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Abstract 

Muscle-Invasive Bladder Cancer (MIBC) is a molecularly diverse disease with 

heterogeneous clinical outcomes. Several molecular classifications have been proposed, 

yielding diverse sets of subtypes, which hampers the clinical implications of such knowledge. 

Here, we report the results of a large international effort to reach a consensus on MIBC 

molecular subtypes. Using 1750 MIBC transcriptomes and a network-based analysis of six 

independent MIBC classification systems, we identified a consensus set of six molecular 

classes: Luminal Papillary (24%), Luminal Non-Specified (8%), Luminal Unstable (15%), 

Stroma-rich (15%), Basal/Squamous (35%), and Neuroendocrine-like (3%). These consensus 

classes differ regarding underlying oncogenic mechanisms, infiltration by immune and stromal 

cells, and histological and clinical characteristics. This consensus system offers a robust 

framework that will enable testing and validating predictive biomarkers in future clinical trials. 
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Bladder cancer is one of the most frequently diagnosed cancers in North 

America and Europe (4th in men and 9th in women). Most bladder cancers are urothelial 

carcinoma, which are classified for operational reasons as either non-muscle-invasive 

bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). MIBC is usually 

diagnosed de novo, but may arise from the 10 to 20% of NMIBC cases that eventually 

progress. MIBC is the most aggressive disease state and is associated with a five-year 

survival rate of 60% for patients with localized disease, and less than 10% for patients 

with distant metastases.  

At the molecular level, MIBC is a heterogeneous disease that is characterized 

by genomic instability and a high mutation rate. Many chromosomal rearrangements 

and more than 50 oncogenes and tumour suppressor genes have been identified as 

recurrently altered1,2. Transcriptomic profiling facilitates stratifying bladder cancer into 

molecular subtypes in order to more precisely classify a patient’s cancer according to 

prognosis and therapeutic options. Various teams have been working on the molecular 

stratification of bladder cancers, and several expression-based classification schemes 

have been proposed, either considering the full spectrum of bladder cancers3–6 or 

focusing separately on MIBC2,7–13 or on NMIBC14. These classifications have 

considerably advanced our understanding of bladder cancer biology; for example, the 

association between molecular subtypes and urothelial differentiation, and similarities 

between subtypes in bladder cancer and other cancers. In addition, specific genomic 

alterations were found to be enriched in particular molecular subtypes, including 

mutations targeting genes involved in cell cycle regulation, chromatin remodelling and 

receptor tyrosine kinase signaling. Importantly, several reports have highlighted the 

clinical importance of MIBC molecular stratification, suggesting that responses to 

chemotherapy and immunotherapy may be enriched in specific MIBC subtypes9,15–17.  
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The published MIBC classifications share many characteristics, including 

subtype-specific molecular features; however, the classifications are diverse, 

containing between two to seven molecular subtypes, and having both shared and 

unique subtype names. This diversity has hampered transferring subtypes into clinical 

practice, and highlights that identifying a single set of consensus molecular subtypes 

would facilitate work to achieve such a transfer.  

Here, we report the results of an international collaborative effort to reconcile 

molecular MIBC classifications, involving pathologists, urologists, oncologists, 

biologists, and bioinformaticians. By analysing six previously published classification 

schemes and combining public transcriptome data for 1750 tumours, we established a 

six-class, consensus molecular classification for MIBC. We characterized the 

consensus classes using additional molecular, histological and clinical data. To 

support the use of this consensus molecular classification, we offer a freely available 

transcriptomic classifier that assigns consensus class labels to single tumour samples 

(https://github.com/cit-bioinfo/consensusMIBC). 

  

Results  

Published molecular classifications of MIBC converge on six classes.  

We used six published MIBC molecular classifications to define a unified 

consensus subtyping system. We refer to these input classifications as Baylor (Tumour 

differentiation)13, UNC7, CIT-Curie8, MDA9, Lund10, and TCGA2. Following the 

approach outlined in Extended data figure 1, we selected 18 MIBC mRNA datasets 

(n=1750, Supplementary Table 1), and assigned each sample to a subtype in each of 

the six classification systems.  
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We built a weighted network of these input subtypes, using Cohen’s Kappa 

metric to quantify similarities between subtypes from different classification systems, 

and applied a Markov cluster clustering algorithm (MCL) to identify robust network 

substructures corresponding to potential consensus classes (Methods, Supplementary 

Figure 1). We identified a 6-cluster solution, defining six biologically relevant 

consensus molecular classes, which we labeled as: Luminal Papillary (LumP), Luminal 

Non-Specified (LumNS), Luminal Unstable (LumU), Stroma-rich, Basal/Squamous 

Extended data figure 1 : Analytical workflow
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(Ba/Sq), and Neuroendocrine-like (NE-like) (Figure 1a). Considerations motivating our 

choices for these consensus names are detailed in the Supplementary Note.  

 

The six molecular classes had variable sample sizes, with Ba/Sq and LumP 

being the most prevalent (35% and 24% of all samples, respectively). The remaining 

41% of samples were split into LumU (15%), Stroma-rich (15%), LumN (8%), and NE-

like (3%) tumours (Figure 1b). The consensus classification was strongly associated 

with each of the initial classification systems (Chi-square P<10-165), as illustrated in 

Figure 1 and Supplementary Figure 2.  

We compared the consensus classes to the 15 TCGA pan-cancer integrative 

clusters18 that contained MIBC tumours (Supplementary Figure 2b). We observed 

enrichments between the Ba/Sq consensus class and the squamous cell carcinoma 

C27:Pan-SCC pan-cancer cluster (P=1.10x10-11), and between the Stroma-rich class 
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Figure 1 : The six consensus classes and their relation to input molecular subtypes. 
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and the stroma-driven C20:Mixed(Stromal/Immune) pan-cancer cluster (P=<2.2x10-

16).  

 

Transcriptomic characterization of the six consensus molecular classes  

We used mRNA data from all 1750 samples to characterize consensus classes 

with published molecular gene signatures for bladder cancer pathways and for tumour 

microenvironment infiltration (Figure 2, Supplementary Table 2). 

 

Differentiation-associated mRNA signatures were strongly associated with the 

consensus classes. Tumours from the three luminal classes overexpressed urothelial 

differentiation signatures (P<10-16), including the PPARG/GATA3/FOXA1-related Lund 

signature19. In contrast, Ba/Sq and NE-like tumours respectively overexpressed gene 

signatures associated with basal (P<10-16) and neuroendocrine differentiation 

(P=4.2x10-16).  

Figure 2 : Characterization of tumour and stroma signals using published mRNA signatures
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In addition to their urothelial differentiation status, the three luminal classes 

exhibited distinct molecular signatures. LumP tumours were characterized by high 

expression of a non-invasive Ta pathway signature20 (P<10-16) and were strongly 

associated with FGFR3 transcriptional activity as measured by an FGFR3 co-

expressed genes signature5 (P<10-16). LumNS tumours displayed elevated stromal 

infiltration signatures, mainly fibroblastic, as compared to the other luminal tumours 

(P<10-16). LumU tumours had a high cell cycle activity, and notably overexpressed a 

late cell cycle signature (P<10-16). 

Stroma-rich tumours displayed intermediate and heterogeneous levels of 

urothelial differentiation. They were mainly characterized by stromal infiltration as 

summarized by ESTIMATE21 stromal scores, with a specific overexpression of smooth 

muscle and endothelial cell signatures (P<10-16). Fibroblasts and myofibroblasts 

signatures were also overexpressed within the Stroma-rich tumours (P<10-16).  

Immune infiltration was mainly found within Ba/Sq and Stroma-rich tumours, but 

the two classes were characterized by distinct immune cell populations, as measured 

by MCPcounter signatures22. Ba/Sq tumours were enriched in cytotoxic lymphocytes 

and NK cells (P<10-16), whereas Stroma-rich tumours overexpressed T cell and B cell 

markers (P<10-16). LumNS tumours were the only luminal tumours associated with 

moderate immune infiltration signals (mainly B and T lymphocytes). We detected no 

transcriptomic markers of immune infiltration in NE-like tumours. 

Analysis of regulatory units (i.e. regulons) for 23 regulator genes previously 

reported as associated with bladder cancer2,23 were consistent with the mRNA 

signatures assessed (Extended data figure 2). PPARG and GATA3 regulons were 

activated within the luminal tumours, which overexpressed strong urothelial 

differentiation signals. The FGFR3 regulon was specifically activated within LumP 
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tumours, and Ba/Sq tumours showed the strongest association with the STAT3 regulon 

activation, consistent with their expressing a keratinization gene signature. 

Additionally, the regulon analysis showed an elevated HIF1A activity specifically in 

Ba/Sq tumours, suggesting that this class is associated with a highly hypoxic 

microenvironment. EGFR activity was also specifically associated with Ba/Sq tumours, 

as previously reported8.  

 

Genomic alterations associated with the consensus molecular classes  

We used TCGA exome data to identify class-specific mutations (Figure 3a, 

Supplementary Table 3) and ran GISTIC224 on 600 available copy number profiles 

grouped by consensus class to identify class-specific copy number variations (CNV) 

(Supplementary Table 4). In addition, we combined all CNV, gene fusion, and gene 

mutation data from the 18 cohorts to generate comprehensive profiles of genomic 

alterations by consensus class, for seven key bladder cancer key genes: FGFR3, 

CDKN2A, PPARG, ERBB2, E2F3, TP53 and RB1 (Figure 3b). 

Extended data figure 2 : Regulons activity within consensus classes.
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LumP tumours were enriched in FGFR3 (P=1.4x10-11), KDM6A (P=0.002) and 

STAG2 mutations (P=0.01). Aggregating data for 643 LumP tumours, the proportion 

of FGFR3-mutated tumours reached 40% (P=1.6x10-23). Assembling mutations, 

fusions, and copy number amplifications, FGFR3 alterations were enriched in LumP 

tumours (P=1.9x10-11). CDKN2A MLPA (Multiplex Ligation-dependent Probe 

Amplification) and CNV data for 604 tumours revealed 33% of CDKN2A 

homozygous/deep deletions in LumP tumours, corresponding to a strong enrichment 

as compared to other tumours (P=3.8x10-8). These deletions were consistent with the 

enrichment of LumP tumours within the TCGA pan-cancer iCluster C7:Mixed(Chr9 del) 

(P=1.6x10-10), which is characterized by Chr 9 deletions (Supplementary Figure 2b). 

The LumNS class was mainly characterized by an enrichment of mutations in 

ELF3 (35%, P=0.004), which is an early regulator of normal urothelium, and is activated 

by PPARγ25. PPARG was significantly altered as well, with 76% of LumNS tumours 

harbouring either amplifications or fusions involving this gene (P=5.7x10-3). 

Figure 3 : Genomic alterations associated with consensus classes
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LumU tumours also harboured frequent PPARG alterations (89%, P=1.9x10-11), 

and high-level amplifications of a 6p22.3 region that contains E2F3 and SOX4 (76%, 

P=3.0x10-12). Genomic amplifications of ERBB2 were overrepresented in LumU 

tumours (P=4.3x10-8), but no significant association was found between ERBB2 

mutations and any of the consensus classes. In contrast with the other luminal 

tumours, LumU tumours were associated with TP53 mutations (76%, P=3.4x10-5), and 

with mutations in the core nucleotide-excision repair gene ERCC2 (22%, P=0.006). 

More generally, LumU was the most genomically altered class (Extended data figure 

3), displaying the highest number of copy number alterations (P=1.8x10-16), the highest 

somatic mutation load (P=0.009), and including more APOBEC-induced mutations 

than other consensus classes (P=0.01). These features of genomic instability and the 

association with ERBB2 amplifications were consistent with the enrichment of LumU 

tumours within the TCGA pan-cancer subtypes C2:BRCA(HER2 amp) (characterized 

by frequent ERBB2 amplifications, P=4.0x10-5) and C13:Mixed(Chr8 del) (enriched in 

highly aneuploid tumours, P=3.8x10-9) (Supplementary Figure 2b). 
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For Ba/Sq tumours, as shown previously26, the most frequently mutated genes 

were TP53 (P=5.8x10-4), NFE2L2 (P=0.002) and RB1 (P=0.002). Aggregated mutation 

data revealed that 58% (134/232, P=0.009) and 20% (43/224, P=0.007) of Ba/Sq 

tumours contained mutations in TP53 and RB1, respectively. These mutations co-

occurred in 14% (32/224) of cases. Ba/Sq tumours were also strongly associated with 

genomic deletions of a 3p14.2 region, which occurred in 49% of cases (P = 1.5x10-13). 

Finally, combining all available data on TP53 and RB1 genomic alterations, we 

observed a strong enrichment of TP53 and RB1 inactivation in NE-like tumours. TP53 

was ubiquitously mutated in these tumours (94%, P=9.7x10-5), and co-occurred with 

RB1 inactivation by either mutations or deletions (94%, P=2.2x10-6). 

 

Histological patterns associated with the consensus molecular classes  
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To characterize the consensus molecular classes from a histological 

perspective, we assembled sample annotations for urothelial histological variants and 

specific morphologic patterns (Figure 4). As expected, Ba/Sq tumours included 79% of 

histologically reviewed tumours with squamous differentiation (126/159, P=3.6x10-32, 

Supplementary Figure 3). The Ba/Sq class did however extend beyond this histological 

subtype, with only 42% (126/303) of Ba/Sq tumours associated with squamous 

differentiation. Similarly, NE-like tumours were strongly associated with 

neuroendocrine variant histology, with 72% of histologically reviewed NE-like tumours 

showing neuroendocrine differentiation (13/18, P=9.7x10-22). LumP tumours were 

enriched with papillary morphology as compared to other consensus classes 

(P=1.2x10-12). This pattern was observed in 59% (82/139) of histologically reviewed 

LumP tumours, although frequently found in other luminal tumours (42% in LumNS 

and 31% in LumU tumours). LumNS tumours were enriched in micropapillary variant 

histology (36%, 9/25, P=0.001) and with the presence of carcinoma in situ (CIS) lesions 

(80%, 4/5, P=0.005).  
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A pathological review of stromal infiltration in TCGA tumour sample slide images 

confirmed that Stroma-rich tumours were associated with a higher proportion of smooth 

muscle cells (Kruskal P=1.1x10-8), consistent with the strong smooth muscle-related 

mRNA expression characterizing these tumours. 

 

The consensus molecular classes are associated with distinct clinical 

characteristics, survival outcomes, and therapeutic opportunities.  

We confirmed previously reported associations with gender, stage, and age 

(Figure 5a), such as the overrepresentation of Ba/Sq tumours in females and in higher 

clinical stages (P=1.4x10-5 and P=2.8x10-7 respectively). The LumP and LumU 
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consensus classes were enriched in T2 vs T3-4 tumours (P=0.009 and P=4.2x10-4) as 

compared to other classes. Patients less than 60 years old were overrepresented 

among LumP tumours (P=0.001), whereas the LumNS consensus class was enriched 

with older patients (> 80 years old; P=0.03). 

 

Overall survival was strongly associated with the consensus classes (Figure 5b, 

P=2.5x10-5). Patients with LumP tumours had the best prognosis when compared to 

all consensus classes (HR=0.65, P=2.1x10-4, Supplementary Table 5a). The two other 

luminal classes were associated with poorer prognoses (HRLumNS/LumP=1.51, P=4.7x10-

2; and HRLumU/LumP=1.32, P=0.12), although the differences were modest or not 

significant in this setting. Despite the variable differentiation states among samples 

from the Stroma-rich class, patients with these tumours showed a similar overall 

survival to that associated with LumP tumours (HRStroma-rich/LumP=1.18, CI95 = [0.85, 
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1.63]). Ba/Sq tumours were associated with a poor prognosis (HRBaSq/LumP=1.8, 

P=5.7x10-6), consistent with previous studies. Finally, NE-like tumours were associated 

with the worst prognosis (HRNE-like/LumP=2.4, P=3.3x10-3). Ba/Sq and NE-like consensus 

classes remained significantly associated with worse overall survival in a multivariate 

Cox model that combines consensus classes (with the LumP class as reference), TNM, 

and patient age (respectively P=0.002 and P=0.05, Supplementary Table 5b).  

We characterized the consensus classes using several clinically relevant mRNA 

signatures (Figure 5c, Supplementary Table 6). FGFR3 activity signature was strongly 

and specifically expressed in LumP tumours, suggesting prospects for FGFR3-

targeted therapies within this class. Ba/Sq tumours expressed high levels of the EGFR 

ligands, which may be associated with a sensitivity to EGFR-targeted therapies, as 

suggested by previously reported in vitro and in vivo experiments8. Ba/Sq tumours also 

strongly expressed immune checkpoint markers and antigen-presenting machinery 

genes, suggesting possibilities for immunotherapies within this class. Studies 

integrating mRNA signatures with response data to anti-PD1/PD-L1 therapies17,27 have 

reported associations of anti-PD1/PD-L1 response with high levels of CD8 T cells, high 

interferon gamma signals, and low activity of the TGF-beta pathway; however, no 

consensus class had an expression profile suggesting either response or resistance to 

anti-PD1/PD-L1 therapies. In contrast, NE-like and LumU tumours both had a profile 

associated with response to radiotherapy28,29, showing elevated cell cycle activity and 

low hypoxia signals. 

Finally, we performed a consensus class-based retrospective analysis of clinical 

outcome from patients receiving neoadjuvant chemotherapy9,16 (NAC) and patients 

treated by the anti-PD-L1 atezolizumab17 (IMvigor210) (Extended data figure 4). 

Analysis of overall survival and response showed that consensus classes were 
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associated with distinct responses to the treatments. The results suggested an 

improved overall survival in the NAC setting for LumNS, LumU and Ba/Sq tumours, 

and an enrichment in atezolizumab responders in LumNS (P=0.05), LumU (P=0.003) 

and NE-like (P=0.01) tumours. 

 

Discussion  

The diversity of published MIBC classifications has delayed transferring 

subtypes into clinical trials or clinical practice. Here, we offer two resources to support 

work towards such a transfer. First, we analysed the relationships among six different 

published classification systems, based on 1750 MIBC transcriptomic profiles. We 

identified six consensus MIBC molecular classes: Basal/Squamous (Ba/Sq) (35%), 

Luminal Papillary (LumP) (24%), Luminal Unstable (LumU) (15%), Stroma-rich (15%), 

Luminal Non-Specified (LumNS) (8%), and Neuroendocrine-like (NE-like) (3%). Each 
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consensus class has distinct differentiation patterns, oncogenic mechanisms, tumour 

microenvironments, and histological and clinical associations (Figure 6). At this point, 

NE-like and Ba/Sq classes are the most stably classified, while the three Luminal 

classes appear to be less clearly defined. Second, we make available an R-based, 

single-sample classifier that will identify which consensus class a tumour sample’s 

transcriptome corresponds to.  

 

This consensus classification fully concurs with MIBC differentiation-based 

stratification, revealing tumour classes that are primarily characterized by urothelial 

differentiation (Luminal classes), basal/squamous differentiation (Ba/Sq) and 

neuroendocrine differentiation (NE-like). Additional features including genomic 

alterations, and pathological or clinical characteristics are strongly associated with one 

or several classes (Figure 6).  
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LumP tumours are mainly characterized by strong transcriptional activation of 

FGFR3, involving a genetic mechanism in more than 50% of LumP samples (mutation, 

fusion, amplification). Papillary morphology is more frequent for these tumours (59%), 

although found in more than 30% of other luminal tumours. LumP tumours strongly 

express transcriptomic markers of the Ta pathway, and are consistently associated 

with the best prognosis among all MIBC tumours. These data suggest that these 

tumours result from progression of papillary Ta/T1 NMIBC. 

The LumNS class included a relatively small number of tumours with 

characterizing data, precluding using a more descriptive name. Nevertheless, our 

results point to interesting associations, such as an enrichment in ELF3 mutations 

(35%, n=7/20, P=0.004) and an association with micropapillary morphology (36%, 

n=9/25, P=0.001). A weak association with CIS (80%, n=4/5, P=0.005) is also 

observed for these tumours. The LumNS tumours are the only luminal tumours 

expressing stromal and immune signals. Their associated prognosis is the worst of the 

three luminal classes (P=0.05).  

LumU tumours display typical features of genomic instability, such as a higher 

tumour mutation burden that includes more APOBEC-induced mutations, and more 

copy number alterations. The “Unstable” descriptor for this class refers to the Genomic 

Unstable tumours from the Lund classification, which are all included within this class. 

These tumours are particularly enriched in TP53 (76%) and ERCC2 (22%) mutations. 

LumU tumours are associated with high late cell cycle activity, and ERBB2 activation 

through mutations or amplification (63%).  

Stroma-rich tumours are mainly characterized by high expression of non-tumour 

cell markers. Smooth muscle cells dominate the infiltration signals associated with 

these tumours, but endothelial cells and B lymphocytes are also overrepresented. As 
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assessed by a urothelial differentiation signature19 and by differentiation-based 

classification systems, this class contains both luminal and non-luminal tumours 

(Supplementary Figure 4). However, patients with luminal and non-luminal Stroma-rich 

tumours have very similar survival, suggesting that although this subgroup is 

heterogeneous in regards to tumour cell phenotype, stroma could be the main 

parameter that, given current treatments, drives its clinical features. 

Ba/Sq tumours have high expression of basal differentiation markers, and are 

strongly associated with squamous differentiation. 42% of Ba/Sq tumours have 

squamous histological variants, and 79% of such variants are observed in Ba/Sq 

tumours. Although the Ba/Sq tumours are characterized by KRT14, KRT5/6 and lack 

of GATA3, FOXA1, and PPARG, downregulation of PPARG and GATA3 is not 

observed in normal basal cells31. In this regard the Ba/Sq class is more similar to 

squamous urothelial metaplasia, consistent which enrichment in the squamous-cell 

carcinoma-associated C27 pan-cancer iCluster. Ba/Sq tumours express strong 

fibroblast and myofibroblast infiltration signals, as well as immune infiltration signals 

from cytotoxic T cells and NK cells. EGFR and STAT3 activation are specific to this 

class.  

The NE-like class includes virtually all (13 of 16, 81%) of tumours with 

histological neuroendocrine differentiation, and 72% of NE-like tumours have small-

cell neuroendocrine variant histology. These tumours show high cell cycle activity, and 

all have both TP53 and RB1 genes inactivated by mutations or deletions. They have 

the worst prognosis of all MIBC tumours. 

We generated the MIBC consensus classification following a procedure similar 

to that used by Guinney et al32 to identify consensus subtypes in colorectal cancer. 

Given the diverse nature of the six input classification systems that we used to build 
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the consensus classes (distinct classification methods, strongly varying numbers of 

classes), we anticipate that the resulting consensus classification captures most of the 

molecular heterogeneity described, and that it is currently the best consensus solution 

for MIBC molecular classification.  

Except for the Lund sub-stratification, which used IHC, the original subtype 

classifications analysed in this study were based on transcriptome data, and mainly 

considered coding transcripts. Considering other types of DNA, RNA or protein data 

may refine and subdivide the consensus classes further, helping to decipher the 

diverse biology and heterogeneity of molecular processes within MIBC. 

Some bladder tumours show histological and molecular intra-tumour 

heterogeneity33,34. Our consensus subtyping system addresses inter-tumour 

heterogeneity and focuses on defining the main molecular subtypes in MIBC. Our 

transcriptomic classifier will classify tumours according to the dominant class within the 

tumour sample analysed. However, we recognize that tumour samples may contain 

multiple subtypes, and we address how such mixtures are likely to interfere with our 

single-sample classifier by having the classifier report not simply a class label, but also 

correlation values with all consensus classes. Further studies are required to assess 

the importance of intra-tumor heterogeneity in prognosis and response to treatment. 

The consensus classification suggests possible therapeutic implications. Both 

the high rate of FGFR3 mutations and translocations in LumP tumours, and the FGFR3 

activation signature associated with these tumours, suggest that tumours that have an 

FGFR3 activation signature may respond to FGFR inhibitors, irrespective of the 

FGFR3’s mutation or translocation status. Novel fibroblast growth factor receptor 

inhibitors have been reported to clinically benefit MIBC patients that harbour mutations 
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or translocations (about 20% of MIBC patients) and/or overexpression (about 40% of 

MIBC patients) of the tyrosine kinase receptor FGFR335–38. 

Targeting the tumour microenvironment can be an effective option for cancer 

treatment. Immunotherapy targeting PD1 or PD-L1 immune checkpoints is now 

included in the standard of care in the US and most of Europe, for patients with locally 

advanced or metastatic urothelial cancer who relapse after cisplatin-based 

chemotherapy or are considered cisplatin ineligible, with a 20% objective response 

rate. A phase 3 clinical trial has demonstrated the efficacy of targeting tumour 

vasculature in MIBC using an anti-VEGFR2 inhibitor39. The different stromal 

components within consensus classes, identified by transcriptomic signatures, as well 

as our analysis of the IMvigor210 data, suggest that our consensus classification 

should be considered for further clinical studies involving immunotherapy or anti-

angiogenic therapy.  

Similarities between MIBC consensus classes and other cancer molecular 

subtypes may also be considered for future basket trials. We showed that such 

similarities are observed, for instance, between Ba/Sq MIBC tumours, Head and Neck 

Squamous Cell, Lung Squamous Carcinoma, and Cervical Squamous Cell 

carcinomas, which were placed together in the C27 PanCanAtlas TCGA cluster. LumU 

tumours and other ERBB2-amplified tumours in breast and stomach cancers were also 

grouped together in the C2 TCGA PanCanAtlas cluster. More generally, Damrauer et 

al have shown that bladder cancer and breast cancer luminal tumours share molecular 

similarities7. Indeed, in both cancers the luminal subtypes rely on GATA3 and FOXA1, 

two transcription factors that are necessary for luminal differentiation, and on a nuclear 

receptor: the estrogen receptor in breast cancer, and PPARG20 in MIBC. Intriguingly, 

in both cancers there is evidence that the nuclear receptor is involved in differentiation, 
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while also having protumorigenic effects. Such comparisons across tumour types may 

help transfer treatment information from tumours bearing similar characteristics into 

bladder cancer.  

We emphasize that we report biological rather than clinical classes, that can 

be tested for applications in treatment stratification. We offer the classification and 

the classifier as resources to apply on a single-patient basis in the work required to 

refine how such classes can best be used clinically. Notably, we propose the 

consensus classification as a framework for future studies and clinical trials that are 

intended to identify better predictive markers. Future sub-stratifications may allow 

defining a system that is more predictive of response to treatments; in such work, the 

clinical/strategical issue will be to decide the subtype granularity or resolution30 that is 

appropriate for a specific problem. 

 

Online Methods  

Subtyping of MIBC samples according to published MIBC molecular classifications. 

The six classification systems were mainly built on transcriptomic data, as follows: Mo 

et al13 (Baylor/Tumour differentiation) developed a 18-gene tumour differentiation signature 

that molecularly define urothelial differentiation, and used this signature to stratify MIBC 

patients into two groups, namely basal and differentiated.; Damrauer et al7 (UNC) performed 

consensus clustering on four aggregated datasets totalling 236 tumours and identified two 

major clusters, termed luminal-like and basal-like, based on similarities with breast cancer 

subtypes; Rebouissou et al8 (CIT-Curie) performed a hierarchical clustering in seven 

independent datasets including 370 tumours and identified seven meta-clusters (MC) by 

measuring similarities between the clusters obtained in each dataset; Choi et al9 (MDA) 

identified three subtypes through hierarchical clustering of a 73 tumours dataset, that were 

named basal, luminal and p53-like relatively to the transcriptomic markers and signatures 



 24 

expressed within each cluster; Marzouka et al10 (Lund) generated gene expression data from 

307 tumours and subdivided the cohort into six groups by hierarchical clustering, followed by 

further sub-stratification into ten levels using immunohistochemistry (IHC); Robertson et al2 

(TCGA) performed a consensus hierarchical clustering of RNA-seq profiles from 412 tumours 

compiled by TCGA and identified five expression subtypes.  

Transcriptomic classifiers for Baylor, UNC, MDA, CIT-Curie, Lund, and TCGA classification 

systems were provided and/or validated by the respective teams. All classifiers were merged 

into an R package (https://github.com/cit-bioinfo/BLCAsubtyping). 

We used these classifiers on 18 MIBC mRNA datasets (N = 1750 samples) profiled on 

ten different gene expression platforms (Supplementary Table 1), and assigned each sample 

to a subtype in each of the six classification systems. 16 datasets were retrieved from public 

repositories, and two unpublished datasets were shared by L.D. The normalisation method 

applied on each dataset is detailed in Supplementary Table 1. The six classifiers were applied 

on each dataset independently. 

 

Network construction and identification of consensus classes 

Classification results from the six classifiers were merged for all 18 datasets, and 

transformed into a binary matrix D of 1750 samples (rows) x 29 classes (columns), where D(s, 

c) is set to 1 if sample s belongs to class c and 0 otherwise, each row associated with a given 

sample contains exactly six 1’s, reflecting the six class labels predicted by the six classification 

systems. For each pair of classes, Cohen’s Kappa scores were computed, evaluating the 

agreement between the two corresponding binary columns of the matrix, i.e. between the 1750 

pairs of belong/don’t belong class assignments. We could then build a weighted network, with 

29 nodes encoding the input molecular subtype, and weighted edges encoding Cohen’s Kappa 

scores. If two subtypes were related by a Cohen’s Kappa score < 0, no edge was built between 

them, for negative values mean a complete absence of agreement between the two subtypes 

assignments. To quantify the statistical significance of the remaining edges, we performed 

hypergeometric tests for overrepresentation of samples classified to one subtype in another. 
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The resulting p-values were adjusted for multiple hypothesis testing using the Benjamini–

Hochberg (BH) method,  and only edges corresponding to P < 0.001 were kept to build the 

network represented in Figure 1a. Consensus classes were then identified by partitioning this 

network into clusters using bootstrap iterations and MCL40 (Markov cluster algorithm) as 

described in Guinney et al32. Clustering results were evaluated for MCL inflation factor I ranging 

from 3 to 15, with 0.3 increments, and 500 resampling iterations for each inflation factor tested. 

Mean weighted silhouette width was computed for each clustering result as previously 

described32 and reported in Supplementary Figure 1a. Clustering results generated four- to six-

cluster solutions, all of them yielding a mean silhouette width > 0.95 for at least one inflation 

factor value (Supplementary Figure 1b). The K=4 solution was very robust but poorly 

informative, revealing one cluster of basal subtypes, one cluster of luminal subtypes, one 

cluster of infiltrated classes, and one cluster of neuroendocrine associated subtypes. The K=5 

solution isolated an additional cluster containing only two subtypes (CIT MC7 and TCGA 

Luminal subtypes), which was too small to be a representative and meaningful consensus 

class. The K=6 solution generated robust and meaningful clusters that all contained a minimum 

of 3 subtypes. Heatmaps of consensus matrices for the three solutions illustrate the robustness 

of the clusters (Supplementary Figure 1b). 

 

Identification of a core set of consensus samples 

For each MIBC sample we performed a hypergeometric test for overrepresentation of 

the sample’s assigned input subtypes in the set of input subtypes associated with each 

consensus class. A sample was assigned to a consensus class if the corresponding 

overrepresentation test was significant (P < 0.001). Using this approach, a core set of 1084 

samples were identified to be highly representative of one of the 6 consensus classes and 

were labelled as consensus samples. We used these consensus samples to build and validate 

a single-sample mRNA classifier for the consensus classes, then used this classifier to assign 

consensus labels to all 1750 MIBC samples.  
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Single-sample transcriptomic classifier construction 

We performed feature selection using a training core set of consensus samples from 

Sjödahl2017 (n=129) and TCGA (n=274) mRNA datasets, both of these sample sets including 

at least three consensus samples for each consensus class. In each dataset we performed 

LIMMA moderated t-tests (limma_3.39.1 R package) for each consensus class relative to the 

others and computed the AUC associated with each gene for the prediction of each class. We 

summarized the results for each gene common to both datasets (n=17381), using Stouffer’s 

method to aggregate p-values, and computing a mean fold-change for each class comparison. 

For each class, we selected the genes with Stouffer P<0.05 and AUC>0.6 in at least one of 

the two datasets, and ordered them according to their mean fold-change. We used these 

ordered gene lists to generate several lists of varying sizes, by selecting the N top upregulated 

genes and the N top down-regulated genes in each consensus class, with N varying from 10 

to 125. A Pearson nearest-centroid classifier was built on the 129 Sjödahl2017 core samples 

for each of these gene lists, and its mean balanced accuracy was tested on the independent 

681 consensus samples that had not been used for feature selection. The gene list that 

optimized mean balanced accuracy (97.23%, Supplementary Figure 5) comprised 857 unique 

genes, and was used to build the final classifier. Six centroids corresponding to the six 

consensus classes (i.e. the mean mRNA profile of the 857 genes over each consensus class) 

were computed on the 129 consensus samples from Sjödahl2017 dataset. To classify the 1750 

samples into one of the consensus classes, a Pearson correlation was computed between 

each sample and each centroid. Each sample was then assigned the consensus class whose 

centroid was the most correlated with the sample profile. If the maximal correlation for a given 

sample was less than 0.2, no consensus class label was assigned. This Pearson-based 

approach does not require to add a pre-processing step to the usual batch normalization of 

gene expression data, as long as the data are log-transformed, and can therefore be used in 

a single-sample setting. As shown in Supplementary Figure 5c, the classifier accuracy was 

similar when using Affymetrix, Illumina, or RNA-seq data. The classifier is publicly available as 

an R package at https://github.com/cit-bioinfo/consensusMIBC.  
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Comparison with TCGA pan-cancer classifications. 

The consensus bladder cancer classification schemed was compared to the TCGA’s 

PanCancerAtlas pan-cancer subtypes18. We visualized the overlap of classification schemes 

by calculating the percentage within each MIBC consensus class across the TCGA PanCancer 

Atlas iCluster classification. We then normalized each row (consensus class) by setting the 

sum of squares equal to 1. We clustered these data using 1-pearson correlation and used a 

heatmap for visualisation. To evaluate the significance of the enrichment of consensus classes 

with certain pan-cancer classifications, we calculated the Chi-Square or Fisher’s Exact test p-

value from a 2x2 contingency table for the given two classifications of interest.  To account for 

multiple testing, we calculated the Bonferroni p-value threshold for 441 pairwise comparisons 

to be P<0.00011.   

 

Extraction of bladder cancer gene signatures from Biton et al 

In their study, Biton et al identified and characterized several major bladder cancer 

signals by an independent component analysis of bladder cancer transcriptome data20. We 

used ten of these independent components to extract gene sets associated with the Ta 

pathway (CIT-13), basal differentiation (CIT-6), cell cycle (CIT-7), urothelial differentiation (CIT-

9), smooth muscle (CIT-3), lymphocytes B&T (CIT-8), myofibroblasts (CIT-12), interferon 

response (CIT-5), neuroendocrine differentiation (CIT-18), and mitochondria (CIT-4). We 

retrieved the sample contribution vectors associated with each of these components and 

correlated these values to each gene of the CIT mRNA dataset. Genes that had a Pearson 

correlation greater than 0.6 (or less than -0.6, depending on the direction of the component 

association with the biological signal) were selected as representative gene sets for the 

biological signals associated to the component. The resulting gene sets are given in 

Supplementary Table 2. For each mRNA dataset included in the study, the R package GSVA41 

(1.30.0) was used to compute single-sample GSEA (Gene Set Enrichment Analysis) scores 
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for the 10 gene sets obtained. The scores were scaled and centered by gene in order to 

aggregate all datasets. Mean scores were then computed for each consensus class. 

 

Computation of regulon activity scores for 23 regulators 

A transcriptional regulatory network for 23 regulators reported as associated with 

bladder cancer was reconstructed from the TCGA (n=404) MIBC RNA-seq data2 using the 

RTN R package (2.6.0). This regulatory network reconstruction was provided as an RTN TNI-

class object, and used to calculate regulon activity scores for 18 cohorts, individually. In each 

sample in each cohort, for each regulon we used RTN’s tni.gsea2 function to calculate two-

tailed GSEA tests23. This generated regulon activity profiles (RAPs) for each cohort; such a 

profile shows regulon activities of samples, relative to other samples in the same cohort. 

Regulons were also assigned discrete status as ‘activated’, ‘neutral’ and ‘inactivated’ in each 

sample based on their activity.  

 

Statistical analyses 

We measured association between consensus classes and categorical variables by 

Fisher’s exact or Chi-square tests. We evaluated differences of continuous variables 

distributions between consensus classes by Kruskal-Wallis tests, ANOVA or LIMMA 

moderated t-tests (limma_3.39.1 R package).  

We built multivariate Cox models integrating consensus classes and clinical risk 

factors, stratified on cohort of patients (separate baseline hazard functions were fit for each 

strata). We used Wald tests to assess survival differences associated with different levels of a 

given factor included in the Cox models. For each factor level, we computed Hazard Ratios 

(HR) and 95% Confidence Intervals (CI). We constructed Kaplan-Meier curves to visualize 

overall survival stratified by consensus class and used log-rank tests to compare the survival 

of corresponding patient groups.  

All statistical and bioinformatics analyses were performed with R software environment 

(version 3.5.1). 
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Figure legends 

 

Figure 1: The six consensus classes and their relation to input molecular 

subtypes. (a) Clustered network by MCL clustering. The 6-consensus classes 

solution obtained with MCL clustering on the Cohen’s Kappa-weighted network is 

represented by the 6 cliques surrounded by black dotted rectangles. The circles 

inside each clique symbolize the input subtypes associated with each consensus 

class and are coloured according to their matching classification system. Circle size 

is proportional to the number of samples assigned to the subtype. Edge width 

between subtypes is proportional to the Cohen’s Kappa score, which assess the level 

of agreement between two classification schemes. (b) Input subtypes repartitioned 

among each consensus class. Consensus classes were predicted on 1750 MIBC 

samples using the single-sample classifier described in Methods. Here, the samples 

are grouped by their predicted consensus class label: LumP, LumN, LumU, Stroma-

rich, Ba/Sq and Neuroendocrine (NE)-like. For each consensus class, a barplot 

shows the proportion of samples assigned in each input subtype of each input 

classification system. 

  

Figure 2: Characterization of tumour and stroma signals using published 

mRNA signatures. (a) The 1750 mRNA expression profiles were used to compute 

(above, Biton) mean enrichment scores for specific gene signatures in each 

consensus class (based on a single-sample GSEA approach), or (below, Lund) mean 

expression of gene sets. Bladder cancer gene signatures include those related to the 

ICA components described in Biton et al20 (see Methods), as well as other bladder 

cancer-specific signatures retrieved from the literature: urothelial differentiation, 
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keratinization and late cell-cycle signatures from Eriksson et al42, and an FGFR3 co-

expressed signature from Sjödahl et al5. (Supplementary Table 2) (b) Tumour 

microenvironment characterization includes (above) an estimate of microenvironment 

immune and stromal cell subpopulations using MCPcounter22 and (below) a more 

global measure of stromal and immune infiltrates by ESTIMATE21. 

  

Figure 3 : Genomic alterations associated with consensus classes. (a) We used 

the available exome data from 388 TCGA samples to study the association between 

consensus classes and specific gene mutations. The panel displays the 23 genes 

with significant mutations (MutSig P < 0.001) that were either found in at least 10% of 

all tumours, or significantly overrepresented within one of the consensus classes 

(Fisher P < 0.05 and frequency within a consensus class > 10%). Gene mutations 

that were significantly enriched in one consensus class are marked by an asterisk. 

(b) Combined genomic alterations associated with seven bladder cancer-associated 

genes and statistical association with consensus classes. Upper panels: Main 

alteration types after aggregating CNV profiles from CIT (n=87), Iyer (n=58), Sjödahl 

(n=29), Stransky (n=22), and TCGA (n=404) data; exome profiles (n=388) and 

FGFR3 and PPARG fusion data (n=404) from TCGA data; CDKN2A and RB1 MLPA 

data from CIT(n=86; n=85) and Stransky (n=16; n=13) data; FGFR3 mutation data 

from MDA (n=66), CIT (n=87), Iyer (n=39), Sjödahl (n=28), and Stransky (n=35) data;  

TP53 mutation data from MDA (n=66), CIT (n=87), Iyer (n=39), Sjödahl (n=28), and 

Stransky (n=19) data; and RB1 mutation data from MDA (n=66), CIT (n=85), Iyer 

(n=39) and Stransky (n=13) data. Lower panels: Associations between each 

consensus class, each type of gene alteration, and the combined alterations were 



 36 

evaluated by Fisher’s exact tests. Consensus classes significantly enriched with 

alterations of these candidate genes are marked with a black asterisk. 

  

Figure 4: Histopathological associations with consensus classes. (a) 

Histological variant overrepresentation within each consensus class. One-sided 

Fisher exact tests were performed for each class and histological pattern. 

Pathological review of histological variants was available for several cohorts: 

squamous differentiation was evaluated in CIT (n=75), MDA (n=46), Sjödahl2012 

(n=23), Sjödahl2017 (n=239) and TCGA (n=406) cohorts;  neuroendocrine variants 

were reviewed in CIT (n=75), MDA (n=46), Sjödahl2017 (n=243), and TCGA (n=406) 

cohorts; micropapillary variants were reviewed in CIT (n=75), MDA  (n=46) and 

TCGA cohorts (n=118 FFPE tumour slides from TCGA were reviewed by Y.A. and 

J.F. for this study). Results are displayed on the heatmap as –log10(Fisher’s P). (b) 

The proportion of samples with carcinoma in situ (CIS) associated within each 

consensus class, for 84 tumours from CIT cohort and 8 tumours from Dyrskjøt cohort. 

(c) The presence/absence of a papillary morphology, for 401 tumours from TCGA 

cohort and 47 tumours from CIT cohort. (d) Smooth muscle infiltration from images 

for 174 tumour slides from the TCGA cohort: 73 LumP, 18 LumNS, 16 LumU, 20 

Stroma-rich and 46 Ba/Sq tumour samples. Each sample was assigned a semi-

quantitative score ranging from 0 to 3 (0 = absent, 1 = low, 2 = moderate, 3 = high) to 

quantify the presence of large smooth muscle bundles. The barplot shows means 

and standard deviations.  

  

Figure 5: Clinical characteristics and prognostic associations. (a) Association of 

consensus classes with gender (n=1554), clinical stage (n=1641), and age category 
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(n=1378). (b) 5-year overall survival stratified by consensus class. Kaplan-Meier 

curves were generated from 873 patients with available follow-up data. Patients who 

were marked as having received neoadjuvant chemotherapy were excluded from the 

survival analysis. (c) The 1750 mRNA expression profiles were used to compute per-

class mean expression of gene sets that are clinically relevant for response to 

therapies (Supplementary Table 6). Gene sets are annotated with a plus 

(respectively minus) sign if high expression of the genes is associated with response 

(respectively resistance) to the category of therapies indicated on the left. 

  

Figure 6: Summary of main characteristics of the consensus classes. Top to 

bottom: Proportion of consensus classes in the n=1750 tumour samples. Consensus 

classes names. Cellular schematics for tumour cells and their microenvironment 

(Immune cells, fibroblasts, and smooth muscle cells). Differentiation-based color 

scale showing the differentiation status associated with consensus classes, including 

a Luminal-to-basal gradient, and neuroendocrine differentiation status. Table of 

dominant characteristics: oncogenic mechanisms, mutations, stromal infiltrate, 

immune infiltrate, histological observations, clinical characteristics, and median 

overall survival. 
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Extended data figure legends 

 

Extended data figure 1: Analytical workflow. We used mRNA classifiers provided 

by 6 teams involved in previously published classification systems to subtype 1750 

mRNA profiles from 18 independent MIBC cohorts. A total number of 29 subtypes 

were considered when summing all classification systems. Using the subtyping 

results, we could build a 1750 x 29 binary matrix D where a sample s was given a 

value of 1 if assigned to the subtype m, and 0 otherwise. The matrix D was used to 

build a network interconnecting the 29 distinct subtypes. Edges between two 

subtypes were weighted using a Cohen’s Kappa metric. We performed MCL 

clustering40 on this network with 500 bootstrap iterations for several values of inflation 

factors and used stability scores as weights to calculate weighted silhouette width for 

each resulting cluster. We then used the mean weighted silhouette width as a 

performance measure to select an inflation factor yielding a robust consensus 

clustering solution. An optimal consensus solution was reached for 6 consensus 

classes, and this solution also defined a set of 1084 ‘core’ consensus samples with 

subtype labels that were highly concordant among the consensus classes (P < 0.001, 

hypergeometric test). We used these 1084 core samples to build a nearest-centroid, 

single-sample classifier based on Pearson’s correlation coefficient, then used the 

resulting classifier to predict consensus classes on all 1750 MIBC samples. We 

further characterized the consensus classes using molecular, histological and clinical 

data. 

 

Extended data figure 2 : Regulon activity within consensus classes. We 

computed regulon activity profiles (RAPs) as described in Robertson et al2, for 23 
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bladder cancer regulators. (a) Heatmap of RAPs at the sample level. RAPs were 

computed on each of the 18 datasets independently and pooled for the heatmap 

visualization. (b) Summary showing the mean RAP for each consensus class. (c) 

Association of a regulon’s active or inactive status with each class, indicated by –

log10(Fisher P value). Fisher exact tests were done using RAPs that had been 

discretized by status (1 for active regulon status, 0 for neutral status, -1 for inactive 

regulon status). 

 

Extended data figure 3: Distributions of SCNA, and total somatic and APOBEC 

mutation loads across consensus classes (a) Distribution of Somatic Copy 

Number Alteration (SCNA) counts across consensus classes. SCNA counts are 

defined as the number of genes with copy number changes, as estimated by 

GISTIC224 over 600 MIBC CNV profiles from datasets from CIT (n=87), Iyer (n=58), 

Sjödahl2012 (n =29), Stransky (n=22) and TCGA (n=404). (b) Distribution of 

nonsynonymous somatic mutation events across consensus classes. (c) Enrichment 

of APOBEC-induced mutation within consensus classes. The minimum estimate of 

the number of APOBEC-induced mutations was computed for 388 samples of TCGA 

MIBC cohort and discretized into categorical values : “No“ : estimate  = 0; “Low“: 

estimate ≤ median of non-zero values (median was 61.5); “High“: estimate > median 

of non-zero values. 

 

Extended data figure 4: Response to neoadjuvant chemotherapy and PD-L1 

blockade.  

To further explore the association of the consensus classification with therapeutic 

response, we analysed overall survival and response data from patients who had 



 40 

received neoadjuvant chemotherapy9,16 (NAC) and patients treated by the anti PD-L1 

atezolizumab17 (IMvigor210). The pre-treatment tumour samples from these patients 

were classified according to the consensus molecular classification. To better evaluate 

the effect of NAC on overall survival we selected a set of NAC-free patients and 

compared the class-associated overall survival of these patients with survival of 

patients receiving NAC. (a) Overall survival and response data to neoadjuvant 

chemotherapy (NAC). For the analysis of overall survival, NAC-free patients were 

selected from MDA (n=46), Sjödahl (n=51) and TCGA (n=394) cohorts, patients treated 

with NAC from Seiler (n=273), MDA MVAC (n=22, GSE70691), and MDA DDMVAC 

(n=38, GSE69795) cohorts.  

Pathological response to NAC was obtained from MDA MVAC (n=23), MDA DDMVAC 

(n=34) and Seiler (n=43) cohorts. (b) Overall survival and response to PD-L1 blockade 

(atezoluzimab), from IMvigor210 trial (Mariathasan et al). Consensus classes were 

predicted for all MIBC samples included in IMvigor210 dataset using the single-sample 

classifier. Consensus classes associated (Fisher P<0.05) with positive response to 

atezolizumab, i.e. complete (CR) or partial responders (PR), are indicated by a black 

asterisk. 
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