
Use of MYB as a new synthetic activator to enhance transgene expression within repressed 

Polycomb chromatin 

 

Cassandra M. Barrett1, Reilly McCracken2, Jacob Elmer2, and Karmella A. Haynes1 

 

1. Arizona State University, School of Biological and Health Systems Engineering, 501 East 

Tyler Mall, Tempe, AZ 85287 

2. Villanova University, Department of Chemical Engineering, 217 White Hall, 800 East 

Lancaster Avenue, Villanova, PA 19085 

 

 

Corresponding author: 

Karmella A. Haynes, karmella@asu.edu 

 

E-mail addresses: 

Cassandra M. Barrett, cmbarre6@asu.edu 

Reilly McCraken, Rmccrac1@villanova.edu  

Jacob Elmer, jacob.elmer@villanova.edu  

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2018. ; https://doi.org/10.1101/487736doi: bioRxiv preprint 

https://doi.org/10.1101/487736
http://creativecommons.org/licenses/by-nc-nd/4.0/


ABSTRACT 

 

Background: Epigenetic silencing of transgenes through chromatin packaging has been a 

persistent issue for the development of transgenic mammalian cell lines. Endogenous mechanisms 

are known to induce a closed chromatin state around foreign DNA before and after it has been 

integrated into a host cell’s genome. Scientists are interested in reversing this silencing, but a lack 

of a priori knowledge of the chromatin features at transgenes hinders the rational design and 

application of effective strategies for transcriptional activation. 

 

Results: Here, we systematically tested activation-associated DNA elements and proteins in 

transfected plasmid DNA and at epigenetically-silenced chromosomal transgenes. We 

demonstrated that placing DNA elements that are targeted by MYB (c-myb) and p65 upstream of a 

minimal promoter enhance expression from transfected plasmid DNA. To regulate the expression 

of chromosomally-integrated transgenes, we used proteins fused to the Gal4 DNA binding domain 

or dCas9/sgRNA. Three activation-associated peptides, p65, VP64, and MYB, sustained 

reactivation of transgene expression over 15 cell divisions in an immortalized human cell line 

(HEK293). Activity of the MYB fusion was inhibited by celastrol, a drug that blocks interactions 

between MYB and the p300/CBP histone acetyltransferase complex. Single-site targeting via 

dCas9-MYB was sufficient to activate transgenes within ectopic Polycomb heterochromatin and at 

a different site that had undergone position effect silencing. 

 

Conclusion: Here we demonstrate the utility and flexibility of cis-regulatory elements and fusion 

proteins derived from natural gene regulation systems to enhance expression from epigenetically 

silenced transgenes. DNA motifs for p65 and MYB can be added to the transgene itself, or the 

activating proteins can be targeted to transgenes without enhancers to stimulate gene activation. 

This work has implications for determining the most appropriate strategy to enhance gene 

expression specifically in Polycomb-repressed chromatin. 
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BACKGROUND 

The advancement of cell engineering requires robust and reliable control of endogenous and 

synthetic genetic material within living cells. A lack of tools for enhancing the expression of 

transgenes in mammalian cells currently limits effective gene regulation across contexts. The rapid 

formation of heterochromatin around transgenic material in mammalian cells limits our ability to 

express foreign DNA for the production of therapeutic proteins and the development of engineered 

mammalian systems for biosensing and computing [1, 2]. Integrated transgenes are often silenced 

by the same mechanisms that serve as a cellular defense against viral insertion into the genome 

[3–5]. Nucleation of heterochromatin around transgenic material can be initiated and sustained by 

both promoter methylation [1, 5] and various histone modifications [2, 4]. For example, MyD88 

pathway-mediated silencing of transgenes leads to an accumulation of repressive H3K9me on 

newly bound histones [2, 6]. Silencing of transgenes may also be Polycomb-mediated, where 

Polycomb repressive complexes deposit H3K27me3 on histones to establish a silenced state [7–

9]. The diversity and persistence of transgene silencing has led to the development of tools for 

mammalian cell engineering specifically aimed at combating heterochromatin. 

Recruiting activators to a specific locus in order to reverse epigenetic silencing can be 

achieved either by including an activation-associated cis-regulatory DNA sequence within the 

construct itself, or through the targeting of engineered fusion proteins to the silenced transgene. 

Both natural and synthetic cis-regulatory motifs that recruit activators have been used [10–13] to 

help increase transgene expression as an alternative to viral promoters that are prone to 

methylation and silencing [1]. Previous screens by ourselves and other groups [11, 14, 15] have 

identified mammalian activation-associated cis-regulatory elements that recruit endogenous factors 

to increase the expression of epigenetically silenced transgenes, including motifs for nuclear factor 

Y, CTCF, and elongation factor alpha (EF1-�) [12, 13]. The underlying regulatory mechanisms are 

not entirely understood, since in this case efficient screening for functional sequences has been 

prioritized over dissecting the mechanism of individual elements.  

Fusion proteins that target activation-associated domains to transgenes can also be used to 

reverse silencing. Targeted activators such as VPR, SAM, and SunTag [16–18] are composed of 

transcriptional activation domain (TAD) peptides, including Herpes simplex virus protein vmw65 

(VP16) and nuclear factor NF-kappa-B p65 subunit (p65). Site-specific targeting of VP64 (4x VP16) 

has been used to increase endogenous gene expression, and remodels chromatin through the 

accumulation of activation-associated histone modifications (H3K27ac and H3K4me) [17, 19, 20]. 

Likewise, p65-based systems are very effective at restoring both endogenous [16, 21] and 

transgenic [22] gene expression, but have an undetermined effect on chromatin structure and 

accessibility.  
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Significant progress towards transgene reactivation has been made so far, but several 

important gaps remain. First, several natural mechanisms of activation are still under-investigated 

by biological engineers. For instance, chromatin remodelers shift, remove, or exchange 

nucleosomes [23], and pioneer factors increase DNA accessibility in closed chromatin by 

displacing linker histones [23–25]. Second, the parameters for stable transgene activation are not 

yet fully defined. So far, at least two studies have demonstrated prolonged enhancement of 

transgenes (10 to 25 days) via targeted fusion proteins alone [26] or in combination with flanking 

anti-repressor DNA elements [27]. Neither study evaluated the chromatin features at the target 

genes prior to their reactivation, therefore the context in which expression enhancement occurred 

is uncertain. Finally, the performance of targeted activators can be context-dependent. Catalytic 

domains used for site-specific chromatin remodeling [27–29], may be inhibited by pre-existing 

chromatin features that vary across loci. For example, Cano-Rodriguez et al. constructed a 

targeted histone methyltransferase fusion and found that the endogenous chromatin 

microenvironment, including DNA methylation and H3K79me, impacted the ability of their fusion to 

deposit H3K4me and induce activation [30]. Similarly inconsistent performance has been shown for 

other fusions that generate H3K79me and H3K9me [31, 32]. Systematic studies at loci with well-

defined chromatin compositions are needed to fully understand mechanisms of chromatin state 

switching.  

 Here, we expand previous work where we had identified cis-regulatory sequences that 

enhanced expression from plasmid-borne transgenes [12]. To regulate expression of 

chromosomally-inserted transgenes, we compare targeted proteins that represent diverse 

activities: transcriptional activation through cofactor recruitment, direct histone modification, and 

nucleosome repositioning and displacement. We focus on reversal of silencing within Polycomb 

heterochromatin, which is known to accumulate at transgenes that are integrated into 

chromosomes [7–9] and is widely distributed across hundreds or thousands of endogenous 

mammalian genes that play critical roles in normal development and disease [9, 33, 34]. We report 

that recruitment of p65 and MYB-associated components via a cis-regulatory element or fusion 

proteins enhances expression from epigenetically silenced transgenes. MYB-mediated activation 

within Polycomb heterochromatin relies on interactions with p300 and CBP. Our results have 

implications for determining the most appropriate strategy to enhance gene expression, specifically 

within Polycomb-repressed chromatin. 
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RESULTS 

 

Identification of Activation Associated Peptides 

We surveyed public data to identify epigenetic enzymes and other proteins that are associated with 

transcriptional activation, and therefore might effectively disrupt repressive Polycomb chromatin. 

Polycomb-enriched chromatin typically includes Polycomb Repressive Complex 1 (PRC1: 

RING1A/B, PCGF1–PCGF6, CBX2, PHC1–PHC3, and SCMH1/2) [35], PRC2 (EZH1/2, EED, 

Suz12, and RBBP4/7) [35], H3K27me3, histone deacetylation, H2AK119ub1, and lncRNAs [35, 

36]. Each activation-associated peptide (AAP) generates modifications of histone tails either by 

intrinsic catalytic activity or the recruitment of chromatin-modifying co-factors. In order to predict 

how these AAPs might influence Polycomb heterochromatin, we searched the STRING protein-

protein interaction database for binding partners and their associated chromatin-modifying 

activities (Fig. 1). 

 The AAPs fall into six general categories. The transcriptional activation group, (NFkB)-p65 

and the MYB (c-myb) transcriptional activation domain (TAD), includes proteins that recruit RNA 

Polymerase II (PolII) and p300/CBP, respectively. These AAPs have no known intrinsic gene 

regulation activity, and therefore rely upon the recruitment of other proteins to stimulate 

transcription [37–39]. We also included the recombinant TAD VP64 (four tandem copies of VP16), 

a popular component for synthetic activators. Histone modifications deposited by the co-activators 

that are recruited by these three domains are primarily associated with activation.  

The histone acetylation (HAT) group includes ATF2, P300, and KAT2B. These peptides 

acetylate H3K27. In particular, p300 is associated with the recruitment of CBP and other co-

activators that generate the activation associated mark H3K4me [40]. The histone H3 

methyltransferase (H3 MT) group and the H4 methyltransferase (H4 MT) group include proteins 

that are either Mixed-Lineage Leukemia (MLL) complex components or SET proteins. SETD7 

deposits the activation associated modification H3K4me, but its regulatory impact may vary based 

on local DNA methylation, which can enhance or impede co-recruitment of repressive cofactors. 

The histone H4 methyltransferase PRMT5 induces histone acetylation that is associated with DNA 

methylation in some contexts [41]. Still, PRMT5 primarily acts as an activator. 

The final two groups, chromatin remodelers (CR) and pioneer factors (PF) represent 

activities that are relatively underexplored in the design of fusion-protein regulators. SMARCA4 is a 

chromatin remodeler that relies on an ATP-dependent reaction to shift the position of nucleosomes 

at a target site [42]. It does not mediate the deposition of histone modifications, but is associated 

with CBP recruitment that evicts Polycomb-associated histone modifications [43]. PFs are 

represented in our library by FOXA1, a winged-helix protein that displaces linker histones from 
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DNA to facilitate a transition to open chromatin [44]. In general, PFs bind to DNA within 

heterochromatin and do not catalyze histone post-translational modifications [25]. 

Several of the AAPs in our panel are associated with the eviction of Polycomb repressive 

complexes (PRCs) from endogenous genes. Accumulation of the chromatin remodeling protein 

SMARCA4 (BRG1) leads to the loss of PRCs at Pou5f1 in mouse cells [45] and at INK4b-ARF-

INK4a in human malignant rhabdoid tumor cells [46]. In the latter case, KMT2A (MLL1) also 

participates in PRC depletion. ATF2 interacts with a kinase that generates H3S28p, which 

antagonizes PRC binding [47–49]. Acetylation and methylation at H3K27 are mutually exclusive 

[50, 51], therefore the AAPs associated with H3K27ac (p65, MYB, ATF2, P300, KAT2B) might 

contribute to PRC eviction (Fig. 1). None of the AAPs in our panel are associated with enzymatic 

erasure of H3K27me3. 

 
Figure 1. Activation-associated histone modifications associated with activation-associated peptides (AAPs) 

used in this study. Interaction partners determined by STRING analysis are listed in Supplemental Table S1. 

Previous work that characterized each AAP is cited in Supplemental Table S2. H3 MT = histone H3 

methyltransferase, H4 MT = histone H4 methyltransferase, CR = chromatin remodeler, PF = pioneer factor, 

PE = Polycomb eviction, A = transcriptional activation. 
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Cis-regulatory elements recognized by transcriptional activators p65 and MYB enhance 

expression from an extra-chromosomal transgene  

First, we used enhancer DNA elements to regulate expression from transiently-transfected plasmid 

DNA. Work from our group [52] and others [53, 54] has shown that plasmid DNA becomes 

occupied by histones, which may contribute to transgene silencing in human cells. In a previous 

study, we used DNA sequences that were known targets of endogenous activation-associated 

proteins to reduce silencing of a luciferase reporter gene [12]. Here, we tested additional motifs 

(Fig. 2a) that are recognized by AAPs from the transcriptional activator group in our panel: MYB 

and p65 (Fig. 1).  

One of three MYB enhancer variants or the p65 enhancer was placed in either a forward or 

reverse orientation upstream of an EF1a promoter and a luciferase reporter (Fig. 2b). PC-3 (human 

prostate cancer) cells were transfected with each plasmid as described previously [12]. The 

highest levels of enhanced expression were observed for MYB variant A (4.5-fold, p = 0.03) or p65 

(5-fold, p = 0.08) placed in the reverse orientation (Fig. 2c). Interestingly, switching the orientation 

of these motifs eliminated the enhancement effects.  Nonetheless, these results suggest that cis-

regulatory elements from the p65 and MYB systems can be used to attract endogenous 

transcriptional activators to a synthetic promoter to drive transgene expression.  

 

 
Figure 2. Luciferase expression from MYB- and p65-enhancer constructs. A) Enhancer motif logos for MYB 

and p65 were generated by JASPAR [55]. The MYB sequence includes a variable site (V) equally occupied 

by A, C, or G nucleotides. B) Luciferase reporter constructs (center) included one of the enhancer sequences 

(MYB-A +, etc.) 19 bp upstream of an EF1α promoter, or no enhancer (Control). C) Luciferase assays were 

carried out using PC-3 cells transfected with Lipofectamine-plasmid complexes. For each transfection, 

luminescence (luc signal) values were measured in triplicate and normalized to the average signal from the 

Control. Circle = mean normalized signal from a transfection, error bars = standard deviation. Wide bars 
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represent the average of three transfections. Asterisks (*) = p < 0.05 for the experimental average, relative to 

the Control average. 

 

Identification of fusions with robust activity within Polycomb heterochromatin 

Next, we asked whether the individual peptides MYB and p65, as well as other AAPs could 

enhance transgene expression in the absence of a specific enhancer sequence. To determine AAP 

activity within silenced chromatin, we targeted AAP fusion proteins (Fig. 1) to a chromosomal 

luciferase reporter that had been previously targeted by Polycomb repressive complexes (PRCs). 

The AAP open reading frames (ORFs) encode catalytic subunits or full length proteins (Fig. 3) that 

have been shown to support an epigenetically active state in various prior studies [37, 38, 42, 44, 

56–62]. All of these ORFs exclude DNA binding and histone binding domains, except for the ORF 

encoding FOXA1 which has a catalytic domain that requires histone interactions. We cloned each 

ORF into mammalian vector 14 (MV14) (Fig. 3) to express a Gal4-mCherry-AAP fusion. The Gal4 

DNA binding domain serves as a module to target AAPs to UAS sequences in the transgene, while 

the mCherry tag allows for protein visualization and quantification of the activator fusion. 

 
Figure 3. Design and construction of Activation-associated peptide (AAP) -Gal4 fusions. Amino acid lengths 

are indicated as well as domain location within the full length wild-type sequence (Supplemental Table S2). 

ORFs were cloned into MV14 to express a Gal4-AAP fusion protein from a cytomegalovirus (CMV) promoter. 

Gal4-AAPs are expressed with a C-terminal nuclear localization signal (NLS) and a 6X histidine tag. MV14 

expresses puromycin resistance to enable selection of Gal4-AAP positive cells. 
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We tested all sixteen Gal4-AAP candidate fusion activators at repressive chromatin in 

HEK293 (human embryonic kidney) cells. The HEK293 cell line Gal4-EED/luc, carries a stably 

integrated firefly luciferase transgene with an upstream Gal4UAS (Gal4UAS-Tk-luciferase) (Fig. 

4a) [22, 63].  The cells also carry a TetO-CMV-Gal4EED construct, which encodes a Gal4 DNA-

binding domain (Gal4) fused to an embryonic ectoderm development (EED) open reading frame 

under the control of TetO-CMV promoter (Fig. 4a). Expression of the Gal4-EED fusion protein is 

controlled by a Tetracycline repressor (TetR). The addition of doxycycline (dox) to cultured Gal4-

EED/luc cells releases the TetR protein from TetO-CMV-Gal4EED, initiating expression of Gal4-

EED. Gal4-EED binds to the Gal4UAS site upstream of luciferase, recruiting PRC2 to the reporter. 

Expression of luciferase is switched from active to silenced through accumulation of polycomb 

chromatin features, which have been detected by chromatin immunoprecipitation (ChIP) 

experiments: EZH2, Suz12, CBX8, depletion of H3K4me [63], and gain of H3K27me3 [22, 63]. This 

system allows us to test the activity of Gal4-AAPs with a priori knowledge of the chromatin 

environment at the target gene. 

 Gal4-EED/luc cells were treated with dox for 48 hours to induce heterochromatin at the 

luciferase transgene. Afterwards, dox was removed and cells were grown for four days without dox 

to allow for Gal4-EED depletion. Cells were then transfected with individual Gal4-AAP plasmids. 

Luciferase expression was measured 72 hours post transfection.  

Three of the sixteen Gal4-AAP-expressing samples showed increased luciferase levels 

compared to a mock-transfected control (Lipofectamine reagent only) (p < 0.05) (Fig. 4a). Lack of 

enhanced luciferase expression for the other fusions could have been due to strong inhibition by 

PRC complexes or failure of the AAPs to function as Gal4 fusions at the UAS site. Therefore, we 

also tested the activities of the fusion proteins within open chromatin. We used a parental HEK293 

cell line, Luc14, that carries the firefly luciferase construct (Gal4UAS-Tk-luciferase) but lacks the 

TetO-CMV-Gal4EED repression cassette (Fig. 4b) [63]. Luciferase is constitutively expressed at 

high levels in Luc14.  

 We found a similar trend of expression enhancement at open chromatin in Gal4-AAP-

expressing cells (Fig. 4b), where only three Gal4-AAP fusions were able to stimulate expression 

when positioned at the promoter-proximal UAS (Fig. 4b). In both chromatin states, AAPs from the 

transcriptional activation group (Fig. 1, Fig. 3) significantly increased expression compared to a 

mock transfection control (p < 0.05) by up to five fold. Our results are consistent with previous 

studies where p65, VP64, or MYB stimulated gene expression from a promoter-proximal site [37–

39]. Here, we have demonstrated activities of these proteins within highly PRC-enriched chromatin. 
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Figure 4. Measurement of luciferase reporter expression within closed or open chromatin after exposure to 

Gal4-AAP fusions. A) In Gal4-EED/luc HEK293 cells, PRC is recruited to the Tk-luciferase reporter gene via 

Gal4-EED (induced by dox). Treated cells were transfected with each Gal4-AAP fusion plasmid. Seventy-two 

hours post transfection luciferase signal was measured. Each circle in the bar graph shows the mean 

luciferase (Luc) signal for a single transfection, divided by cell density (total DNA, Hoechst staining signal). 

Bars show means of three transfections. Asterisks (*) = p < 0.05 compared to untransfected cells.  B) The 

same procedure was carried out for unsilenced Tk-luciferase (in Luc 14 cells). 

 

Fusion-induced activation is sustained after loss of the Gal4-AAP transactivator 

The results so far were obtained at a single time point after Gal4-AAP expression. We were 

interested in determining whether transgene activation within polycomb chromatin is stable or is 

transient and susceptible to eventual re-silencing [64]. To investigate this question, we performed 

time-course experiments to measure expression from re-activated luciferase over time. We 

induced Polycomb heterochromatin in Gal4-EED/luc cells as described for the previous 

experiments. Twenty-four hours post transfection with one of the strong activators, Gal4-p65, -

VP64, or -MYB, cells were grown in medium supplemented with 10 μg/mL puromycin to select for  

Gal4-AAP positive cells. Seventy-two hours post transfection, we measured luciferase expression, 

Gal4-AAP mRNA levels, and mCherry fluorescence from a sample of each transfected culture. The 

cells were then passaged in puromycin-free medium to allow for loss of Gal4-AAP, sampled every 

four days (approximately three generations), and the same three measurements (luciferase, Gal4-

AAP mRNA, and mCherry) were repeated at each time point.  

 We found that transient induction by Gal4-AAPs was sufficient to induce mitotically-

heritable reactivation of Tk-luciferase in Polycomb heterochromatin. For all three Gal4-AAP 

fusions, luciferase expression was significantly increased at most time points and at 456 hours (p < 
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0.05) compared to a mock transfection control (Lipofectamine reagent only) (Fig. 5a). In two of the 

three additional trails, Gal4-p65 and Gal4-MYB showed at least ~2-fold enhancement at 360 hours 

(Supplemental Fig. S1). Steep declines of Gal4-AAP mRNA and mCherry fluorescence after 72 

hours (Fig. 5b, 5c) confirmed the transient presence of the transactivators. Therefore, 

enhancement of luciferase expression persisted long after depletion of each Gal4-AAP, suggesting 

heritable epigenetic memory of the activated state.  

 
Figure 5.  Expression of Polycomb-repressed Tk-luciferase over time after expression and loss of Gal4-p65, 

Gal4-VP64 or Gal4-MYB. A) Gal4-EED/luc cells were treated with dox to induce polycomb chromatin, 

transfected with a Gal4-AAP plasmid, and grown under puromycin selection (10 μg/mL). At 72 hours post 

transfection, cells were sampled for luciferase (Luc) assays, passaged in puromycin-free medium, then 

sampled 168, 264, 360, and 465 hours post transfection for additional Luc assays. Mean Luc signal per cell 

is presented as described for Figure 4, except individual values (circles) at each time point are normalized by 

the mean of the "No activator" negative control. Asterisks (*) = p < 0.05 compared to the negative control. 

Results from replicate trials are shown in Supplemental Fig. S1. B) Reverse transcription followed by 

quantitative PCR (RT-qPCR) with primers against mCherry was used to determine Gal4-AAP transcript 

levels. “mRNA fold change” represents the Cq value normalized by the Cq of a housekeeping gene (TBP), 

and relative to mock-transfected “No activator” cells (Lipofectamine reagent only), log2 transformed. C) Flow 

cytometry of mCherry signal (red fluorescent protein, RFP) was used to determine Gal4-AAP protein levels. 

Data in B and C were generated from one set of transfections in A. For other samples, cells were visually 

inspected for RFP to verify the loss of Gal4-AAP. 
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MYB-mediated activation within closed chromatin requires interactions with a histone 

acetyltransferase 

Next, we used specific chemical inhibitors to probe the mechanism of MYB-driven enhancement. 

The TAD core acidic domain of human MYB (D286-L309) included in our Gal4-MYB fusion 

construct is known to interact with a protein heterodimer of p300 and CBP (Supplemental Fig. S2). 

A single base pair mutation within the MYB TAD domain (M303V) disrupts p300 recruitment and 

subsequent activation by MYB indicating that this recruitment is crucial to activation by MYB [65, 

66]. The p300/CBP histone acetylation complex deposits H3K27ac in opposition to H3K27me3 

induced by PRC2 [67, 68]. Therefore, induced activation within Polycomb heterochromatin may be 

driven by histone acetylation. 

To test this idea, we treated cells with two compounds that are known to disrupt the activity 

of the MYB/p300/CBP complex. Celastrol is a minimally toxic pentacyclic triterpenoid that directly 

inhibits the MYB/p300 interaction, by binding to the KIX-domain of CBP which serves as a docking 

site for the formation of the MYB/p300/CBP complex [69–72] (Fig. 6a). C646, a pyrazolone-

containing small molecule, binds the p300 catalytic domain and thus directly and selectively inhibits 

p300 HAT activity regardless of its association with MYB (Fig. 6a) [73–75]. These compounds 

allow us to resolve the roles of complex assembly and p300-mediated histone acetylation during 

Gal4-MYB-mediated activation. 

Gal4-EED/luc cells were treated with dox to induce polycomb chromatin and transfected 

with Gal4-MYB as described for previous experiments. We treated these cells with 5 μM celastrol 

or 5 μM C646 for six hours. MTT assays indicated no toxicity to HEK293 cells at this concentration 

(Supplemental Fig. S3). We expected luciferase assays to show a decrease in Gal4-MYB-induced 

expression in drug-treated cells compared to an untreated control. We observed a significant (p < 

0.05) decrease in luciferase expression in celastrol-treated cells, but not in C646-treated cells (Fig. 

6b). This result suggests that Gal4-MYB activity requires MYB TAD and p300/CBP assembly, while 

p300 HAT activity is dispensable. The other two strong activators, Gal4-VP64 and -p65, were 

insensitive to celastrol and C646 (Fig. 6b), indicating a p300/CBP-independent mechanism for 

these two fusions.  

In a time-course experiment using celastrol, we observed that Gal4-MYB-mediated 

activation is reversible. Eighteen hours after removal of celastrol from Gal4-MYB-treated cells, 

luciferase expression levels increased (p < 0.05 compared to repression at t = 6), nearly restoring 

expression to original levels (t = 0) (Fig. 6c). Re-addition of celastrol led to a loss of Gal4-MYB 

induced expression (Fig. 6c). 
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Figure 6. Celastrol disrupts Gal4-MYB-mediated activation of luciferase in closed chromatin. A) The 

p300/CBP complex acetylates histones via the catalytic HAT domain of p300 and/or CBP [68]. Celastrol 

inhibits the recruitment of p300/CBP by MYB by binding a docking domain in CBP that facilities complex 

assembly [70, 72]. C646 disrupts histone acetylation by binding the active site of p300 [75]. B) Seventy-two 

hours after Gal4-EED-mediated repression of Tk-luciferase and transfection with Gal4-AAPs, cells were 

treated with either 5 μM celastrol or 5 μM C646 for six hours and collected for luciferase assays. Mean 

luciferase (Luc) signal per cell is presented as described for Figure 4. Asterisks (*) = p < 0.05 compared to 

Gal4-MYB without drug treatment.  C) Luc measurements were carried out in Gal4-MYB-expressing cells 

after removal (-) and re-addition (+) of celastrol. Each series represents an independent transfection. Point = 

mean of three luciferase assays, bars = standard error. 

 

MYB-mediated activation in Polycomb heterochromatin relies upon proximity to the 

transcriptional start site 

Next we asked whether MYB-mediated activation at transgenes is context dependent. We 

leveraged the flexible dCas9/sgRNA system to target the MYB TAD to several sites along the 

luciferase transgene (Fig. 7a). To do so, we targeted sites at different positions within the Tk-

luciferase gene. We also tested the MYB TAD at a different transgene, CMV-GFP in HEK293, that 

had become silenced after several passages (C. Liu, unpublished). 

 We induced Polycomb heterochromatin in HEK 293 Gal4EED/luc cells with dox, followed by 

washout of dox to allow Gal4-EED depletion as described above. We transfected the cells with one 

of four dCas9-MYB constructs, each carrying a different sgRNA targeted at the luciferase 
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transgene. After 72 hours, we tested luciferase expression and found that dCas9-MYB targeted 

nearest the transcription start site (+9) was able to restore levels of expression similarly to Gal4-

MYB (Fig. 7b). In induced Polycomb heterochromatin we observed clear position effects, as the 

downstream target sites show levels of activation significantly lower than Gal4-MYB (p < 0.05). 

 After determining the viability of dCas9-MYB to act as an activator for silenced transgenes 

in a defined chromatin environment, we wanted to test this domain against endogenous 

heterochromatin at the CMV-GFP transgene. The construct, GFP under the control of a CMV 

promoter, was inserted via Cas9-mediated HDR into a non-protein-coding region of the HEK293 

genome (HEK293 site 3 [76]). We transiently transfected the cells with dCas9-MYB constructs, 

each carrying one of four different sgRNAs targeted upstream, within the promoter, or in the coding 

region of the transgene. Seventy-two hours post transfection, we used flow cytometry to measure 

GFP fluorescence compared to a mock-transfected control (Lipofectamine reagent only). We found 

that GFP fluorescence was significantly higher (p < 0.05) in all dCas9-MYB-expressing cells 

regardless of gRNA position (Fig. 7c), indicating that MYB-mediated activation does not require 

proximity to the TSS in all contexts. 

 
Figure 7. dCas9-MYB’s ability to enhance expression in induced Polycomb heterochromatin is dependent 

upon distance from the promoter. A) Expression vector pX330g_dCas9-MYB was constructed from vector 

pX330A_dCas9 (a gift from Takashi Yamamoto, Addgene plasmid #63598) to co-express a dCas9-MYB 

fusion protein and mCherry from a CBh promoter. Single-stranded guide RNA sequences (Supplemental 

Table S3) were cloned into the BbsI sites and expressed from a hU6 promoter on the same vector. B) We 

targeted dCas9-MYB to four locations (g46, g32, g31, g25) across the Tk-luciferase transgene in silenced 

Gal4-EED/luc cells. Mean luciferase signal per cell is presented as described for Figure 4. The control (grey 

bar) is a mock-transfection with Lipofectamine (No Activator, NA). C) We targeted dCas9-MYB to four sites 

(L1-4) across a chromosomal CMV-GFP transgene in HEK293 cells. Seventy-two hours post transfection 

with dCas9-MYB/sgRNA vectors or mock transfection, we measured GFP fluorescence via flow cytometry. 
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Circle = median GFP fluorescence value from one transfection, 10,000 cells; bars = means of three 

transfections. In B and C, asterisks (*) = p < 0.05 for experimental mean compared to the NA control mean. 

 

DISCUSSION 

 

We have demonstrated that DNA enhancer elements and fusion proteins derived from endogenous 

mammalian systems can be used to support strong expression from transgenes. Furthermore, we 

have successfully demonstrated long-term reactivation of a transgene that had been previously 

silenced by ectopic Polycomb heterochromatin. Transient induction of activation by Gal4-AAPs is 

sufficient to maintain an active state over nearly fifteen generations of cell division. These results 

have exciting implications for achieving reliable expression of synthetic DNA in engineered cells, 

as well as our understanding of inherited chromatin states. 

Our results also suggest that the mechanism of artificial transgene reactivation within 

Polycomb heterochromatin requires assembly of transcription initiation complexes. From STRING 

analysis, we found no clear pattern of histone modifications to distinguish the inactive Gal4-AAPs 

from activators that were able to enhance expression in Polycomb heterochromatin (Fig. 1). We 

observed that several of the fusion proteins did not restore expression from the Polycomb-

repressed luciferase transgene in HEK293 cells (Fig. 4a). Thus, Gal4-tethered proteins might be 

functional but not sufficient, are non-functional (sterically hindered), or require positioning within 

non-coding DNA such as enhancer elements. For instance, a p300 fusion has shown strong 

activation of MyoD and Oct4 when positioned 5-20 kb upstream at an enhancer [29]. Future work 

could be done to systematically test the AAPs at endogenous enhancers.  

Upon further investigation we determined that assembly of the MYB TAD with P300/CBP is 

critical for Gal4-MYB-mediated activation within Polycomb chromatin. Inhibition of p300 HAT 

activity via C646 did not disrupt Gal4-MYB function (Fig. 6b). Furthermore, the Gal4 fusion that 

included only the p300 HAT domain failed to activate Polycomb-repressed Tk-luciferase (Fig. 3, 

Fig. 4). Therefore the p300 catalytic domain alone is neither necessary nor sufficient to reverse 

epigenetic silencing under the conditions tested here. CBP, which is also a histone 

acetyltransferase, might compensate for p300 in C646-treated cells [68]. Celastrol inhibits the 

interaction of p300/CBP with MYB by binding to the CBP KIX domain [69–72], and completely 

reduces Gal4-MYB activity (Fig. 6b). In contrast to C646, celastrol may disrupt the recruitment of 

both HAT enzymes, p300 and CBP.  

In contrast to Gal4-MYB, the Gal4-p65 and -VP64 fusions showed robust activation of PRC-

silenced luciferase in the presence of both inhibitors (Fig. 6b). Although VP64 (VP16) and p65 are 

known to interact with p300/CBP, they also interact with the large multi-subunit Mediator complex 
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to initiate transcription [77–79]. Multiple interactions of Gal4-p65 and -VP64 with Mediator may 

allow these proteins to function independently of p300/CBP [80]. However in the case of Gal4-

MYB, cooperative interactions between p300/CBP and Mediator [81, 82] may be necessary for 

gene activation. In our study, Mediator complex recruitment arises as a particularly potent 

mechanism of transgene reactivation in Polycomb heterochromatin [82]. Mediator is known to 

cooperatively regulate PRC2 repression [83] and certain Mediator subunits are directly involved in 

the removal of PRC2 from endogenous promoters [84]. Similarly, Mediator has an antagonistic 

relationship with the PRC1 repression complex [85]. 

The inhibitor experiments also suggest a novel technique for chemically-inducible gene 

regulation in mammalian cells. The ability to quickly toggle between enhanced and repressed 

states is a cornerstone technology for the control of engineered transgenic systems [26, 86, 87]. 

Current methods for toggling gene expression in mammalian cells employ drug-mediated 

transactivator localization, such as allosteric modulation of DNA-binding protein domains [26, 86, 

88], blue light-responsive CRY proteins [89], and chemically induced dimerization (CID) systems 

[90–92], or RNA interference to deplete the regulator [87]. To our knowledge, no systems currently 

exist where the transactivation module’s activity (i.e., MYB-CBP binding) is modulated by a small 

molecule drug. Celastrol has a low toxicity and is in fact being explored as a therapeutic due to its 

positive effects on the immune system [93–95]. The concentration of celastrol that is sufficient to 

toggle Gal4-MYB activity in polycomb chromatin is well below any reported LD50 values for 

celastrol [96–100]. 

Finally, our work demonstrates the potential flexibility of MYB fusion proteins as 

transactivators. dCas9-MYB showed strong activation of previously silenced transgenes near two 

different promoter elements, Tk and CMV. Tk had undergone silencing by ectopic polycomb 

chromatin, whereas CMV had become silenced by undetermined mechanisms. Interestingly, 

stimulation of expression from PRC-repressed Tk seemed to require TSS-proximal positioning of  

Gal4-MYB , whereas Gal4-MYB stimulated expression from both upstream (up to 1400 bp) and 

downstream (up to 350 bp) of the CMV TSS. Factors that might account for this difference include 

intrinsic differences in the core promoter sequences, the presence of cryptic enhancers at one 

promoter and not the other, and differences in chromatin structure. To our knowledge, our work 

represents the first use of MYB as a dCas9 fusion that can activate a transgene from proximal and 

distal locations. 

 

CONCLUSION 

In conclusion, we have determined a predominant role for p300/CBP-recruiting transcriptional 

activators in the reversal of Polycomb-mediated expression in the context of synthetic transgene 
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regulation. In particular, we have expanded the characterization of the transcriptional activator 

protein MYB and its associated enhancer DNA sequence for applications in artificial gene 

regulation in mammalian cells. 

 

METHODS 

 

Construction and Testing of Plasmids containing MYB- and p65 Motifs 

Plasmid construction, transfection of PC-3 cells, and luciferase assays were carried out as 

described previously [12].  Briefly, cloning of double-stranded oligos was used to insert motifs 222 

bp upstream of the transcription start site of an EF1a promoter at XbaI/SphI.  Plasmids were then 

transfected into PC-3 cells (ATCC, CRL-1435) using Lipofectamine LTX™ following the 

manufacturer’s recommended protocols. Luciferase expression was measured 48 hours after 

transfection using a luciferase assay kit (Promega, Madison, WI). All luciferase values were 

normalized relative to the native plasmid control, which contained an unaltered EF1a promoter. 

 

Construction of MV14 and Gal4-AAP Plasmids 

We constructed mammalian expression vector 14 (MV14) for the overexpression of Gal4-mCherry-

AAP fusion proteins in-frame with a nuclear localization sequence and 6X-histidine tag. First, 

plasmid MV13 was built by inserting a Gal4-mCherry fragment into MV10 [101] directly 

downstream of the CMV promoter. Next, MV14 was built by inserting a SpeI/PstlI (FastDigest 

enzymes, ThermoFisher Scientific) -digested gBlock Gene Fragment (Integrated DNA 

Technologies), which encoded a XbaI/NotI multiple cloning site, into MV13 downstream of 

mCherry. Ligation reactions included gel-purified (Sigma NA1111) DNA (25 ng linearized vector, a 

2x molar ratio of insert fragments), 1x Roche RaPID ligation buffer, 1.0 uL T4 ligase (New England 

Biolabs), in a final volume of 10uL. 

 AAPs were cloned into MV14 at the multiple cloning site containing XbaI and NotI cut sites. 

AAPs were either ordered from DNASU in vectors and amplified using primers that added a 5’ XbaI 

site and a 3’ NotI site or ordered as gBlock Gene Fragments with the same 5’ and 3’ cutsites 

(Integrated DNA Technologies). Sequences in vectors were amplified with Phusion High Fidelity 

DNA Polymerase (New England BioLabs) and primers listed in Supplemental Table S2. MV14 and 

AAP inserts were double-digested with FastDigest XbaI and FastDigest NotI (ThermoFisher 

Scientific) and then ligated with T4 DNA ligase (New England Biolabs). MV14_AAP plasmids are 

publically available through DNASU (Supplemental Table S4) 

 

Cell Culturing and Transfections 
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Luc14 and Gal4-EED/luc HEK293 cells were grown in Gibco DMEM high glucose 1× (Life 

Technologies) with 10% Tet-free Fetal Bovine Serum (FBS) (Omega Scientific), 1% penicillin 

streptomycin (ATCC) at 37 °C in a humidified 5% CO2 incubator. Gal4-EED/luc cells were treated 

with 1 µg/mL doxycycline (Santa Cruz Biotechnology) for 2 days to induce stable polycomb 

repression. Dox was removed and cells were cultured for another four days before being seeded in 

12-well plates. Luc14 cells and dox-induced Gal4-EED/luc cells were seeded in 12-well plates such 

that cells reached 90% confluency for lipid-mediated transfection. Transfections were performed 

with 1 µg plasmid per well, 3 µL Lipofectamine LTX, and 1 µL Plus Reagent (Life Technologies) 

per the manufacturer’s protocol. Seventy-two hours post transfection, cells were either collected for 

analysis or passaged further. 

 Puromycin selection was carried out on Gal4-AAP-expressing cells for the experiments 

represented in Figure 5 and Supplemental Figure S1. Dox-treated Gal4-EED/luc cells were 

transfected in 12-well plates and then grown for 24 hours before the addition of 10 µg/mL 

puromycin (Santa Cruz Biotechnology) to Gibco DMEM high glucose 1× (Life Technologies) with 

10% Tet-free Fetal Bovine Serum (FBS) (Omega Scientific), 1% penicillin streptomycin (ATCC). 

Cells were grown in puromycin containing media for two days before wash out. 

 

Luciferase Assays 

Luciferase assays were performed as previously described in Tekel et al. [101]. In brief, a single 

well of cells from a 12 well tissue culture plate was collected per independent transfection in 1.5mL 

1X PBS. Cells were loaded into 9 wells of a Black Costar Clear Bottom 96 Well Plates (Corning 

#3631). Three wells of cells were used to detect mCherry in order to quantify Gal4-AAP proteins. A 

2X Hoechst 33342 stain (Invitrogen #H3570) was loaded into three more wells to stain nuclear 

DNA in order to quantify cell density. The final three wells were prepared with Luciferase Assay 

Buffer (Biotium #30085). Plates were scanned in a microplate reader (Biotek Synergy H1) to detect 

RFP (580 nm - 610 nm), Hoechst 33342 fluorescence (360 nm - 460 nm) and chemiluminescence 

from the same sample in parallel. 

 

RT-qPCR 

We prepared total RNA from ~1.0 x 106 cells (Qiagen RNeasy Mini kit 74104) and generated cDNA 

from 2 µg of total RNA and the SuperScript III First Strand Synthesis system (Invitrogen 

#18080051) in a reaction volume of 20 μl. Quantitative PCR (qPCR) was performed with universal 

primers against the mCherry portion of the Gal4-AAP fusions, or the TATA binding protein (TBP) 

housekeeping gene. Triplicate qPCR reactions (10 μl) each contained SYBR Green 1 2X master 

mix (Roche), 2 µl of a 1:10 cDNA dilution, and 750 nM of each primer (forward and reverse, see 
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Supplemental Table S5). We calculated Mean Quantification Cycle (Cq) for three replicate wells per 

unique reaction. Change in gene expression level was calculated as  ΔCq = 2[Mean Cp reference − Mean Cp 

target]. Log2 fold change in gene expression was calculated as = log2(ΔCq transfected cells / ΔCq mock).  

 

Flow Cytometry 

Cells were passed through a 35 μm nylon strainer (EMS #64750-25). Green fluorescent signal from 

GFP and red fluorescent signal from mCherry were detected on a BD Accuri C6 flow cytometer 

(675 nm LP filter) using CFlow Plus software. Data were further analyzed using FlowJo 10.5.3. 

One run (∼102000 live cells, gated by forward and side scatter) was completed per sample, 

allowing us to determine median fluorescence within the live cell population.  

 

Construction of dCas9-MYB and Design of sgRNAs 

We modified the vector pX330A_dCas9–1 × 4 (a gift from Takashi Yamamoto, Addgene plasmid 

#63598) by inserting a gBlock Gene Fragment (Integrated DNA Technologies) encoding the MYB 

TAD followed by a p2A signal [102] and mCherry after the dCas9 ORF. The resulting vector 

expresses a dCas9-MYB fusion and mCherry as separate peptides from a single mRNA transcript. 

The vector and gBlock were digested with FseI (New England BioLabs) and FastDigest EcoRI 

(ThermoFisher Scientific) and ligated using T4 DNA Ligase (New England BioLabs). We named 

this new vector pX330g_dCas9-MYB. SgRNAs used in the study (Supplemental Table S3) were 

designed using the CRISPR design tool at crispr.mit.edu. DNA oligos were synthesized with BbsI 

overhangs for cloning into pX330g_dCas9-MYB (Integrative DNA Technology). Drop-in of sgRNAs 

followed the cloning protocol described in Cong et al. [103].  

 

Celastrol and C646 Treatments 

Gal4-EED/luc cells were induced with dox and transfected as described above. Three days post 

transfection, cells were treated with either C646 (Selleck Chemicals) or Celastrol (Selleck 

Chemicals) diluted to a concentration of 5μM in Gibco DMEM high glucose 1× (Life Technologies) 

with 10% Tet-free Fetal Bovine Serum (FBS) (Omega Scientific). Cells were incubated with the 

drug for six hours before being washed and either harvested for a luciferase assay or grown further 

in drug-free media.  
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Statistical Analyses 

The differences of means were calculated using the two sample, one-tailed Student’s t test. For p < 

0.05, confidence was 95% for 2 degrees of freedom and a test statistic of t(0.05,2) = 2.920. To 

evaluate significance of Gal4-MYB induced activation after the removal of celastrol and its 

subsequent re-addition, a nest one-way ANOVA was used with 95% confidence and two degrees 

of freedom.  

 

LIST OF ABBREVIATIONS 

AAP- activation associated peptide 

CMV- cytomegalovirus 

CR- chromatin remodeler 

Gal4- Gal4 DNA binding domain 

HAT- histone acetyltransferase 

NLS- nuclear localization signal 

ORF- open reading frame 

PF- pioneer factor 

PolII- RNA polymerase II 

PRC- Polycomb repressive complex 

TAD- transcriptional activation domain 

UAS- upstream activation sequence 

 

DECLARATIONS 

 

Acknowledgements: The authors thank C. Liu and T. Loveless for generously providing cells with a 

silenced CMV-GFP transgene, K. Rege and R. Niti for celastrol and C646, and R. Daer and D. 

Vargas for early efforts on this work.  

Availability of data and material: Sequences of plasmids used in this study are publically available 

as listed in Supplemental Table S4 as well as physically available in the DNASU plasmid 

repository.  

Competing interests: The authors declare no competing interest. 

Funding: This project was supported by NSF CBET grant 1403214. KAH was supported by 

National Institutes of Health NCI grant K01 CA188164.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2018. ; https://doi.org/10.1101/487736doi: bioRxiv preprint 

https://doi.org/10.1101/487736
http://creativecommons.org/licenses/by-nc-nd/4.0/


Authors' contributions: CMB completed all Gal4- and dCas9-fusion cloning, HEK293 cell culture, 

luciferase assays, flow cytometry, and PCR related to targeted fusion activators. CMB also carried 

out experimental design, STRING analysis, statistical analyses, and manuscript writing. JE 

designed and performed PC-3 transfections with enhancer motif-EF1a-luciferase constructs, and 

luciferase assays. RM cloned the enhancer motif-EF1a-luciferase constructs. KAH oversaw all 

work, finalized graphics for the figures, and assisted with manuscript preparation and submission. 

All authors reviewed and approved the manuscript. 

Ethics approval and consent to participate: Not applicable to this work. 

Consent for publication: Not applicable to this work. 

REFERENCES 

1. Brooks AR, Harkins RN, Wang P, Qian HS, Liu P, Rubanyi GM. Transcriptional silencing is 
associated with extensive methylation of the CMV promoter following adenoviral gene delivery to 
muscle. J Gene Med. 2004;6:395–404. 

2. Suzuki M, Cerullo V, Bertin TK, Cela R, Clarke C, Guenther M, et al. MyD88-dependent 
silencing of transgene expression during the innate and adaptive immune response to helper-
dependent adenovirus. Hum Gene Ther. 2010;21:325–36. 

3. Leung DC, Lorincz MC. Silencing of endogenous retroviruses: when and why do histone marks 
predominate? Trends Biochem Sci. 2012;37:127–33. 

4. Ross PJ, Kennedy MA, Parks RJ. Host cell detection of noncoding stuffer DNA contained in 
helper-dependent adenovirus vectors leads to epigenetic repression of transgene expression. J 
Virol. 2009;83:8409–17. 

5. Ellis J. Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum Gene Ther. 
2005;16:1241–6. 

6. Gong L, Liu F, Xiong Z, Qi R, Luo Z, Gong X, et al. Heterochromatin protects retinal pigment 
epithelium cells from oxidative damage by silencing p53 target genes. Proc Natl Acad Sci U S A. 
2018;115:E3987–95. 

7. Erhardt S, Lyko F, Ainscough JF-X, Surani MA, Paro R. Polycomb-group proteins are involved in 
silencing processes caused by a transgenic element from the murine imprinted H19/Igf2 region in 
Drosophila. Dev Genes Evol. 2003;213:336–44. 

8. Dufourt J, Brasset E, Desset S, Pouchin P, Vaury C. Polycomb group-dependent, 
heterochromatin protein 1-independent, chromatin structures silence retrotransposons in somatic 
tissues outside ovaries. DNA Res. 2011;18:451–61. 

9. Otte AP, Kwaks THJ. Gene repression by Polycomb group protein complexes: a distinct 
complex for every occasion? Curr Opin Genet Dev. 2003;13:448–54. 

10. Johansen J, Tornøe J, Møller A, Johansen TE. Increased in vitro and in vivo transgene 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2018. ; https://doi.org/10.1101/487736doi: bioRxiv preprint 

https://doi.org/10.1101/487736
http://creativecommons.org/licenses/by-nc-nd/4.0/


expression levels mediated through cis-acting elements. J Gene Med. 2003;5:1080–9. 

11. Cheng JK, Alper HS. Transcriptomics-Guided Design of Synthetic Promoters for a Mammalian 
System. ACS Synth Biol. 2016;5:1455–65. 

12. Zimmerman D, Patel K, Hall M, Elmer J. Enhancement of transgene expression by nuclear 
transcription factor Y and CCCTC-binding factor. Biotechnol Prog. 2018. doi:10.1002/btpr.2712. 

13. Wang W, Guo X, Li Y-M, Wang X-Y, Yang X-J, Wang Y-F, et al. Enhanced transgene 
expression using cis-acting elements combined with the EF1 promoter in a mammalian expression 
system. Eur J Pharm Sci. 2018;123:539–45. 

14. Roberts ML, Katsoupi P, Tseveleki V, Taoufik E. Bioinformatically Informed Design of Synthetic 
Mammalian Promoters. Methods Mol Biol. 2017;1651:93–112. 

15. Saxena P, Bojar D, Fussenegger M. Design of Synthetic Promoters for Gene Circuits in 
Mammalian Cells. In: Methods in Molecular Biology. 2017. p. 263–73. 

16. Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, Iyer E, et al. Highly-efficient Cas9-
mediated transcriptional programming. 2014. doi:10.1101/012880. 

17. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, et al. Genome-
scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2015;517:583–8. 

18. Huang Y-H, Su J, Lei Y, Brunetti L, Gundry MC, Zhang X, et al. DNA epigenome editing using 
CRISPR-Cas SunTag-directed DNMT3A. Genome Biol. 2017;18:176. 

19. Black JB, Adler AF, Wang H-G, D’Ippolito AM, Hutchinson HA, Reddy TE, et al. Targeted 
Epigenetic Remodeling of Endogenous Loci by CRISPR/Cas9-Based Transcriptional Activators 
Directly Converts Fibroblasts to Neuronal Cells. Cell Stem Cell. 2016;19:406–14. 

20. Gao X, Tsang JCH, Gaba F, Wu D, Lu L, Liu P. Comparison of TALE designer transcription 
factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers. Nucleic 
Acids Res. 2014;42:e155. 

21. Zhang Y, Yin C, Zhang T, Li F, Yang W, Kaminski R, et al. CRISPR/gRNA-directed synergistic 
activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent 
reservoirs. Sci Rep. 2015;5:16277. 

22. Daer RM, Cutts JP, Brafman DA, Haynes KA. The Impact of Chromatin Dynamics on Cas9-
Mediated Genome Editing in Human Cells. ACS Synth Biol. 2017;6:428–38. 

23. Clapier CR, Iwasa J, Cairns BR, Peterson CL. Mechanisms of action and regulation of ATP-
dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol. 2017;18:407–22. 

24. Zaret KS, Carroll JS. Pioneer transcription factors: establishing competence for gene 
expression. Genes Dev. 2011;25:2227–41. 

25. Magnani L, Eeckhoute J, Lupien M. Pioneer factors: directing transcriptional regulators within 
the chromatin environment. Trends Genet. 2011;27:465–74. 

26. Kramer BP, Viretta AU, Daoud-El-Baba M, Aubel D, Weber W, Fussenegger M. An engineered 
epigenetic transgene switch in mammalian cells. Nat Biotechnol. 2004;22:867–70. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2018. ; https://doi.org/10.1101/487736doi: bioRxiv preprint 

https://doi.org/10.1101/487736
http://creativecommons.org/licenses/by-nc-nd/4.0/


27. Kwaks THJ, Sewalt RGAB, van Blokland R, Siersma TJ, Kasiem M, Kelder A, et al. Targeting 
of a histone acetyltransferase domain to a promoter enhances protein expression levels in 
mammalian cells. J Biotechnol. 2005;115:35–46. 

28. Santillan DA, Theisler CM, Ryan AS, Popovic R, Stuart T, Zhou M-M, et al. Bromodomain and 
histone acetyltransferase domain specificities control mixed lineage leukemia phenotype. Cancer 
Res. 2006;66:10032–9. 

29. Hilton IB, D’Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, et al. Epigenome 
editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and 
enhancers. Nat Biotechnol. 2015;33:510–7. 

30. Cano-Rodriguez D, Gjaltema RAF, Jilderda LJ, Jellema P, Dokter-Fokkens J, Ruiters MHJ, et 
al. Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent 
manner. Nat Commun. 2016;7. doi:10.1038/ncomms12284. 

31. McGinty RK, Kim J, Chatterjee C, Roeder RG, Muir TW. Chemically ubiquitylated histone H2B 
stimulates hDot1L-mediated intranucleosomal methylation. Nature. 2008;453:812–6. 

32. O’Geen H, Ren C, Nicolet CM, Perez AA, Halmai J, Le VM, et al. dCas9-based epigenome 
editing suggests acquisition of histone methylation is not sufficient for target gene repression. 
Nucleic Acids Res. 2017;45:9901–16. 

33. Aloia L, Di Stefano B, Di Croce L. Polycomb complexes in stem cells and embryonic 
development. Development. 2013;140:2525–34. 

34. Poynter ST, Kadoch C. Polycomb and trithorax opposition in development and disease. Wiley 
Interdiscip Rev Dev Biol. 2016;5:659–88. 

35. Schuettengruber B, Bourbon H-M, Di Croce L, Cavalli G. Genome Regulation by Polycomb and 
Trithorax: 70 Years and Counting. Cell. 2017;171:34–57. 

36. Simon JA, Kingston RE. Occupying chromatin: Polycomb mechanisms for getting to genomic 
targets, stopping transcriptional traffic, and staying put. Mol Cell. 2013;49:808–24. 

37. Beerli RR, Segal DJ, Dreier B, Barbas CF 3rd. Toward controlling gene expression at will: 
specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins 
constructed from modular building blocks. Proc Natl Acad Sci U S A. 1998;95:14628–33. 

38. Liu PQ, Rebar EJ, Zhang L, Liu Q, Jamieson AC, Liang Y, et al. Regulation of an endogenous 
locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. 
Activation of vascular endothelial growth factor A. J Biol Chem. 2001;276:11323–34. 

39. Weston K, Michael Bishop J. Transcriptional activation by the v-myb oncogene and its cellular 
progenitor, c-myb. Cell. 1989;58:85–93. 

40. Vo N, Goodman RH. CREB-binding Protein and p300 in Transcriptional Regulation. J Biol 
Chem. 2001;276:13505–8. 

41. Zhao Q, Rank G, Tan YT, Li H, Moritz RL, Simpson RJ, et al. PRMT5-mediated methylation of 
histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat 
Struct Mol Biol. 2009;16:304–11. 

42. Antonysamy S, Bonday Z, Campbell RM, Doyle B, Druzina Z, Gheyi T, et al. Crystal structure 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2018. ; https://doi.org/10.1101/487736doi: bioRxiv preprint 

https://doi.org/10.1101/487736
http://creativecommons.org/licenses/by-nc-nd/4.0/


of the human PRMT5:MEP50 complex. Proc Natl Acad Sci U S A. 2012;109:17960–5. 

43. Alver BH, Kim KH, Lu P, Wang X, Manchester HE, Wang W, et al. The SWI/SNF chromatin 
remodelling complex is required for maintenance of lineage specific enhancers. Nat Commun. 
2017;8:14648. 

44. Clark KL, Halay ED, Lai E, Burley SK. Co-crystal structure of the HNF-3/fork head DNA-
recognition motif resembles histone H5. Nature. 1993;364:412–20. 

45. Kadoch C, Williams RT, Calarco JP, Miller EL, Weber CM, Braun SMG, et al. Dynamics of 
BAF-Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat 
Genet. 2017;49:213–22. 

46. Kia SK, Gorski MM, Giannakopoulos S, Verrijzer CP. SWI/SNF mediates polycomb eviction 
and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Mol Cell Biol. 2008;28:3457–64. 

47. Lau PNI, Cheung P. Histone code pathway involving H3 S28 phosphorylation and K27 
acetylation activates transcription and antagonizes polycomb silencing. Proc Natl Acad Sci U S A. 
2011;108:2801–6. 

48. Gehani SS, Agrawal-Singh S, Dietrich N, Christophersen NS, Helin K, Hansen K. Polycomb 
group protein displacement and gene activation through MSK-dependent H3K27me3S28 
phosphorylation. Mol Cell. 2010;39:886–900. 

49. Josefowicz SZ, Shimada M, Armache A, Li CH, Miller RM, Lin S, et al. Chromatin Kinases Act 
on Transcription Factors and Histone Tails in Regulation of Inducible Transcription. Mol Cell. 
2016;64:347–61. 

50. Tie F, Banerjee R, Stratton CA, Prasad-Sinha J, Stepanik V, Zlobin A, et al. CBP-mediated 
acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development. 
2009;136:3131–41. 

51. Englert NA, Luo G, Goldstein JA, Surapureddi S. Epigenetic Modification of Histone 3 Lysine 
27. J Biol Chem. 2014;290:2264–78. 

52. Christensen MD, Nitiyanandan R, Meraji S, Daer R, Godeshala S, Goklany S, et al. An inhibitor 
screen identifies histone-modifying enzymes as mediators of polymer-mediated transgene 
expression from plasmid DNA. J Control Release. 2018;286:210–23. 

53. Gracey Maniar LE, Maniar JM, Chen Z-Y, Lu J, Fire AZ, Kay MA. Minicircle DNA vectors 
achieve sustained expression reflected by active chromatin and transcriptional level. Mol Ther. 
2013;21:131–8. 

54. Riu E, Chen Z-Y, Xu H, He C-Y, Kay MA. Histone modifications are associated with the 
persistence or silencing of vector-mediated transgene expression in vivo. Mol Ther. 2007;15:1348–
55. 

55. Mathelier A, Fornes O, Arenillas DJ, Chen C-Y, Denay G, Lee J, et al. JASPAR 2016: a major 
expansion and update of the open-access database of transcription factor binding profiles. Nucleic 
Acids Res. 2016;44:D110–5. 

56. Zobel A, Kalkbrenner F, Vorbrueggen G, Moelling K. Transactivation of the human c-myc gene 
by c-Myb. Biochem Biophys Res Commun. 1992;186:715–22. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2018. ; https://doi.org/10.1101/487736doi: bioRxiv preprint 

https://doi.org/10.1101/487736
http://creativecommons.org/licenses/by-nc-nd/4.0/


57. Kawasaki H, Schiltz L, Chiu R, Itakura K, Taira K, Nakatani Y, et al. ATF-2 has intrinsic histone 
acetyltransferase activity which is modulated by phosphorylation. Nature. 2000;405:195–200. 

58. Yang L, Wang H, Luo X, Mao P, Tian W, Shi Y, et al. Virion protein 16 induces demethylation 
of DNA integrated within chromatin in a novel mammalian cell model. Acta Biochim Biophys Sin . 
2011;44:154–61. 

59. Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD, et al. MLL targets SET domain 
methyltransferase activity to Hox gene promoters. Mol Cell. 2002;10:1107–17. 

60. Nishioka K, Chuikov S, Sarma K, Erdjument-Bromage H, Allis CD, Tempst P, et al. Set9, a 
novel histone H3 methyltransferase that facilitates transcription by precluding histone tail 
modifications required for heterochromatin formation. Genes Dev. 2002;16:479–89. 

61. Serandour AA, Avner S, Percevault F, Demay F, Bizot M, Lucchetti-Miganeh C, et al. 
Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers. Genome 
Res. 2011;21:555–65. 

62. Wang W, Côté J, Xue Y, Zhou S, Khavari PA, Biggar SR, et al. Purification and biochemical 
heterogeneity of the mammalian SWI-SNF complex. EMBO J. 1996;15:5370–82. 

63. Hansen KH, Bracken AP, Pasini D, Dietrich N, Gehani SS, Monrad A, et al. A model for 
transmission of the H3K27me3 epigenetic mark. Nat Cell Biol. 2008;10:1291–300. 

64. Pirrotta V. Introduction to Polycomb Group Mechanisms. In: Polycomb Group Proteins. 2017. p. 
1–3. 

65. Sandberg ML, Sutton SE, Pletcher MT, Wiltshire T, Tarantino LM, Hogenesch JB, et al. c-Myb 
and p300 regulate hematopoietic stem cell proliferation and differentiation. Dev Cell. 2005;8:153–
66. 

66. Pattabiraman DR, Sun J, Dowhan DH, Ishii S, Gonda TJ. Mutations in multiple domains of c-
Myb disrupt interaction with CBP/p300 and abrogate myeloid transforming ability. Mol Cancer Res. 
2009;7:1477–86. 

67. Raisner R, Kharbanda S, Jin L, Jeng E, Chan E, Merchant M, et al. Enhancer Activity Requires 
CBP/P300 Bromodomain-Dependent Histone H3K27 Acetylation. Cell Rep. 2018;24:1722–9. 

68. Ogryzko VV, Louis Schiltz R, Russanova V, Howard BH, Nakatani Y. The Transcriptional 
Coactivators p300 and CBP Are Histone Acetyltransferases. Cell. 1996;87:953–9. 

69. Coulibaly A, Haas A, Steinmann S, Jakobs A, Schmidt TJ, Klempnauer K-H. The natural anti-
tumor compound Celastrol targets a Myb-C/EBPβ-p300 transcriptional module implicated in 
myeloid gene expression. PLoS One. 2018;13:e0190934. 

70. Uttarkar S, Piontek T, Dukare S, Schomburg C, Schlenke P, Berdel WE, et al. Small-Molecule 
Disruption of the Myb/p300 Cooperation Targets Acute Myeloid Leukemia Cells. Mol Cancer Ther. 
2016;15:2905–15. 

71. Denis CM, Langelaan DN, Kirlin AC, Chitayat S, Munro K, Spencer HL, et al. Functional 
redundancy between the transcriptional activation domains of E2A is mediated by binding to the 
KIX domain of CBP/p300. Nucleic Acids Res. 2014;42:7370–82. 

72. Uttarkar S, Dassé E, Coulibaly A, Steinmann S, Jakobs A, Schomburg C, et al. Targeting acute 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2018. ; https://doi.org/10.1101/487736doi: bioRxiv preprint 

https://doi.org/10.1101/487736
http://creativecommons.org/licenses/by-nc-nd/4.0/


myeloid leukemia with a small molecule inhibitor of the Myb/p300 interaction. Blood. 
2016;127:1173–82. 

73. Wang Y-M, Gu M-L, Meng F-S, Jiao W-R, Zhou X-X, Yao H-P, et al. Histone acetyltransferase 
p300/CBP inhibitor C646 blocks the survival and invasion pathways of gastric cancer cell lines. Int 
J Oncol. 2017;51:1860–8. 

74. Oike T, Komachi M, Ogiwara H, Amornwichet N, Saitoh Y, Torikai K, et al. C646, a selective 
small molecule inhibitor of histone acetyltransferase p300, radiosensitizes lung cancer cells by 
enhancing mitotic catastrophe. Radiother Oncol. 2014;111:222–7. 

75. Bowers EM, Yan G, Mukherjee C, Orry A, Wang L, Holbert MA, et al. Virtual ligand screening 
of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. 
Chem Biol. 2010;17:471–82. 

76. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, et al. GUIDE-seq enables 
genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. 
2015;33:187–97. 

77. van Essen D, Engist B, Natoli G, Saccani S. Two Modes of Transcriptional Activation at Native 
Promoters by NF-κB p65. PLoS Biol. 2009;7:e1000073. 

78. Thakore PI, Black JB, Hilton IB, Gersbach CA. Editing the epigenome: technologies for 
programmable transcription and epigenetic modulation. Nat Methods. 2016;13:127–37. 

79. Wang W, Qin J-J, Voruganti S, Nag S, Zhou J, Zhang R. Polycomb Group (PcG) Proteins and 
Human Cancers: Multifaceted Functions and Therapeutic Implications. Med Res Rev. 
2015;35:1220–67. 

80. Lecoq L, Raiola L, Chabot PR, Cyr N, Arseneault G, Legault P, et al. Structural characterization 
of interactions between transactivation domain 1 of the p65 subunit of NF-κB and transcription 
regulatory factors. Nucleic Acids Res. 2017;45:5564–76. 

81. Huang Z-Q, Li J, Sachs LM, Cole PA, Wong J. A role for cofactor-cofactor and cofactor-histone 
interactions in targeting p300, SWI/SNF and Mediator for transcription. EMBO J. 2003;22:2146–55. 

82. Haas M, Siegert M, Schürmann A, Sodeik B, Wolfes H. c-Myb protein interacts with Rcd-1, a 
component of the CCR4 transcription mediator complex. Biochemistry. 2004;43:8152–9. 

83. Fukasawa R, Iida S, Tsutsui T, Hirose Y, Ohkuma Y. Mediator complex cooperatively regulates 
transcription of retinoic acid target genes with Polycomb Repressive Complex 2 during neuronal 
differentiation. J Biochem. 2015;158:373–84. 

84. Englert NA, Luo G, Goldstein JA, Surapureddi S. Epigenetic modification of histone 3 lysine 27: 
mediator subunit MED25 is required for the dissociation of polycomb repressive complex 2 from 
the promoter of cytochrome P450 2C9. J Biol Chem. 2015;290:2264–78. 

85. Lehmann L, Ferrari R, Vashisht AA, Wohlschlegel JA, Kurdistani SK, Carey M. Polycomb 
repressive complex 1 (PRC1) disassembles RNA polymerase II preinitiation complexes. J Biol 
Chem. 2012;287:35784–94. 

86. Oakes BL, Nadler DC, Flamholz A, Fellmann C, Staahl BT, Doudna JA, et al. Profiling of 
engineering hotspots identifies an allosteric CRISPR-Cas9 switch. Nat Biotechnol. 2016;34:646–
51. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2018. ; https://doi.org/10.1101/487736doi: bioRxiv preprint 

https://doi.org/10.1101/487736
http://creativecommons.org/licenses/by-nc-nd/4.0/


87. Greber D, El-Baba MD, Fussenegger M. Intronically encoded siRNAs improve dynamic range 
of mammalian gene regulation systems and toggle switch. Nucleic Acids Res. 2008;36:e101–e101. 

88. Stanton BC, Siciliano V, Ghodasara A, Wroblewska L, Clancy K, Trefzer AC, et al. Systematic 
transfer of prokaryotic sensors and circuits to mammalian cells. ACS Synth Biol. 2014;3:880–91. 

89. Mansouri M, Strittmatter T, Fussenegger M. Light-Controlled Mammalian Cells and Their 
Therapeutic Applications in Synthetic Biology. Adv Sci Lett. 2018;:1800952. 

90. Inobe T, Nukina N. Rapamycin-induced oligomer formation system of FRB-FKBP fusion 
proteins. J Biosci Bioeng. 2016;122:40–6. 

91. Rivera VM, Clackson T, Natesan S, Pollock R, Amara JF, Keenan T, et al. A humanized 
system for pharmacologic control of gene expression. Nat Med. 1996;2:1028–32. 

92. DeRose R, Miyamoto T, Inoue T. Manipulating signaling at will: chemically-inducible 
dimerization (CID) techniques resolve problems in cell biology. Pflugers Arch. 2013;465:409–17. 

93. Cascão R, Fonseca JE, Moita LF. Celastrol: A Spectrum of Treatment Opportunities in Chronic 
Diseases. Front Med. 2017;4:69. 

94. Venkatesha SH, Dudics S, Astry B, Moudgil KD. Control of autoimmune inflammation by 
celastrol, a natural triterpenoid. Pathog Dis. 2016;74. doi:10.1093/femspd/ftw059. 

95. Ju SM, Youn GS, Cho YS, Choi SY, Park J. Celastrol ameliorates cytokine toxicity and pro-
inflammatory immune responses by suppressing NF-κB activation in RINm5F beta cells. BMB Rep. 
2015;48:172–7. 

96. Li G, Liu D, Zhang Y, Qian Y, Zhang H, Guo S, et al. Celastrol inhibits lipopolysaccharide-
stimulated rheumatoid fibroblast-like synoviocyte invasion through suppression of TLR4/NF-κB-
mediated matrix metalloproteinase-9 expression. PLoS One. 2013;8:e68905. 

97. Raja SM, Clubb RJ, Ortega-Cava C, Williams SH, Bailey TA, Duan L, et al. Anticancer activity 
of Celastrol in combination with ErbB2-targeted therapeutics for treatment of ErbB2-
overexpressing breast cancers. Cancer Biol Ther. 2011;11:263–76. 

98. Yang H, Chen D, Cui QC, Yuan X, Dou QP. Celastrol, a triterpene extracted from the Chinese 
“Thunder of God Vine,” is a potent proteasome inhibitor and suppresses human prostate cancer 
growth in nude mice. Cancer Res. 2006;66:4758–65. 

99. Cleren C, Calingasan NY, Chen J, Beal MF. Celastrol protects against MPTP- and 3-
nitropropionic acid-induced neurotoxicity. J Neurochem. 2005;94:995–1004. 

100. Konieczny J, Jantas D, Lenda T, Domin H, Czarnecka A, Kuter K, et al. Lack of 
neuroprotective effect of celastrol under conditions of proteasome inhibition by lactacystin in in vitro 
and in vivo studies: implications for Parkinson’s disease. Neurotox Res. 2014;26:255–73. 

101. Tekel SJ, Barrett C, Vargas D, Haynes KA. Design, Construction, and Validation of Histone-
Binding Effectors in Vitro and in Cells. Biochemistry. 2018;57:4707–16. 

102. Liu Z, Chen O, Blake Joseph Wall J, Zheng M, Zhou Y, Wang L, et al. Systematic comparison 
of 2A peptides for cloning multi-genes in a polycistronic vector. Sci Rep. 2017;7. 
doi:10.1038/s41598-017-02460-2. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2018. ; https://doi.org/10.1101/487736doi: bioRxiv preprint 

https://doi.org/10.1101/487736
http://creativecommons.org/licenses/by-nc-nd/4.0/


103. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering 
using CRISPR/Cas systems. Science. 2013;339:819–23. 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2018. ; https://doi.org/10.1101/487736doi: bioRxiv preprint 

https://doi.org/10.1101/487736
http://creativecommons.org/licenses/by-nc-nd/4.0/

