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Abstract

Chromosomal aberration and DNA copy number change are robust hallmarks of cancer.
Imaging of spots generated using fluorescence in situ hybridisation (FISH) of locus specific
probes is routinely used to detect copy number changes in tumour nuclei. However, it often
does not perform well on solid tumour tissue sections, where partially represented or
overlapping nuclei are common. To overcome these challenges, we have developed a
computational approach called FrenchFISH, which comprises a nuclear volume correction
method coupled with two types of Poisson models: either a Poisson model for improved
manual spot counting without the need for control probes; or a homogenous Poisson Point
Process model for automated spot counting. We benchmarked the performance of
FrenchFISH against previous approaches in a controlled simulation scenario and exemplify
its use in 12 ovarian cancer FFPE-tissue sections, for which we assess copy number
alterations in three loci (c-Myc, hTERC and SE7). We show that FrenchFISH outperforms
standard spot counting approaches and that the automated spot counting is significantly
faster than manual without loss of performance. FrenchFISH is a general approach that can
be used to enhance clinical diagnosis on sections of any tissue.

Author summary

Cancer genomes can look very chaotic, because cancer cells are unable to fully repair errors
in DNA replication during cell division. While a healthy genome has two copies of every
chromosome, in a cancer genome some pieces can be lost completely and others can appear
in 50 copies. To diagnose cancers and to decide on the right therapeutic strategy for a
patient, it can be very important to know how many copies of a particular piece of DNA exist
in a cell. The standard technique used in the clinic to assess DNA copy number is called
FISH, short for fluorescence in situ hybridisation. This technique uses fluorescent probes
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that bind to a DNA piece of interest and show up as glowing spots in a microscopic image.
Counting the spots in an image is a labour- and time-intensive process that is generally done
by well-trained experts. Here we present a statistical approach to automatically count FISH
spots, which outperforms previously proposed methods, and has the potential to
substantially speed up clinical diagnostics.

1 Introduction 1

Chromosomal instability coupled with defective DNA repair can cause loss or duplication of 2

DNA, a characteristic attribute of cancer cells [1]. Interrogation of DNA copy number 3

aberrations is critical for diagnosis [2] and understanding tumour etiology [1]. Technologies 4

for measuring DNA copy-number have evolved from optical profiling of single loci [3] 5

through to sequencing of the entire tumour genome [4]. However, determining the absolute 6

number of copies from bulk sequencing data remains difficult because of normal cell 7

contamination and intra-tumour heterogeneity [5], and results are generally reported in 8

terms of loss or gain of DNA relative to an assumed diploid or median background. 9

Information from single locus methods is therefore often required to validate estimates of 10

absolute copy-number [6,7]. 11

Fluorescence in situ hybridisation (FISH) of interphase nuclei is the most widely 12

established technique for interrogating single locus copy number. Fluorescent probes are 13

hybridised to a specific genomic region of interest and appear as discrete foci when 14

visualised with fluorescent microscopy [8]. Standard analysis of FISH data relies on 15

time-consuming manual counting of spots in these images [9]. Automated systems to 16

quantify foci using nuclei recognition and spot counting algorithms (reviewed in [10]) aim 17

to make the analysis of FISH data less labour-intensive, faster, and more objective. However, 18

the accuracy of most systems is limited to identification of spots in intact and separated 19

nuclei [11]. Thus, these systems can be very successful in haematological malignancies; 20

however, diagnostic sections of solid tumour tissue pose a significant challenge for both 21

automated and manual analysis. Accurate identification of single nuclei either by eye or by 22

automatic image segmentation can be hard if nuclei cluster closely and overlap (see Fig 1). 23

Arbitrary cut points between grouped nuclei are typically used to separate these clusters, 24

which can lead to noisy spot count estimates. Additionally, tissue sections are typically 3µm 25

to 5µm, which is smaller than the diameter of most tumour nuclei, and thus the majority of 26

nuclei are not captured completely in the volume of the section [12,13]. 27

To address these challenges, both manual and automated analysis have been improved 28

by using control probes that bind to a specific locus with known copy-number state nctrl 29

[10]. Two commonly used approaches are: 30

1. Only nuclei containing the expected number of control probes (usually nctrl = 2) are 31

used to estimate the copy-number of other loci. The underlying assumption is that if a 32

nucleus contains the expected number of control probes then it is likely that the 33

majority of the nucleus is captured by the section and hence other spots will be well 34

represented. 35

2. The spot count for the locus of interest is scaled by the ratio of expected over observed 36

control probe copy-number: 37

n=
nexp

ctrl

nobs
ctrl

· nobs (1)

In this case, the underlying assumption is that the number of observed control spots is 38

linearly correlated with the number of spots observed for the locus of interest. 39

However, there are significant limitations associated with both of these methods. For 40

example, a tissue section 3µm thick containing cells with a nuclear diameter of 9µm will, 41
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on average, have only 41% of each nucleus represented in the section (see Fig 1a). 42

Therefore, for method 1, it is unlikely that the section will contain many nuclei with a 43

complete control probe count and the locus of interest is likely to be undersampled. Using 44

thicker tissue sections can overcome this limitation. However, as section thickness increases, 45

the quality of imaging decreases and many more overlapping nuclei are captured, which 46

complicates identification of single nuclei. Method 2 performs well when the control probe is 47

at the expected copy-number. However, in tumours with significant aneuploidy, it is difficult 48

to identify a control probe with constant copy-number, even when using centromeric probes. 49

Thus, new automated approaches are required that generate robust and reproducible 50

results from fixed tumour sections. Ideally, new methods should account for the three major 51

challenges in FISH analysis of tissue sections: (1) nucleus subsampling, (2) control probe 52

aneuploidy and (3) overlapping nuclei. We have addressed these challenges by developing 53

FrenchFISH, a computational package that comprises three major computational 54

innovations for improved spot counting: volume adjusted spot counting, which accounts for 55

partial nucleus representation without the need for control probes; Poisson estimated spot 56

counts from manually counted nuclei, which account for uncertainty in spot counts; and a 57

homogeneous Poisson point process model, which facilitates automated spot counting and 58

circumvents the need for single nucleus image segmentation. In the following, we present 59

the details of the FrenchFISH model, show that it outperforms standard spot counting 60

approaches and is significantly faster than manual spot counting. 61

2 Results 62

FrenchFISH is implemented in R [14] utilising elements of the FishalyzeR [15] package on 63

Bioconductor [16]. Scripts to reproduce all results are available as part of the 64

supplementary information and can be found in the following repository: 65

https://bitbucket.org/britroc/frenchfish 66

2.1 The FrenchFISH model 67

The goal of the analysis is to estimate the copy-number of a locus denoted by n, which we 68

will achieve by volume-adjusting observed spot counts and using Poisson models. 69

2.1.1 Observed spot counts 70

FISH of a probe specific to the locus allows us to observe copy-number in terms of spot 71

counts inside the nucleus. Here, we assume a FISH image has C ∈ N= {1, 2, . . .} cell nuclei 72

and the number of observed spots in cell c ∈ [C] = {1, . . . , C} is nobs
c . The average number 73

of observed copies of the locus in the tissue section is 74

nobs =
1
C

C
∑

c=1

nobs
c (2)

2.1.2 Volume adjusted spot counting 75

Figure 1a displays a schematic of a nucleus subsampled due to tissue section cutting. For 76

simplicity, we assume that all nuclei are spherical with radius r (r is typically estimated 77

from image). Their volume then is given by 78

Vsphere(r) =
4
3
πr3 (3)
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For a specified section thickness h, we can express the volume of the nucleus sampled by a 79

section in terms of d, the distance of the section edge from the nucleus midline: 80

Vseg(d) = πh(r2 − d2 − hd −
1
3

h2). (4)

By integrating over d and dividing by h, we can compute the average volume sampled: 81

Vavg =
1
h

∫ h

0

Vseg dd = πh(
2
3

r2 +
rh
3
−

h2

6
). (5)

This quantity can be used to scale the observed number of spots to get an estimate of the 82

true number of spots: 83

nvoladj =
Vsphere

Vavg
× nobs (6)

2.1.3 Modelling uncertainty in manual spot counts 84

As the observed spot counts are subject to both hybridisation and image signal processing 85

noise, we use a probabilistic model that accounts for this uncertainty. We model the counts 86

as coming from a Poisson distribution with rate λ. Given this, the likelihood of our data can 87

be expressed as 88

P(nvoladj | λ) =
C
∏

c=1

e−λλnvoladj
c

nvoladj
c !

(7)

To compute the posterior of λ given the data, we use Bayes’ rule to transform the likelihood 89

into 90

P(λ |nvoladj) = P(nvoladj |λ) · P(λ) (8)

Using the conjugate Gamma prior as P(λ) and the likelihood of Eq. 7, we sample from the 91

posterior with Markov Chain Monte Carlo (MCMC) to generate λt ∈ [T] values fit to the 92

data after a burn-in of 1000 iterations. We use the MCpoissongamma function from the 93

MCMCpack package [17] in R to achieve this. From this sampling chain we then compute 94

the expected rate which is equal to the expected spot count: 95

E[n] = E[λ] =
1
T

.
T
∑

t=1

λt (9)

2.1.4 Modelling uncertainty in automatic nuclear segmentation 96

While segmentation of single nuclei in tumour sections is difficult, separating nuclear 97

staining from background and accurately defining spots remains relatively easy. Our 98

approach exploits this fact in the framework of a Homogeneous Poisson Point Process. A 99

Poisson Process models a continuous series of events across space or time. In our setting, we 100

consider spots as events and nuclear area a measured in µm2 as space. The number of spots 101

in an area a is denoted by N(a) and modelled by a Poisson process with intensity λPP: 102

P(N(a) = n) =
1
n!
(λPPa)ne−λ

PPa (10)

and using the fitPP.fun from the NHPoisson package [18] in R, we obtain a maximum 103

likelihood estimate for λPP. 104

As λPP is a spot count estimate per µm2 of observed nuclea area, to get the estimated 105

number of spots per nucleus, we first multiply by the average area of a nucleus, πr2, and 106
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then scale by the average nuclear volume represented in the tissue section, to get an 107

estimate of the number of copies n: 108

E[n] = λPP ·πr2 ·
Vsphere

Vavg
(11)

2.2 Validation and benchmarking of FrenchFISH 109

To validate and benchmark FrenchFISH, we used the controlled scenario of a simulation 110

study as well as a real-world case study in ovarian cancer. 111

2.2.1 Benchmarking in simulation study 112

We simulated a total of 11,200 tissue sections to benchmark our approach. For each 113

condition, we simulated 10 replicate sections with 50 nuclei. All nuclei had their midpoint 114

location randomly positioned within the tissue section. Test conditions were selected from 115

all possible combinations of the following: 116

• control probe copy-number ncont rol ∈ {1, 2,3, 4}, 117

• probe of interest copy-number n ∈ {1,2, 3,4, 5,6, 7, 8, 9, 10}, 118

• percentage of nuclei with a probe sampling error of minus/plus one count 119

e ∈ {−20,−10,−5, 0,5, 10,20}, 120

• probability of nucleus overlapping with another nucleus in the section 121

p ∈ {0, 10,30, 50,80}. 122

Using these data we tested FrenchFISH’s performance against the standard approach 123

outlined in equation 1 where a control probe (assumed to be diploid) is used to scale the 124

observed spot counts. 125

Benchmarking against noisy spot counts We first measured performance using 126

simulated tissue sections with non-overlapping nuclei and varying levels of noise. Noise was 127

introduced by either under counting or over counting by one spot, in 5,10 or 20% of the 128

cells in each tissue section. 129

Naive spot counting without correction showed a severe underestimate of the true 130

number of spots (Figure 2a). The standard correction approach improved spot count 131

estimates when the control probe was diploid (Figure 2b). However, estimates showed high 132

variability as the true number of spots increased. In contrast, FrenchFISH showed consistent 133

performance across all true copy number states. Performance remained adequate for noise 134

levels up to 10%. The standard approach showed worse performance than FrenchFISH at 135

20% noise, however, errors were less pronounced for under counting noise compared to 136

over counting noise (Figure 2b). The standard approach largely failed to provide correct 137

copy number estimates when the control probe copy number was other than diploid, 138

especially for higher noise levels (Figure 2c). FrenchFISH did not show a deterioration in 139

performance as it did not rely on a control probe. 140

To gain further insight, we observed accuracy and mean absolute error for both 141

approaches under the same varying noise conditions (Figure 2d). Overall accuracy was poor 142

for the standard approach except when the control probe was diploid and true copy number 143

was 1. High accuracy was observed for FrenchFISH up to a true spot count of 4 and noise 144

levels of 10%. Accuracy was poor in cases where over counting noise was 20%. Despite a 145

deterioration in accuracy beyond true copy number counts of 4, FrechFISH’s mean absolute 146

error never exceeded 1, thus FrenchFISH’s estimates were only ever wrong by one copy. In 147

contrast, the standard approach had a mean absolute error of up to 7 under some conditions. 148
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Benchmarking against overlapping nuclei Here we assessed the performance of both 149

methods across simulated tissue sections with varying degrees of nuclear overlap (Figure 3). 150

Both methods were robust to nuclear overlap in the diploid control probe setting, including 151

at 80% probability of overlap. However, the standard approach again showed more variable 152

results as the true copy number increased (Figure 3b). The standard approach consistently 153

failed to estimate the correct copy number when the control probe was not diploid, however, 154

this error did not vary with degree of overlap (Figure 3c). FrenchFISH showed a mean 155

absolute error no greater than one, whereas the standard approach showed up to 2 copies in 156

the diploid control probe setting and up to 7 copies in the non-diploid setting (Figure 3d). 157

2.2.2 Case study on ovarian cancer tissue sections 158

We performed both manual and automatic spot counting on multichannel FISH of tissue 159

sections from 12 ovarian cancer cases. Manual spot counts were corrected using 160

FrenchFISH’s volume adjustment method and automatic counting was performed using the 161

Poisson point process model. 162

Manual versus automatic counting We observed the degree of agreement between 163

manual and automatic spot counting to assess whether the automatic method resulted in 164

any loss of performance compared to manual counting. 74% (26 of 35) of the estimated 165

copy number counts were less than one copy number of each other with a further 17% (6 of 166

35) having estimates less than two copies different (Figure 5). 167

Timing analysis We measured the time it took to perform both manual and automatic spot 168

counting. Figure 4 provides a breakdown of the two approaches and the timings associated 169

with each step. Using up to 5 fields of view per sample we were able to obtain roughly 100 170

manually curated nuclei per sample. The total average processing time for the automatic 171

FrenchFISH approach was 36 minutes, 30 minutes for manual estimation of the nuclear 172

diameter then 6 minutes software processing. The total average processing time for the 173

manual approach was 119 minutes, with the majority of processing performed by a human. 174

3 Discussion 175

Here we present FrenchFISH, a software tool for quantitative copy number estimation from 176

FISH of tissue sections. We demonstrated the robust and superior performance of 177

FrenchFISH using simulated tissue sections and FISH of ovarian cancer tissue sections. We 178

explored the limitations of FrenchFISH using simulations of tissue sections with spot 179

counting noise and overlapping nuclei. FrenchFISH was robust to overlapping nuclei noise 180

and performed well in cases with up to 10% spot counting noise. Interestingly, over counting 181

noise resulted in worse performance than under counting, suggesting that a conservative 182

spot counting strategy could improve copy number estimates. Our controlled simulated 183

setting also highlighted the difficulty in estimating high copy number states, with accuracy 184

rapidly decreasing with copy numbers greater than 4 copies. However, in all cases tested, 185

FrenchFISH’s estimates were not more than 1 copy different from the underlying truth. 186

On ovarian cancer tissue section, 74% of FrenchFISH’s automated spot count estimates 187

were within 1 copy of manual counted estimates. This demonstrates that FrenchFISH is a 188

viable alternative to manual counting, which would decrease analysis time fourfold with 189

significantly less human intervention. 190

FrenchFISH is the first method specifically designed to provide quantitative copy number 191

estimates from tissue section FISH without the need for a matched control probe. 192
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4 Materials and methods 193

4.1 Simulation 194

Simulated tissue sections were generated using the following procedure: 195

1. Fix tissue section height h at 3µm and the nuclei radius r to 9µm 196

2. For C = 50 cells per simulated tissue section, estimate d (the distance from the 197

midline of the nucleus to the top of the tissue section): 198

dc ∼ Uniform((0, r −
h
2
])

3. For each dc , calculate the fraction of the nucleus contained in the section, 199

Vfrac(dc) =
Vseg(9, dc , 3)

Vsphere(r)

4. Using Vfrac as the prior probability for seeing a spot sampled from a Poisson 200

distribution, generate observed spot counts 201

nctrl
c ∼ Poisson(nctrl

c × Vfrac) and

nc ∼ Poisson(nc × Vfrac), for nc 6= nctrl,
c

(12)

5. If the probability of overlap p is > 0, merge with neighbouring nucleus c + 1, 202

recalculating the overlapped nuclei area a : 203

a = πr2 − 2r2cos−1(
b

2r
)−

d
2

p

4r2 − d2 (13)

where b is the distance between nuclei centrepoints sampled from 204

d ∼ Uniform((0, 0.3]), and updated spot count: 205

nc = nc + nc+1 (14)

6. If error e is 6= 0 then update spot count: 206

nc =

¨

nc − 1 if e ≤ 0

nc + 1 if e ≥ 0
(15)

7. Repeat above steps 10 times for all possible combinations of 207

e ∈ {−0.2,−0.1− 0.05,0, 0.05,1, 0.2}, p ∈ {0,0.1, 0.3,0.5, 0.8},nctrl
c ∈ {1, 2,3, 4} and 208

nc ∈ {1, 2,3, 4,5, 6,7, 8,9, 10}. 209

4.2 FISH on ovarian cancer tissue sections 210

4.2.1 Patient sample selection 211

Eight high-grade serous ovarian cancer samples were selected and reviewed by a pathologist 212

who marked the area of each tumour on the H&E sections. In addition, four samples from 213

two cases of ovarian squamous cell carcinoma arising in mature cystic teratoma were also 214

selected. Details of these cases (patients 7 and 11) have been published previously [19]. All 215

paraffin blocks were sectioned at 3µm on positively charged microscope slides. 216
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4.2.2 Fluorescent in situ hybridisation 217

FISH was performed on 3µm tissue sections on positively charged slides using probe 218

cocktail composed of hTERC (3q26), C-MYC (8q24) and SE 7 Triple colour (KBI-10704, 219

Leica Microsystem). Tissue digestions and probes hybridisation was performed according to 220

manufacture’s recommendations using Poseidon Tissue Digestion Kit I (KBI-60007 Tissue 221

Digestion Kit I, Leica Microsystem) with the following modifications: tissue was pre-treated 222

in Solution A (LK-110B) at 96 ◦C to 98 ◦C for 10 min and digested using pepsin solution 223

(LK-110B) for 5 min. FISH digital images were captured by Nikon Eclipse fluorescence 224

inverted microscope equipped with a charge-coupled device camera (Andor Neo sCMOS), 225

using filter sets for DAPI/ YGFP/TRITC/CY GFP with an objective lens (Plan Apo VC 100x, 226

Nikon). All images were captured with 100× magnification of the objective and a pixel size 227

of 0.07µm. For each selected field, 21 Z sections were taken with a step size of 0.3µm. 228

Large images of 7× 7 fields were automatically captured from each tissue section and the 5 229

best fields of view with adequate tumour tissue, free of optical artefact, were chosen for 230

further analysis with the exception of JBLAB-178 where only 2 fields of view were suitable. 231

4.2.3 Image processing 232

FISH of tissue sections are noisy and display a number of recurring artefacts which can be 233

mitigated using image preprocessing methods. The main artefacts are: bright error spots 234

outside the nucleus which reduce true spot signal; precipitation which causes faint, 235

erroneous spots within the nucleus; autofluorescence of areas outside the nucleus. To 236

overcome these issues the following procedure was followed and forms part of FrenchFISH’s 237

image prepocessing: 238

1. Using Fiji: 239

• for each field of view the position in the z-stack with the best focus was detected 240

using Vollath’s F4 measure [20]. 241

• The 4 stacks below and 5 stacks above were retained. 242

• A Max Intensity projection was taken across the stacks to generate a single image 243

for further processing. 244

• The contrast of each spot channel was normalised and adjusted, allowing a 245

saturation of up to 40% of the image. This allowed the weaker spot signals to be 246

matched to the stronger, extranuclear noise spots. 247

2. Using R: 248

• Nuclear staining is segmented using the FISHalyzer package. 249

• Spot channel images are masked using nuclear segmentation. 250

• The image is filtered and normalised retaining on the top 10% of signal intensity 251

to remove remaining autofluorescence. 252

• A two stage Gaussian blurring and automatic thresholding approach is applied 253

using the Intermodes [21] method for channels with precipitation signal, and 254

Renyi Entropy [22] method for those without precipitation, found in the 255

autothresholdr package [23]. This combines and removes any small spot 256

artefacts. 257

• A size based filter is applied for final spot segmentation. 258

All image processing scripts and analysis can be found in the FrenchFISH repository 259

https://bitbucket.org/britroc/frenchfish. 260
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4.2.4 Manual spot counting 261

Manual spot counting was performed using IMARIS8 software following this procedure: 262

• Import nd2 image (21 z-stacks) 263

• Display in 3D 264

• Display DAPI channel, and switch off all other channels 265

• Print image 266

• Identify nuclei suitable for manual spot counting (none/minimal nuclear overlap cell 267

nuclei for signal counting), circle them on the 2D image on the paper and give them 268

numbers. Move the 3D image around to see if the nuclei are nicely separated. 269

• Set up aqua channel so artefacts are removed and dots clearly visible 270

• Set up red channel so artefacts are removed and dots clearly visible 271

• Set up green channel so artefacts are removed and dots clearly visible 272

• For every selected nuclei perform: 273

– Measure the size of the nuclei (x and y plane diameter) 274

– Count spots in aqua channel and record 275

– Count spots in red channel and record 276

– Count spots in green channel and record 277
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6 Material for separate submission files

r

h

Tissue section

Nucleus

a

b

c

d

Fig 1. Tissue section fish. a: A schematic of a tissue section cutting through a cell nucleus.
The highlighted quantities are used for calculating the volume of nucleus appearing in the
tissue section. b: Three probe fish applied to high-grade serous ovarian cancer. c: Automatic
image segmentation and spot recognition applied to the image in b. Notice the difficulty in
accurately separating overlapping nuclei.
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Fig 2. Performance assessment on simulated spot counts a: Box plots showing the
distribution of unadjusted observed spot counts (y-axis) compared to the true spot counts
(x-axis), for varying noise levels (y facets). b: Spot count estimates for the standard control
probe adjusted method (ControlAdjusted) and FrenchFISH. All simulated tissue sections in
these plots had an accompanying diploid control probe count. c: Spot count estimates for
tissue sections with non-diploid controls. d: A heatmap showing the accuracy of spot
counting (shading) for each method, noise level, and control probe count. The integers
inside the heatmap boxes show the mean absolute error.
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Fig 3. Performance assessment on simulated spot counts a: Box plots showing the
distribution of unadjusted observed spot counts (y-axis) compared to the true spot counts
(x-axis), for varying levels of probability of overlapping nuclei (y facets). b: Spot count
estimates for the standard control probe adjusted method (ControlAdjusted) and
FrenchFISH. All simulated tissue sections in these plots had an accompanying diploid
control probe count. c: Spot count estimates for tissue sections with non-diploid controls. d:
A heatmap showing the accuracy of spot counting (shading) for each method, overlap
probability, and control probe count. The integers inside the heatmap boxes show the mean
absolute error.
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Fig 4. Comparison of manual spot counting and FrenchFISH’s automated spot
counting, across 3 probes, using FISH of 12 ovarian cancer cases. This flow chart
outlines the tasks required to carry out automatic or manual spot counting for a single
sample. The minutes associated with each process are an average across 8 cases for up to 5
fields of view. Squares represent processes, the diamond represents a decision point and the
trapezoids represent input/output. For each process it is listed whether it is carried out by
software, or by human.
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Fig 5. Spot count estimates for 3 probes across 12 ovarian cancer cases. This scatter
plot shows spot count estimates from manual counting versus FrenchFISH’s automated spot
counting. Points falling within the dark shaded area have estimates within 1 copy of each
other across the methods. Those falling within the light grey area are within 2 copies. Those
falling outside this area are greater than two copies different.
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