanced crop varieties are promising7,14,8, however a growing human population and

increasing per-capita consumption15,16 threaten to offset the potential of these ad-

vancements without complementary measures.

Optimising the spatial distribution of production could help to minimise the im-

pact of agriculture17. Empirical evidence shows that biodiversity and carbon stocks

previously lost through land conversion can rapidly reach pre-disturbance levels if

these lands are allowed to regenerate, often without active human intervention

(Supplementary Information). Relocating croplands and pastures that are currently

situated in areas with high potential biodiversity and carbon stocks, and subse-

quently allowing these areas to regenerate, may therefore lead to net carbon and

biodiversity benefits. If, in addition, new agricultural areas were established where

sufficient rainfall obviates the need for irrigation, the water footprint of global agri-

culture could be reduced significantly at the same time.

We used global maps of the current distribution of pasture and harvested areas of

43 major crops (Extended Data Table 1), which between them account for over 95%

of global agricultural land (Methods), to assess the current carbon and biodiversity

footprints of agriculture. The carbon impact in a specific area was calculated as the

difference between local potential natural carbon stocks in vegetation and soils, and

carbon stocks under the type of agricultural land use present there10 (Methods).

Similarly, the local biodiversity impact of agriculture was estimated as the difference

between local biodiversity under natural vegetation, and under cropland or pasture18

(Methods). Biodiversity is measured in terms of range rarity, in which local bird,

mammal and amphibian species richness of weighted by the inverse of the species’

ranges. Range rarity has been advocated as a particularly meaningful biodiversity

metric for conservation planning19,20.

By the same methods, we predicted potential carbon and biodiversity impacts

in areas that are currently not cultivated but are suitable for agricultural use (Meth-

ods). We used estimates of agro-climatically attainable crop and grass production

on potential agricultural areas that assume only rain-fed water supply21, so as to

identify land use configurations that require no irrigation. We considered three

different management levels, representing the range from traditional, subsistence-

based organic farming systems to advanced, fully mechanised production that uses

high-yielding crop varieties and optimum fertiliser and pesticide application21.

Using these realised and potential yield and impact estimates, we identified the

2

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 13, 2019. ; https://doi.org/10.1101/488841doi: bioRxiv preprint 

https://doi.org/10.1101/488841
http://creativecommons.org/licenses/by-nd/4.0/


global distribution of agricultural areas that provides the same total production of

the 43 crops and grass as the current one, while minimising the total environmen-

tal footprint. On a 30 arc-minute (0.5◦) grid, this requires solving a more than

106-dimensional linear optimisation problem (Methods). We estimated that for the

optimal configuration of agricultural areas and advanced management farming, cur-

rent carbon and biodiversity impacts of global agriculture could be simultaneously

reduced by up to 71% and 91%, respectively (Fig. 1A). This would offset the

current annual increase of atmospheric CO2 of 4.7 Pg C y-1( 22) for 49 years, while

drastically alleviating the pressure on terrestrial biodiversity. As per the data used,

no irrigation is required to supplement rainfall water supply. The total worldwide

area used for agriculture in this scenario is less than half of its current extent. The

trade-off between reducing carbon and biodiversity impacts is minimal; optimising

land use for each impact measure independently yields only marginally higher reduc-

tion potentials of 74% and 98%, respectively (Fig. 1A). Under traditional farming,

simultaneous carbon and biodiversity impact reductions of up to 43% and 84%,

respectively, are feasible (Fig. 1C). Whilst this confirms that increasing crop yields

is important for reducing the environmental footprint of agriculture23,14,7,16,24,12,8,

it demonstrates that a substantial impact reduction could be achieved by land real-

location alone.

A B C

Figure 1: Possible reduction of current carbon and biodiversity footprints of global agri-

culture by optimally relocating agricultural production. Each contour level represents the

frontier of simultaneously achievable carbon and biodiversity impact reduction for a given

proportion of local land area that is available for agricultural use (see text). Black lines

correspond to a subjectively defined optimal trade-off between carbon and biodiversity

impacts.

Thus far, we have assumed that the entire area of each grid cell is available

for agricultural use. How does the potential for reducing impact change if only a

proportion of each grid cell can be cultivated, while the remainder is retained as

natural ecosystem or used for other purposes? In this scenario, total impacts are

necessarily higher, because less optimal areas, in which environmental impacts are
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higher in relation to yield, also need to be cultivated to meet a given production

level. This is disproportionally the case for low intensity farming, which inherently

requires more land. We found that when only half of the local land area can be used

for agriculture, carbon and biodiversity impacts could be simultaneously reduced

by 63% and 90%, respectively, under advanced management (Fig. 1A), but only

by 30% and 80%, respectively, for traditional farming (Fig. 1C). Allocating as

much land as possible in optimal areas therefore becomes more important the less

advanced the farming system is.

A B

C D

E F

Figure 2: Optimal and current distribution of agricultural areas. (A)–(D) Optimal dis-

tribution of croplands and pastures for across- and within-country relocation of current

agricultural areas. Red areas represent the land that is required to meet current produc-

tion levels if grid cells are entirely available for agricultural use, while both red and yellow

areas are required when only 50% of grid cells are allowed to be cultivated, etc. (see text).

Maps show optimal configurations for advanced management farming and the optimal im-

pact trade-off shown in Fig. 1A. (E)–(F) Current distribution of croplands and pastures 25.

Current and optimal distributions for a specific crop, maize, are shown in Extended Data

Figure 2C–E.

Moving agricultural production, and thus labour and capital, across national

borders poses numerous political and socio-economic challenges that will be dif-

ficult to resolve in the near future. We therefore repeated our analyses, allowing

croplands and pastures to be relocated only within countries, while requiring cur-

rent national production levels to remain unchanged (Methods). We estimated

that if each country independently optimised its distribution of agricultural areas,
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the current global carbon and biodiversity impacts of agriculture could be simulta-

neously reduced by up to 59% and 78%, respectively (Fig. 1A). In this scenario,

the vast majority of production can be relocated so that rainfall provides sufficient

water supply; however, some countries produce crops for which national natural

agro-climatic conditions are not suitable, and thus some irrigation continues to be

needed (Methods). Fig. 3 lists the ten countries with the highest absolute carbon

and biodiversity reduction potentials, showing that the world’s three largest CO2

emitters – China, India and the United States26 – are also the countries that can

reduce their agricultural carbon footprint the most.

A B

Figure 3: Current national (A) carbon and (B) biodiversity impacts of agriculture, and

potentials for impact reduction by means of within-border relocation of agricultural areas

for 10 countries, ordered by absolute impact reduction potential. Results correspond to

the optimal impact trade-offs shown in Fig. 1A–C.

Agricultural areas optimally sited to minimise environmental impacts coincide

only to a limited extent with their current distribution (Fig. 2). The world’s most

produced crop, maize, for example, is currently planted predominantly in the United

States and China, but would ideally be grown in parts of Sub-Saharan Africa (Ex-

tended Data Fig. 1). In the scenario of optimal within-country land reallocation,

the optimal land use coincides with the current one on 30% of optimal areas, while

42% of optimal areas are located in regions already under some type of agricultural

use, and 45% are located in either currently active or abandoned agricultural areas

(Extended Data Fig. 2). This overlap is significantly lower in the scenario of across-

country relocation (Extended Data Fig. 2). Whilst the expansion of agriculture into

degraded areas has been advocated as a way to minimise future biodiversity and

carbon losses7,14, our results suggest that potential biodiversity and carbon stocks

on currently cultivated and abandoned agricultural areas are often so high that, in

principle, their restoration would be preferable to the protection of natural habitat

in the identified optimal growing areas.
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For computational reasons, we did not explore the possibility of crop rotations

and other diversification types, which can have benefits, e.g. for pest and disease

suppression27. Our analyses also do not account for possible changes in yields as the

result of climate change28. Both aspects may affect the precise location of optimal

areas, and decrease or increase the reduction potentials identified here, however, we

do not expect them to qualitatively change our overall conclusions.

Whilst our estimates of achievable impact reductions assume a fully optimised

distribution of agricultural areas, we stress that even relocating only a small share

of production would already generate a substantial portion of these benefits. 50%

of the current total carbon impacts of individual crops are caused by areas that

account for only 26±5% of the total production, while a mere 8±4% of production

are responsible for 50% of biodiversity impacts (Extended Data Fig. 3). Prioritising

the relocation of these areas, where the ratio of environmental impact to yield is

largest, would have disproportionately large carbon and biodiversity benefits, and

represents a particularly ’low-hanging’ opportunity for countries to reduce impact.

Spatial reallocation of agricultural production has tremendous potential to re-

duce its environmental footprint, but the implementation of such changes would

require careful management of the process. Relocating cultivated areas can only

lead to a reduction of impact if abandoned areas with high potential biodiversity

and carbon stocks are protected and their regeneration is ensured. This requires

effective institutional, legal, and policy frameworks, and financial incentives for

landowners29,30,31. Although biodiversity and carbon stocks often regenerate most

effectively without human intervention32, active restoration efforts can be necessary

to ensure the return of rare species in other cases33.

A range of policy mechanisms have proven effective in steering agricultural pro-

duction to desirable areas34. Their implementation at the national and international

level will be crucial for realising the environmental potential of moving agricultural

areas, providing gains that are badly needed if we are to reverse the ongoing degra-

dation of global climate, biodiversity and water under an ever increasing demand

for food.
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Methods

In the following, we define the mathematical optimisation problem whose solu-

tions represent minimum impact configurations of agricultural land, and specify the

datasets that were used to solve it. We use the following notation:

x : index of an arbitrary cell on a global 30 arc-minute (0.5◦) grid

A(x) : physical area of grid cell x (ha)

Yi(x) : current yield of crop i in grid cell x (Mg C ha-1 y-1)

Hi(x) : current harvested area fraction of crop i in grid cell x

Ci(x) : carbon impact of crop i in grid cell x (Mg ha -1)

Bi(x) : biodiversity impact of crop i in grid cell x (local range rarity loss)

Ŷi(x) : agro-climatically attainable yield of crop i in grid cell x (Mg ha-1 y-1)

V (x) : fraction of area available for agriculture in grid cell x

On pastures, yield is assessed in terms of the annual production of forage per hectare.

The current total annual production of crop i is given by

Pi =
∑
x

Hi(x) ·A(x) · Yi(x)︸ ︷︷ ︸
Production of crop i

in grid cell x

, (1)

and the current global carbon and biodiversity impacts of agriculture are given by∑
i

∑
x

Hi(x) ·A(x) · Ci(x)︸ ︷︷ ︸
Total carbon impact of crop i

and
∑
i

∑
x

Hi(x) ·A(x) ·Bi(x)︸ ︷︷ ︸
Total biodiversity impact of crop i

,

respectively.

For each crop i and each grid cell x, we determined the harvested area fraction

Ĥi(x) such that the total production of each crop i equals the current production

Pi, while the environmental impact is minimised. Any solution must satisfy the

equality constraints∑
x

Ĥi(x) ·A(x) · Ŷi(x) = Pi for each crop i, (2a)

requiring the total production on new agricultural areas to be equal to the current

one, and the inequality constraints∑
i

Ĥi(x) ≤ V (x) for each grid cell x, (2b)

which ensure that the local sum of agricultural lands is not larger than the locally

available area.
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Subject to these constraints, we can identify the configuration that minimises

the total carbon or biodiversity impact by minimising the objective function∑
i

∑
x

Ĥi(x) ·A(x) · Ci(x) or
∑
i

∑
x

Ĥi(x) ·A(x) ·Bi(x),

respectively. More generally, we consider the linearly weighted objective function∑
i

∑
x

Ĥi(x) ·A(x) ·
(
λ · Ci(x) + (1− λ) ·Bi(x)

)
→ min, (3)

where λ ranges between 0 and 1, thus allowing us to minimise both impacts simul-

taneously and examine potential trade-offs.

The above framework is identical when examining the potential for impact reduc-

tion by means of relocating croplands within national borders rather than globally.

In this case, the sum over x in the calculation of national production (Eq. (1)),

in the optimisation constraints (Eqs. (2a)–(2b)) and in the objective function (Eq.

(3)) is taken over grid cells that correspond to specific countries rather than the

whole world, and the optimisation problem is solved independently for each coun-

try. Some countries produce small quantities of crops that, according to the data

used here, would not grow anywhere within their borders under natural climatic

conditions, i.e. these crops likely require irrigation or greenhouses cultivation. Our

analysis shows that these crops account for a fraction of 0.12% of current global

agricultural areas that can not be relocated within national borders to areas where

rain-fed cultivation is possible. These crops were excluded from Eq. (3) for the re-

spective countries; we added the environmental impacts associated with the current

growing areas of these crops to the minimum national impacts found by Eq. (3).

Although all data required to compute the relevant variables, A(x), Yi(x),

Hi(x), Ci(x), Bi(x), Ŷi(x) and V (x) (see below), are available at a 5 arc-minute

(0.083◦) grid resolution, for computational reasons, we upscaled the final data to

a 30 arc-minute (0.5◦) grid. For pasture and 43 crops, this implies a more than

10 million dimensional linear optimisation problem. We solved Eq. (3) using the

dual-simplex algorithm in the function linprog of the Matlab R2018a Optimization

Toolbox35.

Current and potential agricultural areas and yields: Hi(x),Yi(x), Ŷi(x) We

used global maps of harvested areas, Hi(x), and fresh weight yields, Yi(x), of 43

crops36, and a global map for pasture25 (Extended Data Table 1). These areas

cover 95.2% of the combined area of pasture and harvested areas of 175 crops36,

for which data is available. We used global maps of potential growing areas and

agro-climatically attainable dry weight yields, Ŷi(x), for baseline climate, rain-fed

water supply and three different management levels for the same 43 crops and
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pasture grass21. Management levels represent the range from traditional, labour-

intensive farming systems without synthetic chemicals, to advanced, market-oriented

production that is fully mechanised, uses high-yielding crop varieties, and optimum

applications of nutrients and pest, disease and weed control21. Potential yields were

converted from dry weight to fresh weight using crop-specific conversion factors36.

We are not aware of a global dataset of forage production on current pastures, and

therefore used potential pasture grass yields for rain-fed water supply and interme-

diate input management as an estimate on these areas.

Carbon impact: Ci(x) Following ref.10, the local carbon impact of agriculture,

Ci(x), was estimated as the difference between potential natural vegetation and

soil carbon stocks, and carbon stocks under agricultural land cover.

The change of carbon stocks in vegetation resulting from land conversion is given

by the difference of carbon stored in potential natural vegetation10 and carbon stored

in grass or crops, which was calculated as in ref.10, based on the data compiled by

ref.36.

Due to the technical difficulties of acquiring empirical data across large spatial

scales, spatially-explicit global estimates of soil organic carbon (SOC) dynamics un-

der varying land use types are currently not available. We therefore chose a simple

approach, consistent with average estimates across large spatial scales, rather than

a complex spatially-explicit model for which, given the limited empirical data, robust

predictions on and beyond currently cultivated areas would not be possible. Follow-

ing ref.10, and supported by empirical meta-analyses37,38,39,40,41, we assumed a 25%

reduction of potential natural SOC (see below) from the conversion to cropland.

Meta-analyses of the change of SOC stocks when natural habitat is converted to

pasture suggest, on average, no significant change39, a slight increase38,41 or slight

decrease40. Here, we assumed no change in carbon stocks when natural habitat

is converted to pasture. Absolute local SOC loss from the conversion of potential

natural vegetation to cropland or pasture was estimated by applying the appropriate

loss percentages to a global map of pre-agricultural SOC stocks9. The total local

carbon impact of agriculture (Mg C ha-1) is thus given by

Ci(x) = Cpotential vegetation(x) + γ · Cpotential SOC(x)− Ccrop(i),

where Cpotential vegetation(x), Cpotential SOC(x) and Ccrop(i) denote the carbon stocks

(Mg C ha-1) of potential natural vegetation, potential natural SOC stocks, and car-

bon stocks of crop i, respectively, in the grid cell x, and where γ is equal to 0.25

or 0 if land is converted to cropland or pasture, respectively.

We did not consider greenhouse gas emissions from sources other other than

from land use change. This includes nitrous emissions from fertilised soils and

methane emissions from livestock and rice paddies42. In contrast to the one-off
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land use change emissions, these are ongoing emissions that are tied to production

and incur continually. We do not consider available data sufficient to allow a robust

extrapolation of these emission types to currently uncultivated land. We argue,

though, that the magnitude of these emissions in a scenario of land reallocation in

which total production is constant, is likely similar to that associated with the current

distribution of agricultural areas. We also did not consider emissions associated

with transport; however, these have been argued to be small compared to other

food chain emissions43 and poorly correlated with the actual distance travelled by

agricultural products44.

Biodiversity impact: Bi(x) We assessed the local biodiversity impact of agri-

culture in terms of range rarity loss. Range rarity has been advocated as a metric

for biodiversity that is more relevant to conservation planning than alternative mea-

sures, such as species richness45,46,20,19,47. Bi(x) is calculated as the difference

between range rarity under natural vegetation and under agricultural land cover as

follows: Using a similar approach to that of ref.18, we considered a bird, mammal

or amphibian species to be potentially present in a cell of a 5 arc-minute grid if the

species’ spatial extent of occurrcence48,49 overlays the grid cell, and if its habitat

preferences48,49 include the local potential natural vegetation type50. Each species’

potential natural range (ha) is then given by the total area of all grid cells identified

as containing the species. Next, potential natural range rarity of each grid cell was

obtained as the sum of the inverse ranges of all species present in the grid cell under

potential natural vegetation. Finally, global maps of range rarity loss resulting from

the conversion of natural vegetation to cropland or pasture were derived by subtract-

ing, in each grid cell, the sum of the inverse ranges of potentially present species

whose habitat preferences also include cropland or pasture, respectively, from the

potential natural range rarity. As with Ci(x) (see above), this approach allowed us

to estimate biodiversity impact for both currently cultivated and uncultivated areas.

Land available for agriculture: V(x) We assumed that the maximum area

available for agriculture in a grid cell is given by the proportion not occupied by

any crop other than the 43 considered here36, or by water bodies, infrastructure

or settlements21. Areas where soil and terrain-slope conditions are not suitable for

agriculture are already excluded in the potential yield data21.

As specified in the main text, we also examined the scenario in which only a

certain fraction of this maximum available area is available as potential agricultural

land.
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Supplementary Information

Carbon and biodiversity recovery on abandoned agricultural land

We briefly review empirical results on the recovery of biodiversity and carbon stocks

on regenerating agriculturally degraded land. In both cases, recovery follows an

asymptotic concave trajectory; the time required to reach pre-disturbance levels

can therefore be difficult to pinpoint, as both slightly shorter or longer times corre-

spond to similar recovery levels in the flat saturation stage of the recovery function.

Above- and below-ground carbon stocks have been shown to asymptotically reach

pre-disturbance values within 50–100 years after land abandonment51,52,53,54,55,56,57.

Slower biomass accumulation coupled with lower potential carbon stocks in tem-

perate forests leads to overall similar recovery times compared to tropical forests58.

In grasslands, carbon stocks recover within a few decades following land aban-

donment59,53. Faunal species richness on regenerating degraded land reaches pre-

disturbance levels on timescales of decades to a century60,61,55,62,52,63. Initial colonists

may represent different species to those present before degradation occurred64,62,65,

but the proportion of old-growth species increases as secondary ecosystems age,

thereby gradually replacing non-native species66,64,67,62,55,68,69. Biodiversity tends

to regenerate faster in temperate than in tropical regions, and faster in grassland

and shrubland biomes than in forests61,70,52,63.

Whilst assisted regeneration and active restoration can accelerate carbon and

biodiversity recovery29,66,30,61,71,72,33,62,73,65,52, passive regeneration is often the most

effective strategy32.
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Extended Data

A B

C

Extended Data Figure 1: (A)–(C) Optimal and current growing locations of maize in

the scenarios shown in Fig. 1A,C,E, respectively.

A B C

Extended Data Figure 2: Overlap between optimal agricultural areas (under the six

specified scenarios) and (A) current agricultural land where the specific current and optimal

crop types coincide (i.e. where current crops are already optimally sited), (B) current

agricultural land (irrespective of the specific local land use), and (C) the combined area of

current agricultural land and abandoned, wasted or idle agricultural land (using the global

dataset of ref. 74). All values are relative to the total area required in the appropriate

optimal scenario. Plots correspond to the optimal impact trade-off shown in Fig. 1A–C.
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A B

C D

E F

Extended Data Figure 3: Cumulative production and environmental impact on current

and optimal agricultural areas. (A)–(B) For each crop and grass, we sorted the relevant

growing locations according to the local ratio of environmental impact to yield, from high

to low. We then generated cumulative production-impact curves by traversing areas in

that order. For comparability, the resulting 44 curves were converted to a relative scale,

and are summarised by the 10–90th percentiles shown. Black lines represent means across

crops. Dotted lines illustrate the level of production on the least agro-environmentally

efficient growing areas that corresponds to 50% of the total crop-specific impact. The

more concave the production-impact curve is, the larger are the relative environmental

benefits of relocating even small portions of land. (C)–(F) Equivalent of (A)–(B) for

optimally sited agricultural areas, but with growing locations ordered from low to high

impact-to-yield ratio (i.e. the order in which new areas would ideally be established).

Dotted lines thus show the maximum achievable level of production that causes 50% of

the environmental impact. Data correspond to advanced management farming and the

optimal impact trade-off shown in Fig. 1A.
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Current car-

bon impact of

agriculture

Current biodi-

versity impact of

agriculture

Potential national

carbon impact re-

duction

Potential interna-

tional carbon im-

pact reduction

Potential na-

tional biodiversity

impact reduction

Potential interna-

tional biodiversity

impact reduction

Alfalfa 21.9 8.3 77% 87% 83% 83%

Banana 8.3 23 64% 74% 82% 97%

Barley 69.5 18.5 78% 90% 87% 79%

Buckwheat 3.4 0.9 76% 80% 84% 83%

Cabbage 4.5 3.1 73% 90% 80% 93%

Cassava 30.7 46.1 77% 90% 90% 95%

Carrot 1.5 1.1 69% 87% 87% 88%

Chickpea 14.2 8.6 66% 92% 86% 96%

Cocoa 14.3 27.7 87% 92% 95% 99%

Coconut 26.2 86 68% 81% 87% 97%

Cocoyam 2.8 4.2 82% 88% 94% 97%

Coffee 22.2 72.4 85% 89% 96% 99%

Cotton 33.7 18.8 58% 80% 80% 79%

Cowpea 9.9 6.6 92% 94% 94% 94%

Flax 0.8 0.1 47% 70% 58% 39%

Green bean 1.6 2 89% 93% 97% 99%

Groundnut 30.7 21.9 80% 89% 89% 92%

Maize 202.4 225.4 76% 84% 92% 92%

Millet 30.2 18.6 91% 95% 92% 96%

Oat 17.9 4.1 68% 84% 79% 74%

Oil palm 24.1 42.6 58% 71% 81% 93%

Olive 9.9 3.1 87% 96% 95% 95%

Onion 4.3 3.6 78% 90% 91% 91%

Orange 6 9.4 74% 86% 89% 96%

Pasture grass 97.8 24.4 83% 95% 89% 86%

Pasture legume 6.3 1.9 49% 80% 85% 64%

Pea 8 3.2 58% 72% 73% 86%

Pigeon pea 6.9 3.7 91% 94% 87% 89%

Potato 31.2 17.6 77% 90% 84% 94%

Rape 34.9 11.1 73% 89% 79% 87%

Rice 308.6 305.1 62% 75% 84% 91%

Rye 15.2 1.2 75% 85% 77% 57%

Sorghum 39.6 33.2 92% 92% 94% 96%

Soybean 105 56 73% 75% 78% 85%

Sugarbeet 9.2 1.2 52% 71% 67% 51%

Sugarcane 36.1 67.2 20% 55% 62% 87%

Sunflower 23.2 8.2 76% 83% 83% 91%

Sweet potato 15.6 15.8 66% 88% 93% 92%

Tea 4.2 9.9 75% 85% 75% 97%

Tobacco 7.7 8.3 68% 86% 86% 96%

Tomato 5.1 4.1 61% 83% 81% 76%

Wheat 244.4 79.8 74% 86% 68% 88%

Yam 7.1 5.8 81% 85% 85% 92%

Pasture 1807.3 2808.9 48% 59% 75% 90%

Extended Data Table 1: List of crops considered in this study, their current global

carbon and biodiversity impacts, and the potentials for reducing impacts under optimal

within- and across-border relocation of areas. Reduction potentials are shown for advanced

management farming and the optimal impact trade-off shown in Fig. 1A.
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