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Experiments on steady state bacterial cultures have uncovered several quantitative regularities
at the system level. These include, first, the exponential growth of cell size with time and the
balanced growth of intracellular chemicals between cell birth and division, which are puzzling given
the nonlinear and decentralized chemical dynamics in the cell. We model a cell as a set of chemical
populations undergoing nonlinear mass action kinetics in a container whose volume is a linear
function of the chemical populations. This turns out to be a special class of dynamical system
that generically has attractors in which all populations grow exponentially with time at the same
rate. This explains exponential balanced growth of bacterial cells without invoking any regulatory
mechanisms and suggests that this could be a robust property of protocells as well. Second, we
consider the hypothesis that cells commit themselves to division when a certain internal chemical
population reaches a threshold of N molecules. We show that this hypothesis leads to a simple
explanation of some of the variability observed across cells in a bacterial culture. In particular it
reproduces the adder property of cell size fluctuations observed recently in E. coli, the observed
correlations between interdivision time, birth volume and added volume in a generation, and the
observed scale of the fluctuations (CV ∼ 10-30%) when N lies between 10 and 100. Third, upon
including a suitable regulatory mechanism that optimizes the growth rate of the cell, the model
reproduces the observed bacterial growth laws including the dependence of the growth rate and
ribosomal protein fraction on the medium. Thus, the models provide a framework for unifying
diverse aspects of bacterial growth physiology under one roof. They also suggest new questions for
experimental and theoretical enquiry.

I. INTRODUCTION

The simplest cells, bacteria, exhibit several generic phe-
nomena that were discovered decades ago but still require
explanation. One such phenomenon is that in steady
state bacterial cultures the size of an individual bacte-
rial cell grows exponentially with time between birth and
division. This was observed early on in [1, 2] and its
existence in various organisms has been the subject of
debate [3, 4]. Recently detailed single cell experiments
[5–11] have confirmed this property for many bacterial
species in steady state cultures. Intracellular molecular
populations have also been observed to grow exponen-
tially in Escherichia coli cells within a generation [12].
Since bacterial cells divide, the range of size over which
exponential trajectories are seen is limited to a factor of
two (or similar), thereby potentially permitting alternate
fits to the data. However, the exponential function fits
quite well and is therefore at least a very good approx-
imation. In other single-celled organisms such as Schy-
zosaccharomyces pombe a clear departure from exponen-
tial trajectories is seen [4, 13], so this is not a property

∗ Corresponding author. jain@physics.du.ac.in

# These authors contributed equally to this work.

† Present address: Carl R. Woese Institute for Genomic
Biology, University of Illinois at Urbana-Champaign, Urbana,
IL 61801, USA

that can be taken for granted. Why most bacteria exhibit
this property remains an unanswered question.

In linear autocatalytic systems [14–17] exponential
growth is not surprising. The asymptotic rate of expo-
nential growth of chemical populations in such systems
is the largest eigenvalue of the matrix defining the dy-
namical system. However, the chemical dynamics of the
intracellular molecular species in a bacterial cell is highly
nonlinear and therefore exponential trajectories are sur-
prising. In this paper we provide an explanation for how
cells can exhibit exponential trajectories of intracellular
chemicals and cell volume in spite of the nonlinearity of
the dynamics. We show that ordinary differential equa-
tions representing mass-action based nonlinear chemical
dynamics in an expanding container whose volume is lin-
early dependent on the constituent populations, have a
special scaling property or ‘quasi-linearity’. Such nonlin-
ear systems naturally have exponentially growing trajec-
tories as attractors.

Another unexplained phenomenon is ‘balanced growth’
[18], the remarkable coordination between thousands of
intracellular chemicals so that all of them (on average)
double in the same time. This is required for self-
replication: a cell at birth must grow in such a way that
division, when it happens, produces two daughters iden-
tical to itself; hence the mother-at-division must have
twice of everything as the daughter-at-birth. In spite of
their decentralized dynamics characterized by reaction-
specific catalysts and rate constants, how do thousands
of chemicals conspire to double at the same time? It is
normally supposed that regulatory mechanisms involv-
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ing checkpoints and feedback loops are responsible for
this coordination. We argue that this sophistication is
not needed. The exponential trajectories that we find
as generic attractors in autocatalytic systems have all
chemical populations increasing at the same exponential
rate even when no regulation is present. Thus their ra-
tios are automatically constant in time once they reach
the attractor. The genericity and robustness of these at-
tractors suggests that balanced growth could have been a
property of protocells at the origin of life. The protocell
literature has been concerned with this question [19–24]
and has been an inspiration for this work, though the
solution presented in this paper is different from the one
advocated there. At a mathematical level we show that
the growth rate as well as the ratios of chemicals in the
attractor are determined from a nonlinear generalization
of the eigenvalue equation of a matrix.

Another phenomenon that has consistently received at-
tention but is still not understood is the origin and scale
of variation in interdivision time and cell size; reviewed in
[25–28]. Genetically identical bacterial cells subjected to
the same steady environment exhibit a phenotypic vari-
ation in both these quantities. In the steady state the
volume of the cells at birth and the time between birth
and division have steady distributions with a constant
mean and standard deviation (s.d.) and a coefficient of
variation, CV = s.d./mean, in the range of 10-30%. The
mean size of the cell-at-birth can be changed by close to
a factor of 10 by choosing different environmental condi-
tions; its CV remains between 10-30% [9, 11, 29]. The
CV of the molecular population of an abundant intra-
cellular chemical across cells in a bacterial culture (the
extrinsic CV) is also 10-30% [30–32]. It is believed that
the source of variation lies in the process that controls
cell division; however the molecular basis of this process
is not fully understood, even for E. coli, and nor is the ori-
gin of the scale of CV. In this paper we explore, through
a mechanistic mathematical model, the hypothesis [33]
that division is controlled by the intracellular population
(not concentration) of a certain molecule reaching a fixed
threshold ∼ N , a parameter of the model. Then N con-
trols both the average size and the fluctuations in size
and interdivision time. We provide an explicit expres-
sion for the average cell volume V in terms of N and
the other molecular parameters of the model. Fluctua-
tions arise because molecular production is stochastic and
hence the interdivision time, which under this hypothe-
sis is the first passage time for this molecule to reach its
threshold, is stochastic. The CV of the interdivision time
is ∼ 1/

√
N ; hence the CV of cell volume and of extrinsic

molecular populations is also ∼ 1/
√
N . We note that this

hypothesis therefore explains the observed range 0.1-0.3
of the CV of all these quantities provided N lies between
10 and 100. We compare the theoretical distributions of
size, interdivision time and added volume with the ex-
perimental data of [11] to constrain the range of N for
E. coli.

Size fluctuations in E. coli have been recently observed

[10, 11] to satisfy the ‘adder’ property [34, 35], wherein
the volume added by a cell in each generation is indepen-
dent of its birth volume in that generation. This property
has been explored in various phenomenological models
[8, 10, 11, 34–36] and implies specific correlations between
the cell volume at birth and division, and between inter-
division time and birth volume. It has also been shown
to arise in a linear mechanistic model [37]. We show that
the adder property appears robustly for a wide class of
non-linear mechanistic models under the hypothesis that
division is triggered when a molecular population reaches
a threshold value, generalizing the results of [37]. We in-
dicate circumstances where fluctuations depart from the
adder.

Fluctuations of the growth rate across cells in a steady
state culture have been measured in the literature and
CV values ranging from 10-40% have been reported
[11, 12, 38, 39]. Our models suggest that the physical
origin of fluctuations in the growth rate is different from
that of interdivision time and cell size. The simplest and
most natural models that we consider exhibit a smaller
CV (1-5%) than that reported in the experimental lit-
erature, though larger values can also be accounted for.
Our models also reproduce the observed cross-over in the
CV of an intracellular molecular population as a function
of the mean population X̄ (CV ∼ X̄−1 for small X̄ and
constant for large X̄) [31].

Growth laws of bacterial composition [40–43] con-
stitute another class of generic phenomena in bacteria
which describe how the cellular steady state growth
rate and ribosomal protein fraction in the cell depend
upon the medium. These bacterial growth laws have
received a substantial theoretical attention [43–50] and
are much better understood compared to the phenomena
mentioned in the previous paragraphs. A particular
model that we discuss in detail reproduces the bacte-
rial growth laws in addition to the other phenomena
mentioned above. Thus this work provides possible
explanations and a unified understanding of a number
of generic properties of bacteria, including exponential
trajectories in the steady state, balanced growth of cells,
the growth laws of bacterial composition, as well as
the scale and correlations of the fluctuations of several
cellular variables. The work makes predictions that can
be experimentally tested.

Organization of the paper.
In section II we describe the general class of mathemat-
ical models of cells that we consider. In section III a
specific nonlinear model is considered and results based
on numerical simulations are presented that reproduce
the features mentioned above. In addition to intrinsic
stochasticity in chemical dynamics we also discuss here
the effect of stochasticity in the partitioning of chemicals
at division and stochasticity in the threshold value of
the division trigger. In section IV we derive analytically
several of the results presented in section III. In
particular we provide an analytic understanding of the
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robustness (or universality) of the distributions of cell
size, intracellular populations and interdivision time, and
the non-universality of the distribution of the cellular
growth rate. Section V discusses the mathematical and
physical basis for exponential trajectories and balanced
growth and shows that these are generic properties of
mass action chemical dynamics in expanding containers
whose volume is a linear function of the internal chemical
populations. This section also extends the analytical
results of section IV to a large class of models. Section
VI discusses the unification of the bacterial growth laws
with the other cellular properties. Finally section VII
gives a detailed summary of the model assumptions and
results and discusses future experimental and theoretical
directions. The supplementary material contains addi-
tional figures and proofs. Some readers may benefit by
turning directly to the summary in section VII for a quick
guide to the main results including equations and figures.

II. A GENERAL MODEL OF A
GROWING-DIVIDING CELL

We model the cell as a container with n + 1 chemical
species, whose molecular populations at time t are de-
noted Xi(t), i = 1, 2, . . . , n, and Z(t). Z is the species
triggering cell division and X = (X1, . . . , Xn) represents
all the other chemicals in the cell. The population dy-
namics is given by

dXi/dt ≡ Ẋi = fi(X), i = 1, 2, . . . , n, (1a)

dZ/dt ≡ Ż = h(X, Z), (1b)

where the functions fi and h encapsulate the ki-
netics of the chemical reactions in the cell. The Z
population is assumed to have a negligible effect on
the X dynamics; hence the fi are independent of Z.
The volume of the cell is assumed to depend linearly
on the Xi: V (t) =

∑n
i=1 viXi(t) where the vi are

constant parameters of the model. Again, the contri-
bution of Z to V is assumed to be negligible. Explicit
examples of the functions fi and h will be discussed later.

Division control. Starting from some initial condition
for the n + 1 populations, the populations are evolved
according to (1). The function h is assumed to be
positive, hence Z increases under (1). When Z reaches
the threshold Zc, the cell divides. The two daughter cells
are assumed to be identical, hence each gets half of every
chemical in the cell. Since in the model we track one
of the two daughters, at division all n + 1 populations
are replaced by half their values. This defines the state
of the daughter at birth in the next generation and
with that initial condition for the populations the above
procedure is iterated.

Resetting of Z after triggering; delay between
triggering and division. The above defines the sim-

plest version of the model. It is useful, however, to con-
sider two generalizations motivated by empirical observa-
tions. The first involves a resetting of the Z population
after it triggers division. In the above scheme, Zb, the
value of Z in a daughter at birth is always Zc/2. However
specific biochemical processes may cause a degradation of
the triggering molecule on a short time scale after trig-
gering of division. In order to model this we assume for
simplicity that when Z reaches Zc it triggers division and
is also instantaneously reset to a value Zr ≤ Zc. Zr is
another parameter of the model; Zr = 0 implies complete
degradation of the triggering molecule; Zr = Zc implies
no degradation. Several properties that we discuss (e.g.,
the adder property) hold for the entire range of values
0 ≤ Zr ≤ Zc. The second generalization is that division
follows triggering (and resetting of Z, if any) after a time
delay τ1, which is another parameter of the model. When
τ1 = 0, then division immediately follows triggering and
resetting; hence Zb = Zr/2. When τ1 > 0 we assume
that after triggering (and instantaneous resetting of Z to
Zr) all n + 1 populations continue to evolve via (1) for
a fixed time τ1, whereupon cell division takes place and
all are halved. These generalizations are motivated by
evidence that the replication of DNA is initiated when a
certain protein reaches a threshold population, and this
chemical degrades soon after the initiation of replication
to avoid multiple replication rounds. Cell division fol-
lows the initiation of DNA replication after the lapse of
a certain time.

To summarize, the population dynamics in the model
is a combination of continuous dynamics described by (1)
and discrete events. The X variables evolve via (1a) from
their initial values upto the time of cell division; only at
division do they experience a discrete change: they are
halved. The Z variable evolves via (1b) from its initial
value upto the point where it reaches the threshold Zc.
There it is instantaneously reset to Zr. Subsequently it
again evolves via (1b) for a fixed time τ1. That defines
the time of cell division. At that time Z is halved (along
with the Xi). That brings the cell to the beginning of
the next generation and a new set of initial values of the
n+ 1 populations. Thereupon the procedure is iterated.

Note that the dynamics of Z explicitly depends upon
theX sector through h(X, Z). On the other hand, Z does
not affect the short time-scale dynamics of the X sector
since fi are assumed to be independent of Z. However Z
exercises a discrete control over the X variables through
the triggering of division, which in effect determines how
large the Xi can grow before cell division occurs and
they halve. The functions fi contain all the interactions
among the X chemicals and encapsulate most of the com-
plexity of the intracellular dynamics.

The above formulation describes the deterministic ver-
sion of the the model. We also consider various sources
of stochasticity. One is the intrinsic stochasticity in the
chemical dynamics resulting from the populations being
non-negative integers instead of continuous variables and
each reaction having a certain probability of occurring.
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Then Eqn. (1) is replaced by its stochastic counter-
part. Further at division the chemicals may not parti-
tion equally into both daughters. Also Zc, the threshold
value of of Z at which division is triggered may vary from
generation to generation. The specific implementation of
these sources of stochasticity in the model will be dis-
cussed later.

III. A SPECIFIC EXAMPLE WITH 3+1
CHEMICAL SPECIES

We now consider a concrete example in which the
X sector is described by the Precursor-Transporter-
Ribosome (PTR) model discussed in [50] containing n =
3 species. Later on we will argue that several of the
results of the PTR model hold for the general model de-
scribed above with a very broad class of functions fi and
h. Here X1 = P is a coarse-grained population variable
representing the total number of amino acid molecules
(precursors or monomers out of which proteins are con-
structed), X2 = T is the total number of transporter and
other metabolic enzyme molecules in the cell responsible
for making P from the food molecules available in the
extracellular medium, and X3 = R is the total number
of ribosomes in the cell (catalysts for making T and R
from the P molecules). The equations of the X sector
(or PTR sector) are

dP

dt
= f1(P, T,R) = KPT − k

RP

V
, (2a)

dT

dt
= f2(P, T,R) = KT

RP

V
− dTT, (2b)

dR

dt
= f3(P, T,R) = KR

RP

V
− dRR, (2c)

where

V = vPP + vTT + vRR. (3)

The constants KP ,KT ,KR, k, dT , dR, vP , vT , vR are pa-
rameters of the model. The rate constant KP represents
the efficiency of metabolic enzymes T in transporting and
producing P from external food. It is an increasing func-
tion of the external food concentration [F ] and the qual-
ity of the food source q (the number of P molecules pro-
duced per food molecule transported in). k represents ri-
bosomal catalytic efficiency, and is the peptide elongation
rate per unit concentration of P . dT , dR are degradation
rates. vP , vT , vR define the contributions of the individ-
ual species to the cellular volume V . It is convenient to
parametrize the rate constants KT ,KR as follows:

KT =
fT k

mT
, KR =

fRk

mR
, fT + fR = 1. (4)

Here fT and fR represent the fractions of ribosomes en-
gaged in making T and R respectively, and mT and mR

are the number of amino acid residues (or units of P ) in a
T molecule and ribosome respectively. It follows that the

mass of the PTR cell (in units of mass of a P molecule)
is M = P +mTT +mRR. For more details see [50].

In the Z sector the function h is defined by

dZ

dt
= h(P, T,R) = KZ

RP

V
, (5)

where KZ is a constant. This form assumes that the pro-
duction of the molecule that triggers cell division mirrors
the growth of the cell (this term has the same form as the
growth term of T and R in (2)). Note that in (5) h(X, Z)
is independent of Z. We will later (in section IV D) give
results when h has a non-trivial Z dependence arising
from auto-regulation of Z (e.g., cooperativity). The PTR
model [50] has been independently extended by [51] to in-
clude a sector whose dynamics is given by (5) and that
triggers division upon reaching a population threshold.
Their treatment differs from ours in various respects, in
particular, that the new sector affects the local dynamics
of the PTR sector through the volume. They have also
observed the adder property of the cell volume in nu-
merical simulations. Apart from that commonality, ref.
[51] and the present work explore different aspects of the
models.

A. Deterministic version; numerical results

The rules mentioned above fully specify the determin-
istic dynamical system once the parameters of the PTR
sector (KP , k, dT , dR,mT ,mR, fR, vP , vT , vR), the Z sec-
tor (KZ , Zc, Zr) and τ1 are specified. For simplicity we
consider the case where τ1 = 0 (τ1 > 0 is discussed later).
Thus, when Z reaches Zc, the cell divides without any
delay, i.e., the populations P, T,R are halved, and the
birth value of Z is simultaneously set to Zr/2. Subse-
quently the populations follow Eqs. (2) and (5) until Z
again reaches Zc and the procedure is repeated. Sim-
ulations are shown in Fig. 1. Most parameters of the
PTR sector are chosen in the ballpark of realistic values
[42, 43, 52, 53] and reproduce known experimental data
on E. coli within a factor of order unity (namely, the val-
ues of P, T,R and the growth rate). The values of vT and
vR have been set equal to vP for simplicity; we are not
aware of experiments that measure the vi independently.
The value of fR has been chosen so as to maximize the
steady state growth rate of the PTR cell with the above
mentioned choice of parameters; this procedure repro-
duces the bacterial growth laws as discussed in [50]. In
the Z sector, the value of Zc and Zr are chosen to get
the scale of size fluctuations in the experimentally ob-
served ballpark (it will be seen that only the combination
Zc − Zr/2 matters). KZ , an unknown parameter of the
model is chosen so that the steady-state birth volume of
the cell turns out in the correct ballpark ∼ 1(µm)3. Our
conclusions are robust to independent variation of each
parameter (within collective limits as discussed later).

As evident from Fig. 1, after a transient that depends
on initial conditions, the dynamics converges to a steady
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FIG. 1: Plot of the chemical populations P, T,R, Z and volume V vs time t for deterministic

trajectories. Parameters of the model are KP = 500 hr−1, k = 10−3 hr−1(µm)3, dT = 0.1 hr−1, dR = 0,
mT = 400, mR = 10000, vP = vT = vR = 2 ∗ 10−8(µm)3, fR = 0.19377,KZ = 10−11 hr−1(µm)3, Zc = 25, Zr = 0,
τ1 = 0. A The trajectory of a cell with the initial conditions IC1: P (0) = 2 ∗ 107, T (0) = 107, R(0) = 105, Z(0) = 9,

and B IC2:P (0) = 103, T (0) = 105, R(0) = 3 ∗ 105, Z(0) = 9. The population values in A and B have been
multiplied by the factors mentioned in the legend of A to bring them on the same figure. The dynamics converges to
a steady state (a periodic solution or limit cycle attractor). The chemical populations in the daughter cell at birth in
the steady state are Pb = 5.023 ∗ 107, Tb = 4.529 ∗ 106, Rb = 4.844 ∗ 104 (Pb is indicated by a black dotted line in A

and B). The period, or inter-division time τ = 0.781 hr. (C) The volume of the cell, V , defined by Eq. (3), as a
function of time for the two initial conditions IC1 and IC2. In this and subsequent figures, the unit of the time axis
is hr and the volume axis (µm)3. First inset of B and inset of C: Semilog plots of P, T,R, Z and V vs time in the

steady-state with IC2. The plots of P, T,R and V are piecewise linear and have the same slope 0.888 hr−1 (slope of
the natural logarithm of the quantity vs time), showing that they all increase exponentially with the same rate in

the growth phase of the limit cycle attractor. The slope agrees with formula (8c). Second inset of B plots the ratios
of chemical populations as a function of t on the trajectory starting from IC2. The ratios of populations of the PTR

sector become constant on the limit cycle attractor and the constant values agree with Eqns. (8a),(8b). D
Simulated phase portrait of trajectories from diverse initial conditions projected on to the 2-dimensional space of
T/R and P/R showing that the trajectories converge to the same attractor independent of initial conditions. Inset
of D: Time dependence of concentrations of P, T,R on the trajectory starting from IC2, becoming constant on the

limit cycle attractor.

state. This steady state is a limit cycle attractor in which
the just born daughter cell grows to twice its size (the
populations P, T,R and the cell volume double) and then
divides into two halves bringing the system back to the
same daughter state. It is seen that in the attractor,
between birth and the next division (i.e., within a sin-

gle generation of the cell) the chemicals of the X sector
grow exponentially with time at the same rate (inset of
Fig. 1B). The same is true of V (inset of Fig. 1C), a
consequence of (3). Because of exponential growth the
ratios T/R and P/R remain constant in time throughout
the attractor. Hence the concentrations of the X sector
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chemicals also remain constant in the attractor (inset of
Fig. 1D). During the transient period before the attrac-
tor is reached the ratios are not constant. For all the
initial conditions considered (with 0 ≤ Z(0) < Zc) the
trajectory converges to the same steady state (Fig. 1D),
suggesting that the limit cycle is a stable attractor with
a wide basin of attraction. When the parameters are var-
ied within a wide range (specified later; section IV A) the
same dynamical behaviour is observed: initial transient
leading to a limit cycle attractor characterized by ex-
ponential trajectories in the growth phase and constant
ratios of chemicals.

B. PTRZ with stochastic chemical dynamics;
numerical results

In Fig. 2A we show a typical trajectory of the PTRZ
cell following stochastic chemical dynamics. The differ-
ence from the deterministic version is that the evolution
of P, T,R, Z is no longer given by the differential equa-
tions (2) and (5) but by a stochastic version of (2) and
(5). The populations are now non-negative integers and
are updated according to the probabilities of the chemi-
cal reactions, the latter being proportional to the corre-
sponding terms in the differential equations. The rest of
the dynamical rules are the same as before (starting from
any given initial condition, the populations P, T,R, Z are
evolved with time until Z = Zc, at which point P, T,R
are halved (and rounded off to the nearest integer value),
Z is set to Zr/2 and the procedure iterated). No new
physical parameter is introduced in the stochastic dy-
namics. The algorithm used for numerical simulations is
mentioned in Computational Methods below.

1. Stochastic steady state

We observe in Fig. 2A that after a few rounds of
growth and division the trajectory of the cell reaches a
statistical steady state, a stochastic version of the deter-
ministic steady state seen in Fig. 1A,B). In the stochastic
steady state the daughter cells produced at the beginning
of each cycle are no longer identical from generation to
generation (in terms of the values of P, T,R, Vb) as was
the case in the deterministic simulation, and τ , the inter-
division time also varies from cycle to cycle. The latter
variation arises because the first passage time of Z to
reach Zc varies from cycle to cycle. Fig. 2B shows that
in the statistical steady state the population growth of
the X sector chemicals within a generation can be ap-
proximated by an exponentially growing trajectory with
the effective growth rate varying from generation to gen-
eration.

We performed 30000 stochastic simulations for the
PTRZ model each with the same initial condition as de-
scribed in the caption of Fig. 2C. The cellular variables
were tracked for each trajectory. The distribution of the

cell volume at birth, Vb, across the 30000 trajectories at
different generations is shown in Fig. 2C. The distri-
bution becomes stationary after a few generations. The
same steady state distribution is obtained by (a) starting
from a different initial distribution of the 30000 cells and
(b) sampling over different generations of a single trajec-
tory after the initial transient period. The distributions
of Vd, Pb, Tb, Rb, τ and α are also found to converge to
their respective steady state distributions independent of
the initial distribution of cellular configurations (α is the
‘growth rate’ of the cell in a generation, defined as the
slope of the best straight line fit of lnV (t) vs t in that
generation). This indicates that the statistical steady
state is a stable attractor of the dynamics characterized
by fixed distributions of the cellular variables.

2. Distributions of cell size, interdivision time and growth
rate, correlations and the adder property

The steady state distributions are shown in Fig. 3.
The averages of the steady state distributions are: 〈P 〉 =
5.012 ∗ 107, 〈T 〉 = 4.518 ∗ 106, 〈R〉 = 4.833 ∗ 104, 〈Vb〉 =
1.094µm3, 〈Vd〉 = 2.190µm3, 〈∆〉 = 1.096µm3, 〈τ〉 =
0.782 hr, 〈α〉 = 0.888 hr−1. These are close to the de-
terministic values in Fig. 1. The model predictions of
the distributions of the above quantities rescaled by their
means (except the rescaled α distribution) are largely in-
dependent of all the PTRZ model parameters (and hence
independent of growth rate, ratios of chemicals, etc.) and
of KZ when τ1 = 0. They only depend upon the quan-
tity N = Zc − (1/2)Zr. (See Fig. S1 for a completely
different parameter set giving the same rescaled distribu-
tions.) The reason for this extraordinary robustness will
be discussed later. We find that the CV of the ∆, Vb, Vd
and τ distributions are consistent with

√
3CV (Vd) =

√
3CV (Vb) =

√
3 ln 2CV (τ)

= CV (∆) =
1√
Zc
. (6)

The first three relations are expected to hold if the cell
volume grows exponentially with a small variation in the
growth rate and the system satisfies the adder property
[11]. The last equality relates the fluctuations to the pa-
rameters Zc and Zr of the present model. This connects
the CV of a macroscopic quantity ∆ to a potentially mi-
croscopic quantity N , the change in the population of the
Z molecule from birth to division. The CV of Pb, Pd and
∆P ≡ Pd − Pb also satisfy (6), as do the corresponding
quantities for T and R.

Using the simulation data of the 30000 stochastic cells,
we determine the correlations between the cell size at
birth (Vb) and division (Vd), the added volume (∆) and
the inter-division time (τ) in the steady-state (Fig. 4).
The correlations show that the model exhibits the adder
property, because the mean added volume ∆ between
birth and division is independent of the birth size. These
are the kinds of correlations observed in experiments with
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FIG. 3: Distribution of volume, interdivision time, growth rate and chemical populations in the PTRZ
model. This figure shows the frequency distributions of various cellular variables, measured across 30000 cells at

the steady-state. Data was compiled from each trajectory in the 30th generation to ensure that it had reached the
statistical steady-state. A Distributions of volume-at-birth Vb, volume-at-division Vd, added volume ∆ ≡ Vd − Vb

and (in inset) interdivision time τ . B Frequency distributions of various quantities rescaled by their respective
means. The x-axis for the curve denoted by Vb in the legend stands for Vb/〈Vb〉, and similarly for the other curves.
The distributions of rescaled Pb, Tb, Rb, Vb and Vd are essentially indistinguishable. The distribution of rescaled α is
shown in the inset of B. C CV of ∆, τ, Vb, Vd, α, Pb, Tb, Rb and ∆P ≡ Pd − Pb as functions of Zc on a log-log plot.

The slope of the linear fit is consistent with CV ∝ N−1/2 for all the quantities. The vertical separation between the
lines gives the ratios of the CV of various quantities and they are consistent with what is expected when the adder

property holds, Eq. (6). Parameter values are as in Fig. 1 except in C where Zc takes a range of values.

E. coli [10, 11]. Taheri-Araghi et al [11] have also mea-
sured the distribution of ∆ for a fixed Vb at different val-
ues of Vb (binned) for E. coli. They find that not just the
mean of ∆ but the entire distribution to be independent
of Vb, which is a strong version of the adder property. For
the PTRZ model in Fig. S2 we exhibit this ‘conditional’
distribution of ∆ for different fixed values of Vb (in a bin).
The distributions collapse onto each other, showing that
the model exhibits this property.

Adder property is independent of Zr. We remark
that in the present model the adder property of cell vol-
ume is observed for the entire range of the reset param-
eter Zr, 0 ≤ Zr ≤ Zc. This is also shown analytically in
section IV D.
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FIG. 4: Dynamics of the PTRZ cell model displays the ‘adder’ property for cell size and intracellular
chemical populations. Each data point in the scatter plots refers to one trajectory out of 30000. The two axes
show two cellular properties pertaining to the 30th generation. E.g., in A the x-axis shows the volume of a cell at

birth and the y-axis the added volume of the cell in the same generation. The black squares and vertical lines show
the mean and s.d. of ∆ within a bin of Vb. The lack of correlation between ∆ and Vb is evidence of the ‘adder’

property. The slope (± standard error) of the line of binned data is 0.019± 0.010 (we expect zero slope for adder).
B The volume of the cell at division, Vd, is positively correlated with the birth volume, with slope 1.019± 0.010 for
the curve of Vd averaged over bins of Vb (for the adder, expect slope unity). C The interdivision time τ is negatively

correlated with the birth volume, with the correlation coefficient between the two variables rescaled by their
respective means being -0.483 (expect -0.5 for adder). D The increment in P from birth to division is uncorrelated

with Pb, showing that the chemical population P also exhibits the adder property.

3. Intracellular chemical populations: Distribution, adder
property and dependence of CV on the mean population

Each population at birth Pb, Tb, Rb at birth has its own
mean and CV, but the populations rescaled by their re-
spective means have the same distribution which matches
the rescaled Vb and Vd distributions (Fig. 3B). This is
because the P, T,R are all strongly correlated with each
other (see Fig. S3), with their ratios dominated by the
deterministic dynamics. By virtue of (3) they are also
strongly correlated to V . We remark that strong corre-
lations between high copy number proteins are also ob-
served experimentally [31]. Further, universal fluctua-
tions in protein populations within cells have been re-
ported in [32].

We find that in the PTR model with stochastic

chemical dynamics, the chemical populations P, T and
R, like the volume, also exhibit the adder property (see
Fig. 4D for P , and Fig. S4 for T,R). The reason for
these populations showing the same distribution and the
adder property is discussed later in section IV D where
we give an analytical derivation. We also later identify
circumstances wherein other chemical populations in the
cell depart from the adder.

The crossover behaviour of protein number
fluctuations: A slight extension of the present model
explains the crossover behaviour of the CV of protein
levels as a function of their mean levels observed in
[31]. To see this we introduce another variable Q

in the X sector, with Q̇ = KQRP/V . This has the
same form as the production of other proteins in (2).
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The system now has 5 variables PTRQZ. By dialing
KQ we can control the absolute value of Q in the
steady state. We perform stochastic simulations (with
stochasticity in the chemical dynamics of all 5 molecules
PTRQZ) using different values of KQ and determine the
mean value of Q at birth (Q̄) and CV of Q for each.
The result (Fig. 5) shows a universal 1/Q̄ behaviour
for small Q̄ and a plateau for large Q̄, as observed in [31].

An intrinsic source of ‘extrinsic’ noise: In the model
there is a simple explanation of the above behaviour. The
(CV)

2
due to intrinsic fluctuations is ∼ 1/Q̄ and due

to division control is 1/(3Zc) (from Eq. (6) using Q in
place of Vb). For small Q̄ (Q̄ � Zc) the intrinsic fluc-
tuations dominate; for large Q̄ (Q̄ � 3Zc) the 1/(3Zc)
term which is independent of Q̄ dominates. A protein
population has intrinsic fluctuations from stochasticity in
production and degrading processes [30, 54]. The vari-
ation not explained by intrinsic fluctuations is referred
to as ‘extrinsic’ [55]. Stochasticity in the division time
has been recognized as a source of extrinsic noise leading
to this crossover behaviour [56]. In the present model

both the saturating value of (CV)
2

(' 1/(3Zc)) and the
scale of Q̄ at which the crossover occurs (Q̄ ' 3Zc) are
governed by the division threshold Zc (or in general by
N = Zc − Zr/2). The so called ‘extrinsic noise’ in the
division time is, in the present model, ultimately a con-
sequence of intrinsic fluctuations in the Z population,
which causes the fluctuations in the first passage time of
Z reaching its threshold Zc and hence determines a lower
bound on cell-to-cell variation of size and of intracellular
chemical populations.

100
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FIG. 5: Dependence of CV of a protein
population on its mean value. Simulation results of
the PTRZ model with an additional protein population
Q as discussed in section III B 3 are shown. A crossover
from a 1/Q̄ behaviour of (CV)

2
to a constant value is

seen at Q̄ = 3Zc and (CV)
2

= 1/(3Zc).

4. Comparison with experimental distributions

We compare the distributions of certain quantities
rescaled by their means as predicted by the model with
the experimentally observed distributions for E. coli [11]
in Fig. 6. As mentioned earlier the distributions of
rescaled ∆, τ, Vd predicted by the model are robust and
depend only on a single parameter N = Zc−Zr/2. Figs.
6 ABC show that the experimental data points for all
three quantities largely lie between model curves corre-
sponding to N = 20 and N = 60, when the only source
of stochasticity in the model is the intrinsic dynamics of
the populations. (N = Zc in Fig. 6 since Zr = 0). This
places an experimental constraint on a key parameter of
the model, N . Note that in the real cell there could be
other upstream sources of stochasticity in Z production,
such as the stochasticity in its mRNA production and
degradation. These have not been taken into account
in our simple model. They would also contribute to the
CV of the first passage time distribution thereby allowing
larger values of N to be consistent with the data.

It is seen in Fig. 6D that in the range N ≥ 20 the
model predicts a much narrower width for the α dis-
tribution than is experimentally observed (compare the
Zc = 20, 40; s = 0 curves for the model in Fig. 6D with
those of the data). While [11] reports a CV ranging from
6-11% depending upon the medium in the experimental
data, the model with only intrinsic stochasticity (s = 0,
see below) predicts a CV of the α distribution to be only
3.6% at N = 20, 2.5% at N = 40 and lower for larger
values of N . We recall that the α distribution in the
model is not as universal as the distributions of ∆, τ, Vd,
and depends on other model parameters including the
parameter values in the PTR sector (Fig. S1). We show
below that its width is sensitive to and increases signifi-
cantly with the inclusion of partitioning stochasticity in
the model. In other words, the model allows room to
get the experimentally observed width of the α distribu-
tion also, without destroying its agreement with the other
distributions. It is also worth mentioning that there is a
significant variation in the CV of the α distribution re-
ported by different groups, suggesting that this quantity
is sensitive to experimental details and perhaps needs to
be measured with a higher degree of control.

5. Effect of other sources of stochasticity on the
distributions and the adder property

Partitioning stochasticity. In addition to the intrinsic
stochasticity in the chemical population dynamics, con-
sider a second source of stochasticity, the uneven parti-
tioning of chemicals between the two daughter cells dur-
ing cell division. Thus at division instead of replacing
Xi by Xi/2 we replace it by X ′i drawn (independently
for each i and each generation) from a gaussian distri-
bution with mean = Xi/2, standard deviation s

√
Xi/2,

where s ≥ 0 is a parameter characterizing the strength of
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FIG. 6: Comparison of steady state distributions predicted by PTRZ model with experimental data.
A,B,C,D respectively show the distributions of ∆, τ , Vd and α rescaled by their means. Experimental values of

various quantities for E. coli in seven media were obtained from data of [11] to produce the binned histograms. The
different media are represented by dots of different colour. Model simulations are done with parameters values as in
Fig. 1, except Zc which takes values 20,40,60. All model histograms (dotted lines) are obtained from an ensemble of

30000 cells. In all simulations the intrinsic stochasticity in the dynamics of all four chemicals P,T,R,Z is present.
Partitioning stochasticity is absent in A,B,C and in two curves of D (s = 0; see section III B 5 for definition), but is
present in two simulations shown in D (s = 1, 4). Threshold stochasticity is absent in all simulations shown (s′ = 0).

partitioning stochasticity [57] s = 1 corresponds to the
symmetric binomial partitioning wherein each molecule
can independently go to either daughter with equal prob-
ability (the gaussian X ′i distribution approximates the

binomial distribution P (x) =
(
M
x

)
pxqM−x with M = Xi

and p = q = 1/2). s > 1 implies that fluctuations are
stronger than the binomial case, a situation that can
arise if molecule clusters are partitioned instead of sin-
gle molecules [57]. The result for the α distribution with
both sources of stochasticity (intrinsic + partitioning)
is shown in Fig. 6D and for the other distributions in
Fig. S5. It is seen that when partitioning stochasticity is
included (e.g., Zc = 40, s = 4 in Fig. 6D), the model re-
produces a width of the α distribution comparable to the
experimental data (CV of α is 6.8% for these parameter
values). Fig. S5 shows that the inclusion of partitioning
stochasticity has a relatively small effect on the width of

∆, τ, Vd distributions in this regime, and that the adder
property continues to hold in the model at these strengths
of the partitioning stochasticity.

Stochasticity in the threshold value of Z. The
biochemical mechanism implementing the trigger when
Z reaches Zc is expected to have its own stochasticity.
Thus the value of Z at which division is triggered need
not be precisely Zc in every cell, but could vary from
cell to cell and generation to generation around Zc. We
implement this ‘threshold stochasticity’ by drawing the
threshold (now denoted Z ′c) from a gaussian distribution
with mean Zc and standard deviation s′, independently
for each cell in every generation. The parameter s′ ≥ 0
characterizes the strength of the threshold stochasticity.
We ran simulations of the PTRZ model with two sources
of stochasticity, the intrinsic stochasticity of the chemical
dynamics of the populations P, T,R, Z and the threshold
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stochasticity implemented as above. In these simulations
the local dynamics of the populations is as before, except
that the value of Z at which division is triggered, Z ′c, is
chosen from the above mentioned gaussian distribution
in each generation. Immediately after triggering, Z is re-
set to Zr, and at division, all populations are halved. We
consider two cases (a) Zr is a fixed number, the same for
all generations, and (b) Zr is a fixed fraction of Z ′c (the
reset value of Z after triggering is a fixed fraction of the
value of Z at triggering).

Threshold stochasticity modifies the distributions of
∆, τ, Vd; however the modification remains small as long
as s′ �

√
Zc as the dominant contribution comes from

intrinsic stochasticity in this regime. When s′ >
√
Zc,

threshold stochasticity is the dominant contributor to
these distributions. However, while it modifies these
distributions, in case (a) it does not affect the adder
property, which survives even when s′ >

√
Zc. This is

shown in Fig. S6A. In fact it can be shown analytically
that when threshold stochasticity is the only stochastic-
ity present (the intrinsic stochasticity is turned off), the
PTRZ model exhibits the adder property in the steady
state, provided that Zr is independent of Z ′c. However,
when Zr is correlated with Z ′c, as is true for case (b), we
lose the adder property (see Fig. S6B). This is because
the added volume from one trigger to the next depends
upon the reset value Zr after the first trigger, while Vb of
a generation depends on the value of Z ′c in the previous
generation. Thus the added volume becomes correlated
with Vb when Zr is correlated with Z ′c.

Unlike partitioning stochasticity, threshold stochastic-
ity does not contribute significantly to the width of the
α distribution even though it affects the ∆, τ, Vd distri-
butions. In fact, when threshold stochasticity is the only
stochasticity present, the latter distributions have a finite
CV but the CV of the α distribution is zero. The reason
for this will be given in section IV E.

Another kind of stochasticity present in the cell is that
the position of the septum is not necessarily at the middle
of the dividing cell. This directly affects the distribution
of Vb and enhances its CV, which is found to be larger
than the CV of Vd [11]. The effect of this stochasticity is
not considered in the present paper.

IV. ANALYTICAL DERIVATION OF THE
RESULTS OF THE MODEL

In this section we provide explanations of the results
of the PTRZ model presented in the previous section. In
particular we discuss the exponential growth of popula-
tions and V , and give analytic expressions for the average
interdivision time scale, intracellular concentrations, and
the cell size. We also explain the origin of the adder
property and the shape of the ∆ and τ distributions.
We explain why the α distribution behaves so differently
from the ∆, τ, Vd distributions under different types of
stochasticity and what factors contribute to it. These re-

sults will be generalized to a much wider class of models
than the PTRZ model in section V.

A. The PTR sector, exponential growth and the
growth rate.

At the deterministic level, all the features of the steady
state solution in Fig. 1 can be understood by considering
an exponential ansatz for the trajectories of the chemical
populations:

P (t) = Pbe
µt, T (t) = Tbe

µt, R(t) = Rbe
µt, (7)

with 4 unknown constants Pb, Tb, Rb (representing the
populations at birth of the cell in the steady state), and
µ, the growth rate of the PTR cell. It is easy to see [50]
by substituting (7) into Eq. (2) that (7) is a solution of
(2) only if the ratios of the populations and µ are fixed
in terms of the parameters. Specifically,

ψT ≡
T

R
=
Tb
Rb

=
mR

mT

fT
fR

(µ+ dR)

(µ+ dT )
, (8a)

ψP ≡
P

R
=
Pb
Rb

=
mR

fR

(µ+ dR)

µ

(
KP fT

mT (µ+ dT )
− 1

)
,

(8b)

µ =
β −

√
β2 − 4α′γ

2α′
. (8c)

Here α′ = 1 − ε1, β = a + b + ε2, γ = ab; a = νfT −
dT , b = ρfR − dR; ν = KP /mT , ρ = k/(mRvP ); ε1 =

1
mT

vT
vP
fT + 1

mR

vR
vP
fR, ε2 = 1

mT

vT
vP
fT dR + 1

mR

vR
vP
fRdT . If

Pb, Tb, Rb satisfy (8a),(8b) and µ is given by (8c), then
(7) is a solution of (2). That an exponentially growing
trajectory is a solution of the nonlinear equations (2) is
a consequence of the fact that the right hand sides of (2)
are homogeneous degree one functions of the populations:
fi(βP, βT, βR) = βfi(P, T,R), i = 1, 2, 3. This in turn is
a general consequence, as will be discussed later, of the
assumption of the mass action chemical kinetics implicit
in (2) and the linearity of V in the populations (3).

Not only is (7) a solution of (2), it is a stable attractor
of the dynamics. In Fig. 1 we have considered the PTR
sector in conjunction with the Z sector which truncates
the growth of PTR at discrete times (at the point of di-
vision Eq. (2) is effectively suspended). However if there
is no such truncation and (2) together with (3) is the sole
dynamics of PTR, then the exponentially growing solu-
tion (7) happens to be an asymptotic attractor of the
dynamics (see Fig. S9 for numerical evidence with differ-
ent initial conditions and parameter sets). Thus, starting
from an arbitrary initial condition, eventually the system
approaches the exponential trajectory (7) with µ given
by (8c) and ratios of populations given by (8a) and (8b).

When division control via the Z sector is included in
the dynamics, we get the behaviour shown in Fig. 1 with
a limit cycle attractor. In the growth phase of this attrac-
tor (the period after birth and just before division), the

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 4, 2018. ; https://doi.org/10.1101/487504doi: bioRxiv preprint 

https://doi.org/10.1101/487504


12

populations again grow exponentially following (7), with
the exponential growth rate of P, T,R, V matching the
formula (8c), and the ratios of chemicals in the attractor
matching (8a), (8b). We have verified this numerically for
diverse initial conditions (with P (0), T (0), R(0) > 0 and
0 ≤ Z(0) < Zc) and diverse parameter sets for which the
r.h.s. of (8c) is positive (when the latter is negative there
is no exponential growth). The numerical work suggests
that given a fixed set of parameters (with a positive r.h.s.
of (8c)), for arbitrary physical initial conditions the sys-
tem always settles down in a limit cycle attractor similar
to the one described in Fig. 1 such that the trajectory
between birth and division in every cycle is described by
(7) and (8) (numerical simulations have been done for
non-negative values of the rate constants and other pa-
rameters of the model). The positivity of the r.h.s. of
(8c) seems to be the only collective requirement on the
parameters of the PTRZ model for this kind of dynamical
behaviour to arise.

B. Curve of balanced growth, interdivision time,
concentrations.

By construction the dynamics of the PTR sector does
not depend upon Z, except for the fact that at certain
discrete times (when Z approaches Zc) the 3 populations
are halved. Therefore it is useful to consider the projec-
tion of the dynamics onto the 3-dimensional space with
coordinates (P, T,R). (Since we are dealing with popu-
lations, we only consider the positive octant.) Geomet-
rically, the eqns. (8a) and (8b) define a straight line
passing through the origin of this 3-dimensional space
whose angles with the 3 coordinate axes are fixed by the
parameters. We refer to this line in the 3-dimensional
space as the ‘curve of balanced growth’ (CBG) for this
system. If the initial point of a trajectory lies on this
line, the 3 populations grow exponentially according to
(7) with the rate µ given by (8c), and their ratios remain
constant in time and given by (8a)(8b). Since the divi-
sion process halves the 3 populations, they remain on the
CBG after division. Thus the CBG is an invariant man-
ifold of the deterministic dynamics. Since numerically
we find that starting from arbitrary initial values the ra-
tios approach those given by (8a), (8b), this means that
the stable attractor of the dynamics lies on the CBG. In
fact the steady state is a limit cycle lying on the CBG
characterized by repeated rounds of exponential growth
of populations from birth to division with growth rate µ
until the populations double, followed by halving of the
populations. The interdivision time scale on this limit
cycle is therefore given by

τ = ln 2/µ, (9)

with µ given by (8c). Note that the concentrations
of three chemicals, given by [P ] ≡ P/V , [T ] ≡ T/V
and [R] ≡ R/V are the same everywhere on the CBG
and hence constant on the limit cycle. This is because

V is a linear function of the populations (3). Thus,
for example, V = R(vPψP + vTψT + vR); hence R/V
is completely expressed in terms of the ratios ψP
and ψT which are constant on the CBG. Thus the
growth rate or interdivision time scale and all intensive
quantities pertaining to the PTR sector in the steady
state of the deterministic dynamics are completely deter-
mined by the parameters of the PTR sector of the model.

C. The Z sector and cell size.

The Z sector determines the absolute size scale of
the cell by fixing one extensive quantity pertaining to
the PTR sector. In the deterministic steady state since
P, T,R satisfy (7), we can write (5) as

Ż = Ceµt, (10)

where C = KZRbPb

Vb
. C is an extensive quantity of the

PTR sector (homogeneous degree one in the populations)
and can be written in terms of Vb and the intensive quan-
tities:

C = KZ(RbPb/V
2
b )Vb = KZψP (vPψP +vTψT +vR)−2Vb.

(11)
The requirement that in the steady state Z must also
complete its cycle in the doubling time τ fixes C and
hence the size of the cell. (10) has the solution

Z(t) = Zb + λ(t), λ(t) ≡ B(eµt − 1), B ≡ C

µ
, (12)

where Zb is the value of Z at t = 0. Note that unlike
P, T and R, Z does not increase exponentially because it
is reset from Zc to a value Zr 6= Zc. If there is no reset-
ting (Zr = Zc), then (12) implies that Z also increases
exponentially.

When τ1 = 0, then Z equals Zc at t = τ , and
Zb = Zr/2. Substituting this in (12) gives B = N ≡
Zc − Zr/2. This fixes the absolute size scale of the
cell and the absolute populations. In particular we get
Rb = NµKZψP /(vPψP + vTψT + vR), from which Pb, Tb
can be obtained by multiplying by ψP , ψT . Further, us-
ing (11) we get

Vb =
Nµ

KZ

(vPψP + vTψT + vR)2

ψP
≡ A. (13)

This is an explicit formula for the cell size at birth in
terms of the model parameters (ψT and ψP being given
by (8a),(8b)). The numerical values obtained in deter-
ministic simulations (e.g., Fig 1) agree with this formula
(as do the absolute populations).

When τ > τ1 > 0, instead of B = N we get B =
Neµτ1 (see Supplementary section S2 A for the deriva-
tion). Then it follows that

Vb = Aeµτ1 (14)
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where A is defined in (13). This expression contains the
exponential factor eµτ1 = eµ(C+D) obtained by Donachie
[58]. The eµτ1 factor in the expression for Vb arises be-

cause of the exponential dependence of Ż on time, Eq.
(10), which is a consequence of the exponential growth of
the X sector populations in the steady state. The latter,
in turn, is a consequence of the homogeneous degree one
nature of the functions fi defining the X sector dynamics
which we argue later is quite universal and not restricted
to the PTR model.

The PTRZ model has been defined above for τ > τ1.
To extend it for higher growth rates one needs multiple
origins of replication [59]. Adapting the work of [36] to
the present model it can be shown that the formula (14)
holds for higher growth rates as well. Details will be
presented elsewhere.

The Schaechter et al growth law of cell size [40], a
strong version of which has been established in [60], states
that the average cell volume in different growth condi-
tions depends exponentially on the growth rate µ. Note
that while Eq. (14) contains the exponential factor eµτ1

it cannot be construed as equivalent to this growth law.
This because (14) has, in addition to the exponential fac-
tor eµτ1 , the prefactor A which itself has a complicated µ
dependence. This factor depends upon the ratios of vari-
ous chemicals in the steady state (which, in turn, depend
upon µ; see (8)) and the contribution of each chemical to
the volume of the cell (the constants vi). In general the
prefactor A (unlike the eµτ1 factor which is much more
universal) depends upon the details of the X and Z sec-
tors - the actual form of the functions fi, h, regulatory
mechanisms acting in the X sector (which are contained
in the functions fi), parameter values, etc. A more gen-
eral expression for A in terms of the functions fi, h and
vi is given later, Eqn. (34). However, comparing the
theoretical prediction (14) or (34) with experiments, in
particular reproducing the growth law [40, 60], is a task
for the future.

D. Stochastic dynamics and the adder property

The full stochastic dynamics of the PTRZ model whose
numerical results were presented earlier is difficult to
treat analytically. However, we can make some approx-
imations to obtain partial results. As observed numer-
ically in the statistical steady state the growth of PTR
sector populations in a given generation could be approxi-
mated by an exponential fit (Fig. 2B). Moreover since the
actual numbers of P, T and R were large, their relative
fluctuations around their average trajectories were small.
Thus as an approximation we ignore the stochasticity in
the chemical dynamics of P, T,R and only consider the
stochasticity in Z. For simplicity we assume that in the
steady state the PTR dynamics is deterministic and lies
on the curve of balanced growth discussed earlier. Thus
P (t), T (t), R(t) are assumed to be given by (7), their pop-
ulation ratios and the growth rate being constant and

fixed by (8). However, due to the fluctuation in the time
taken by Z to reach Zc, the exponential factor by which
they grow varies from generation to generation and in
each generation they start from a different point on the
CBG at birth (i.e., the absolute scale of Pb, Tb, Rb varies
from generation to generation). Clearly this approxima-
tion assumes that there is no fluctuation in the growth
rate α and hence we cannot hope to obtain the α distri-
bution from this approach (α, defined as the slope of lnV
vs t, equals µ in this approximation, whose value is given
by the r.h.s. of (8c)). However, we can obtain analytic
expressions for the τ and ∆ distributions.

1. Derivation of the adder property and distributions of τ
and ∆

In order to get the probability distribution of the in-
terdivision time, we need to consider the stochastic ver-
sion of the differential equation (1b), or more specifically,
(5). As a consequence of the assumptions in the previous
paragraph we can use (7), hence (5) reduces to (10). This
means that the probability that Z increases by unity in
the small time interval (t, t+ δt) is given by Żδt where Ż
is given by (10), and the probability that it remains un-

changed is 1− Żδt. A given trajectory starts with fixed
values of P, T,R, V, Z at birth, denoted Pb, Tb, Rb, Vb, Zb
and hence a fixed value of C = KZRbPb

Vb
. These values can

change from generation to generation, but since in the
present approximation Pb, Tb, Rb are assumed to always
lie on the CBG, the ratio C/Vb is constant for all genera-
tions and given by (11). This justifies a crucial assump-

tion, namely, that C ∝ Vb or equivalently Ż ∝ Vbe
µt,

made in [37] where the first passage time problem of a
division triggering chemical based on (10) has been dis-
cussed. Consider the ensemble of trajectories with a fixed
value of Pb, Tb, Rb, Zb, and hence fixed Vb and C. Since
the r.h.s. of (10) is a fixed function of time, the stochastic
process in Z is the 1-dimensional inhomogeneous Poisson
process (if the r.h.s. had been independent of t it would
have been the standard Poisson process). Given Z = Zb
at t = 0, the probability that the first passage time for it
to reach Zc is between τ and τ + dτ is given by P(τ)dτ ,
with (see Supplementary section S2 B for a derivation)

P(τ) =
λN−1e−λ

(N − 1)!

dλ

dτ
, (15)

where λ = λ(τ) = B(eµτ − 1) and N = Zc − Zb =
Zc − Zr/2.

In a given trajectory of the ensemble, the volume in-
crement between birth and division is given by ∆ =
Vb(e

µτ − 1) = (Vb/B)λ(τ). This being proportional to
λ, the probability R(∆)d∆ that a given trajectory in
this ensemble has a volume increment in the range ∆ to
∆ + d∆ is obtained from (15):

R(∆) = aN
∆N−1e−a∆

(N − 1)!
, a =

B

Vb
=

C

µVb
=
N

A
, (16)
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where A is given by (13). From this it follows that

〈∆〉 ≡
∫ ∞

0

d∆R(∆)∆ =
N

a
, (17)

which is the same as the deterministic value of Vb (13).
The distribution of rescaled ∆, u ≡ ∆/〈∆〉 is thus a
Gamma distribution given by

P (u) = NN uN−1

(N − 1)!
e−Nu. (18)

The adder property follows from (16). Note that
N = Zc−Zr/2 is a constant parameter of the model that
does not change from generation to generation as long as
Zc, Zr do not change from generation to generation. The
only other parameter that determines the shape of R(∆)
in (16) is a which is independent of the value of Vb in any
generation. The latter is the case because on the CBG,
where (10) holds, a is a constant irrespective of the scale
of Vb (a = C/(µVb) with C given by (11). Thus a depends
only on the ratios of populations of the PTR sector, and
on the CBG these ratios are the same irrespective of the
scale. This proves the strong version of the adder prop-
erty: not just the mean but the entire distribution of
∆ is independent of Vb. The distribution of u only de-
pends upon N and on no other parameter of the PTRZ
model. This explains the extraordinary robustness of the
u distribution mentioned in Section III B 2. From (18) it
follows that CV of ∆ = σu = 1√

N
, which derives the last

equality in (6).
The above distributions and the adder property were

obtained in [37] from the assumptions that the cell vol-
ume grows exponentially with time (V (t) = Vbe

µt) and
that the rate of growth of the time-keeper protein Z is
proportional to V (t). The first assumption is equivalent

to a linear model for cell size growth, V̇ = µV . The
present work obtains the exponential dependence of V
on t from a non-linear dynamical model of the cell whose
volume is defined in terms of the three chemical popu-
lations. As discussed above it also justifies the second
assumption (Ż ∝ V ). In other words, in the present
work Eq. (10) with C ∝ Vb is not an assumption but a
consequence of more basic dynamics, wherein the cell is
attracted to the CBG. We show later in section V C that
this holds for a much larger class of models in which the
X sector has n chemicals where the functions fi and h in
Eq. (1) are nonlinear functions arising from mass action
kinetics. Thus the present work generalizes the results of
[37] to a very large class of nonlinear models.

We note that the present model implies that the pop-
ulations of the X sector also satisfy the adder prop-
erty. Their increments between birth and division, ∆i ≡
Xid−Xib, have the same distribution as ∆ given by (16),
with a = B/Xb. This follows from the fact that like V ,
the Xi also grow exponentially, hence ∆i = Xb(e

µτ−1) =
(Xb/B)λ(τ).

In the above derivation of the ∆ and τ distributions
and the adder property it has been assumed that P, T,R

have no stochasticity and lie on the CBG. When stochas-
ticity in P, T,R is included, they no longer lie on the
CBG. In fact in a given generation the best fit value of
the growth rate is not the same for all three populations,
hence (5) does not reduce to (10). Nevertheless the ana-
lytically derived distributions (18) and (15) compare well
with our numerical simulations of PTRZ model where
stochasticity in P, T,R is included; see Fig. 7A,B. Fur-
ther as discussed in section III B 2 and shown in Fig. 4
the adder property also appears. This suggests that the
approximation of treating P, T,R as deterministic and on
the CBG is a good approximation to the full stochastic
dynamics.

2. When does the adder property arise?

The adder property and the ∆ and τ distributions have
been derived above from three assumptions: (i) in a given
generation the cell volume obeys V (t) = Vbe

µt, where Vb
is the volume at birth in that generation (taken to be
at t = 0), (ii) a molecular population Z which starts at
some value Zb triggers division at time τ when it reaches
a threshold value Zc, where Zc−Zb is a positive constant
(the same for all generations), and (iii) the dynamics of
Z between birth and division is the stochastic version
of (10) in which the constant C is such that C/Vb is a
constant for all generations. In fact the same can be
derived from weaker assumptions that do not require V
and Ż to be exponential functions of time. Consider the
case where Z and some quantity Y have their rates of
increase between birth and division to be proportional to
each other:

Ż = H(t), Ẏ = KH(t), (19)

where the function H(t) and the constant K could de-
pend upon the generation. If now we make the Z dy-
namics the stochastic version of Ż = H(t), while re-

taining the deterministic dynamics of Y , Ẏ = KH(t)
and also retaining assumption (ii) above, the distribu-
tion (15) still arises, with λ ≡

∫ τ
0
dt′H(t′) (see Supple-

mentary section S2 B). In other words (15) gives the con-
ditional distribution of interdivision time, valid for those
generations in which the function H(t) is the same. Now
∆ ≡ ∆Y ≡ Y (τ)−Y (0) =

∫ τ
0
dt′KH(t′) = Kλ, hence the

distribution of ∆ is again given by (16) with a = 1/K.
This distribution is independent of the functional form
of H(t), and only depends upon K. In other words H(t)
appearing in (19) does not have to be an exponential
function of time as in (10). Thus if K is independent of
Yb = Y (0), then so is R(∆Y ), and therefore Y displays
the adder property. This argument shows that not only
the adder property for Y but also the shape of the distri-
bution (16) for ∆Y arises when these assumptions hold
(namely, (ii), (19) with K independent of the generation,
and the stochastic dynamics of Z).

A biochemical scenario in which Eq. (19) can arise was
presented by Sompayrac and Maaloe [33] and emphasized

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 4, 2018. ; https://doi.org/10.1101/487504doi: bioRxiv preprint 

https://doi.org/10.1101/487504


15

0

0.5

1

1.5

2

2.5

3

3.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

∆ / <∆> : Rescaled Added Volume

Numerical : Zc = 15

Zc = 30

Zc = 60

Analytical : N = 15

N = 30

N = 60

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.4 0.6 0.8 1 1.2 1.4

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

τ : Interdivision time (in hrs)

Range of C : 19.5 - 21.5

25.5 - 27.5

29.5 - 31.5

Analytical : C = 20.5

C = 26.5

C = 30.5

A B

FIG. 7: Analytic ∆, τ distributions Eqs. (18) and (15) agree with simulations of PTRZ model. A
Rescaled ∆ distribution (18) compared with numerical simulations of PTRZ model for different values of N . Data
from all bins of Vb has been pooled together in the numerical curves, since the ∆ distribution is independent of Vb

(see Fig. S2). B Conditional τ distribution obtained from numerical simulations of PTRZ model compared with Eq.
(15). Since the analytical distribution is conditional on the value of C, for comparison the numerical data was
binned in ranges of C indicated in the legend. The derivation of Eqs. (18) and (15) assumes stochasticity in Z

dynamics only; P, T,R are assumed to lie on the CBG and obey deterministic dynamics. In the PTRZ simulations
there is stochasticity in the chemical dynamics of Z as well as P, T and R. The parameters for the PTRZ model are

the same as in Fig. 1, except that Zc = 15, 30, 60 in A and Zc = 30 in B.

recently in the context of the adder property [35, 36]. In
that scenario the Z molecule is on the same operon as an-
other molecule A whose concentration is held constant in
the cell through regulatory mechanisms (autorepression).
This implies that the increase in cell volume is propor-
tional to the number of molecules of Z produced, thereby
realizing Eq. (19) with H(t) an unspecified function of
t. Then together with assumption (ii) and the stochastic
dynamics of Z, the adder property of cell volume and the
distributions (15) and (18) follow as argued above.

The present model presents an alternative mechanism
for realizing Eq. (19) which does not require a regu-
latory mechanism. Here this property arises because
the population dynamics has an attractor lying on the
CBG in which both Ż and V̇ are proportional to eµt.
We argue later that the latter is a very generic property
of chemical dynamics in self-expanding containers. As
a consequence it predicts that the adder property of
the volume should be accompanied by the same for
intracellular populations (the variable Y could be V or
any of the Xi).

Cooperativity in the Z dynamics does not spoil
the adder property: We now consider the generaliza-
tion in which the function h(X, Z) in (1b) has a non-
trivial Z dependence. In particular we consider the gen-
eralization of (5):

dZ

dt
= h(P, T,R, Z) = KZ

RP

V
r(Z), r(Z) =

Zh
′

Kh′ + Zh′ ,

(20)

where K and h′ are constants. r(Z) represents a positive
auto-regulation of Z production, h′ being a Hill coef-
ficient measuring the strength of cooperativity in the Z
dynamics. Since Z does not appear in the functions fi, in
the deterministic dynamics the PTR variables converge
to same ratios as before (the CBG is unaffected by this
change) and the growth rate µ in the steady state is also
the same and given by (8). Under the approximation
that PTR sector is treated deterministically (discussed
at the beginning of IV D), Eq. (10) is therefore replaced
by

Ż = Ceµtr(Z), (21)

where C is given by (11) as before. In order to determine
the first passage time distribution and the added vol-
ume distribution we now need to consider the stochastic
version of (21), where the r.h.s. has a nontrivial Z de-
pendence. By considering the master equation following
from (21) we show analytically in the Supplementary sec-
tion S2 C that the presence of a nontrivial auto-regulation
changes the shape of the ∆ distribution (which is no
longer given by (16)), but the adder property remains
intact. This is also borne out by numerical simulations
shown in Figs. S7A and S7B, conducted on the PTRZ
model with intrinsic stochasticity in all four population
variables and auto-regulation implemented in the Z sec-
tor via r(Z). Both positive and negative auto-regulation
of Z preserve the adder property.

However, the adder property is not preserved if the
regulatory function r is a function of the concentra-
tion of Z, [Z] ≡ Z/V , instead of the population Z (see
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Figs. S7C, S7D and text in Supplementary section S2 C).

Departure from adder: After the brief excursion in
the last two paragraphs to the case where h depends
non-trivially on Z, we return to case where h is inde-
pendent of Z (where the Z dynamics is given by (5) and
the distributions (15), (16) hold along with the adder
property. Since the ∆ distribution (16) depends upon
N , one way of losing the adder property is to have N
correlated with Vb. The part of assumption (ii) that
Zc − Zb is the same in all generations ensures that N
is not correlated with Vb. A weaker assumption that N
varies from generation to generation but is uncorrelated
with Vb would still give the adder property, though the
distribution for ∆ would in general change and depend
upon the distribution of N . An example of this is
given in section III B 5 where threshold stochasticity is
considered. We discussed two cases: (a) Where Zc varies
randomly from generation to generation but Zb = Zr/2
is fixed; this corresponds to the weaker assumption (ii)
that preserves the adder property (see Fig. S6A) because
N is still uncorrelated with Vb. (b) Zc varies randomly
from generation to generation and Zr of a generation is
correlated with the Zc of that generation; this spoils the
adder property (see Fig. S6B) because this correlates
the Zb (and hence N) of a given generation with the
Vb of the same generation. Since the triggering event
at the threshold and the degradation of Z must be
implemented by biochemical mechanisms, it is possible
to imagine both kinds of scenarios.

Departure from the adder property for an intra-
cellular chemical population while cell size ex-
hibits the adder property: Up to now we have seen
that in the PTRZ model, the adder property for V is ac-
companied by the adder property for the chemical pop-
ulations P, T,R. However in general it is not necessary
that all molecules in the cell exhibit the adder property
when the cell size does. We now discuss an example
where P, T,R and V exhibit the adder property while
another molecule Q in the cell does not. Consider the
PTRZ model defined by Eqs. (2), (3), (5) augmented
with another molecule Q in the X sector whose popula-
tion dynamics is given by

Q̇ = KQRPr([Q])/V. (22)

Here r([Q]) is a function of the concentration of Q,
[Q] ≡ Q/V , that represents auto-regulation of Q pro-

duction. E.g., r([Q]) = [Q]h
′
/(Kh′

+ [Q]h
′
) represents

auto-enhancement and r([Q]) = Kh′
/(Kh′

+[Q]h
′
) repre-

sents auto-repression (with h′ > 0 being a Hill coefficient,
and K being another constant). In the model we allow
two sources of stochasticity: (i) the intrinsic stochasticity
in the chemical dynamics of the molecules P, T,R, Z,Q
and (ii) the partitioning stochasticity at division as dis-
cussed in section III B 5. Fig. S8 displays a simulation
where V exhibits the adder property but Q does not. It
is seen that the increment in Q, ∆Q ≡ Qd − Qb (where

Qb and Qd, are, respectively, the population values at
birth and division) increases with Qb in the case of auto-
enhancement and decreases with Qb in the case of auto-
repression. This behaviour occurs because partitioning
stochasticity causes a departure from the curve of bal-
anced growth as discussed in the next subsection.

E. Origin of the α distribution

As is evident from the above, under the hypothesis that
the first passage time of a molecule to reach a threshold
controls cell division, the distributions of τ,∆ and Vd
are closely related and their CVs are governed by N or
equivalently Zc as described by (6). One can now ask
for what controls the distribution of α in this setting.
Note that α is obtained for a given trajectory by fitting
the observed trajectory of cell volume to the exponential
form V (t) ∼ eαt. Thus α in any generation is the slope of
the best fit straight line to the lnV vs t curve from birth
to division. In the analysis of the previous subsection
where analytic expressions for the τ and ∆ distributions
have been derived, the X sector populations P, T,R are
assumed to obey their deterministic dynamics and lie on
their CBG. On the CBG the deterministic growth tra-
jectory of P, T,R is given by (7), hence the value of α
is fixed and equal to µ given by (8c). Thus the analysis
of the previous subsection assumes that the α distribu-
tion has zero width and is therefore just the Dirac delta
function δ(α− µ). That the analysis produces nontrivial
distributions of ∆, τ, Vd while assuming that the α dis-
tribution has zero width suggests that any explanation
of the origin of a non-trivial α distribution must invoke
phenomena not included in that analysis.

In our numerical simulations of the PTRZ model we
included the stochastic fluctuations of the P, T,R popu-
lations. There we found the α distribution to have a finite
width (Fig. 6D), although smaller than the one experi-
mentally observed in [11]. We noticed that partitioning
stochasticity increased the width of the α distribution to
reach the width observed in [11] as the strength s of par-
titioning stochasticity was increased. However, threshold
stochasticity did not contribute to α width. Furthermore
while the rescaled ∆, τ, Vd distributions depended only on
the parameter N , the rescaled α distribution was found
to be dependent on the other parameters of the PTRZ
model as well (Fig. S1). These observations suggest that
(a) intrinsic stochasticity, and (b) departure from the
CBG resulting in a mixing of a pure exponential (given
by rate µ) with other functions of time contribute to the
width in α in these models.

The role of intrinsic stochasticity in producing a
nonzero width is straightforward. A population variable
that is a smooth exponential function of time in a de-
terministic simulation would be a jagged function when
intrinsic stochasticity is switched on, to which an expo-
nential fit would give a different value of growth rate in
different trials. The volume being a linear combination of
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FIG. 8: Distributions for XZ and XYZ models with only partitioning stochasticity. A Rescaled ∆, Vd
distributions (τ distributions in the inset). B Rescaled α distribution. Distributions are made from 30000

generations. Note that the α distribution has zero width for the XZ model but nonzero width for the XYZ model,
which explains how being thrown off the CBG contributes to the width of the α distribution (see discussion in main

text). In these simulations intrinsic stochasticity due to chemical dynamics as well as threshold stochasticity are
both absent, but partitioning stochasticity is present with strength s = 1. XZ model parameters:

µ = 10,KZ = 10−3, v = 1, s = 1. XYZ model parameters: c1 = 10, c2 = 1,KZ = 10−3, v1 = v2 = 1, s = 1. For both
models Zc = 40, Zr = 20, τ1 = 0.

chemical populations will consequently also have a vari-
ation in α in different generations.

To explain how the departure from the CBG is an inde-
pendent source of variation of α we consider two models
in the same broad class defined in section II but linear
and much simpler than PTRZ, one containing only one
population variable in the X sector (the XZ model) and
the other containing two (the XYZ model). These are
defined by:

XZ model : Ẋ = µX, Ż = KZX; V ≡ vX,
(23a)

XYZ model : Ẋ = c1Y, Ẏ = c2X, Ż = KZX;
(23b)

V ≡ v1X + v2Y. (23c)

Here µ,KZ , v, c1, c2, v1, v2 are constants. When these
models are simulated with only intrinsic stochasticity
in the chemical dynamics (partitioning stochasticity and
threshold stochasticity absent) they produce the same
rescaled ∆, τ, Vd distributions as the PTRZ model and
their own specific nonzero width α distributions (see
Fig. S1). This is in keeping with the discussion above.
However, now consider simulations of both these models
treating the population dynamics of all chemicals deter-
ministically and implementing only partitioning stochas-
ticity with some strength s as described in section III B 5
(intrinsic stochasticity and threshold stochasticity are ab-
sent). The resulting distributions are shown in Fig. 8.
The ∆, τ, Vd distributions are different from what we get
when only intrinsic stochasticity is present and all three
have nonzero width for both models. But the α distri-

bution has zero width for the XZ model and a nonzero
width for the XYZ model. This difference between the
two models shows that departure from the CBG con-
tributes to the α distribution. For, in the XZ model
the phase space of the X sector coincides with the CBG
(both are 1-dimensional) and there can be no depar-
ture from the CBG: any initial condition X(0) leads to
the trajectory X(t) = X(0)eµt, which always leads to
α = µ. Whereas in the XYZ model the XY sector phase
space is 2-dimensional and for a general initial condition
(X(0), Y (0)) the trajectory of the system is a linear su-
perposition of two exponentials: X(t) = aeµt + be−µt,
Y (t) = a′eµt + b′e−µt, where µ = (c1c2)1/2 and a, b, a′, b′

are linear combinations of X(0), Y (0). Thus V (t) is also
in general a superposition of two exponentials and fitting
it to a single exponential will yield a value of α that will
depend upon X(0), Y (0). In this linear example the dy-

namics is governed by the matrix A =

(
0 c1
c2 0

)
, which

has two eigenvalues ±µ. The eigenvector corresponding
to +µ is the attractor of the dynamics and is the CBG
(it is the line in the XY plane which passes through the
origin and has the slope Y/X = (c2/c1)1/2). On this line,
the growth is pure exponential with α = µ. But even if
the system has reached this line before division, partition-
ing stochasticity will throw it off this line after division,
because the X and Y populations of the daughter cell are
chosen independently of each other at partition and will
no longer have the same ratio as before. Thus in the next
generation the trajectory will again be a superposition of
two exponentials, resulting in a value of α 6= µ.

The above argument makes it clear how being thrown
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off the CBG contributes to the width of the α distri-
bution, because in every generation the departure of
X(0), Y (0) (birth coordinates of the cell) from the CBG
will be random due to partitioning stochasticity and the
extent of that departure will govern how different the fit-
ted value of α in that generation is from µ. Whereas in
the XZ model since there can be no departure from the
CBG partitioning stochasticity always gives α = µ. This
explains why in the PTRZ model we found the width
of the α distribution to grow with s: larger s means a
greater departure from the CBG and hence a greater de-
parture from a pure exponential solution. This also ex-
plains why when only threshold stochasticity is present
(intrinsic stochasticity and partitioning stochasticity ab-
sent) the width of the α distribution is zero. This is be-
cause once the system reaches the CBG attractor, thresh-
old stochasticity by itself cannot throw it off the CBG
because it only operates in the Z sector and does not af-
fect the ratios of populations in the X sector. In view of
the above discussion it is not surprising that the α dis-
tribution depends upon parameter values and details of
the models.

The mixing of exponentials as a possible origin of the α
distribution has also been discussed in [61] in the context
of a linear model. Our explanation, in terms of the cell
being thrown off the CBG by partitioning and intrinsic
stochasticity covers both linear and non-linear dynamics.

The above discussion also clarifies the origin of the
departure from the adder property of an auto-regulated
chemical Q discussed in the previous subsection. Since
the cell is thrown off the CBG, the growth rate of Q is
no longer µ but can be affected by Qb because of auto-
regulation. Hence it departs from the adder. PTR also
have a growth rate different from µ, but being large and
unaffected by Q, do not show a significant departure from
the adder property (and hence V also does not).

V. THE ORIGIN AND CONSEQUENCES OF
EXPONENTIAL GROWTH

A. Exponential growth arises in Class-I dynamical
systems

We saw that the PTR sector defined by (2) and (3) was
characterized by the exponential growth of chemicals in
the deterministic steady state in the growth phase (in-
sets of Figs. 1A,C; Fig. S9A,B), given by Eq. (7). We
now argue that this is a general property of a large class
of chemical systems which naturally arise in cellular dy-
namics. Consider a set of n chemicals whose dynamics is
given by (1a), with fi being homogeneous degree-1 func-
tions of the molecular populations, i.e., for any β > 0,

fi(βX) = βfi(X), i = 1, 2, ..., n. (24)

We will refer to systems satisfying (24) as Class-I dynam-
ical systems. For such systems an exponential ansatz

Xi(t) = Xi(0)eµt for all i = 1, . . . , n (25)

is generically a solution of the dynamics. Substituting
equation (25) in equation (1a), and using equation (24)
to write

fi

(
X1(0)eµt, X2(0)eµt, ..., Xn(0)eµt

)
= eµtfi

(
X1(0), X2(0), ..., Xn(0)

)
,

(26)

we get:

µXi(0) = fi
(
X1(0), X2(0), ..., Xn(0)

)
, for i = 1, 2, .., n.

(27)
The t dependence has canceled out from both sides be-
cause of the class-I nature of the fi. This shows that
for class-I systems (25) is a solution of the dynamics if
and only if X(0) and µ satisfy (27). (27) is a set of n
equations for the n+ 1 constants µ and Xi(0) appearing
in (25). Assuming Xn(t) > 0, we can define the ratios
of populations ψi(t) ≡ Xi(t)/Xn(t), i = 1, 2, . . . , n − 1,
ψn ≡ 1. It follows that ψi satisfy the differential equation
dψi/dt = fi(ψ) − ψifn(ψ), where ψ denotes the vector
(ψ1, ψ2, . . . , ψn−1, 1). Under the ansatz (25) ψi are time
independent, ψi(t) = ψi(0) = Xi(0)/Xn(0). Dividing
both sides of (27) by Xn(0) and using (24), we get

µψi = fi
(
ψ1, ψ2, ..., ψn−1, 1

)
for i = 1, 2, .., n− 1,

µ = fn
(
ψ1, ψ2, ..., ψn−1, 1

)
.

(28)
For class-I systems (27) and (28) are equivalent. (28)
is a set of n (in general, non-linear) equations for the n
unknowns µ and ψ1, . . . , ψn−1. Generically these n equa-
tions provide a solution for the n− 1 independent ratios
of chemicals ψi (i = 1, . . . , n− 1) as well as µ in terms of
the parameters appearing in the functions fi (see Supple-
mentary section S2 D for additional remarks and qualifi-
cations). The PTR model is a particular case of n = 3
for which the explicit solution is given in (8). The fixed
values of the ratios ψi so obtained define a straight line
passing through the origin of the n-dimensional phase
space Γ of the variables X in the direction of the vec-
tor ψ. The implication of the above analysis is that for
any initial condition X(0) lying on this line, the trajec-
tory of system will satisfy (25); in other words all the
populations Xi(t) will grow exponentially with the same
rate µ preserving their ratios. Therefore this line can be
referred to as a curve of balanced growth (CBG) for the
system (a trajectory that starts on the CBG remains on
the CBG with constant ratios of populations). Such a
curve does not exist in general for systems that are not
class-I.

As discussed earlier in sections IV A and IV B and
Fig. S9, in the case of the PTR dynamics defined by
(2) and (3), an exponentially growing trajectory lying on
the CBG is not just a solution but also a stable attrac-
tor of the dynamics. We have found this property to be
true in simulations of many other class-I chemical sys-
tems representing cellular dynamics with different forms
of the functions fi. This includes autocatalytic systems
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with regulation involving Hill functions (see Eq. (22) and
models in [62]), another with a network of a thousand
chemical species constructed along the lines of [63], and
other complicated class-I autocatalytic systems (details
to be presented elsewhere). On the other hand, without
the class-I property, even simple systems do not have an
attractor satisfying (25). For example we can consider
the PTR model with the same Eq. (2) but with a modi-
fied Eq. (3) such that the volume is not a linear function
of the populations. Let us assume that V is proportional
to S2/3 where S is the surface area of the cell (moti-
vated by spherical shaped cells), and let us take S to be
proportional to T , the number of transporter molecules.
Then the asymptotic trajectory is not exponential (see
Fig. S10). The reintroduction of the division process
does not produce the exponential behaviour in this non-
class-I system. Similar behaviour is observed in several
other non-class-I systems we have studied.

Thus we find the class-I condition (24) to be an im-
portant condition for the existence of attractors with ex-
ponential growth. Note that linear functions (fi(X) =∑n
j=1AijXj with constant Aij) are a special case of

class-I and here the asymptotic attractor is exponential:
X(t) = X(µ)eµt where µ is the eigenvalue of the matrix
A = (Aij) with the largest real part and X(µ) the corre-
sponding eigenvector. In this case ψ is proportional to
X(µ). Class-I systems are in general nonlinear (e.g., the
PTR model above) but share the feature of exponential
solutions with linear systems. (27) can be considered a
generalization of the eigenvalue equation AX = µX to
the nonlinear case, which determines the ratios of the
Xi(0) and the ‘eigenvalue’ µ.

B. When does the class-I property arise?

The class-I property of fi will always arise for well-
stirred mass action kinetics, however complicated the lat-
ter may be, when the volume of the container is a linear
function of the chemical populations. This can be seen
as follows.

Let us consider a well stirred chemical reactor of fixed
volume V containing n chemical species whose popula-
tions are given by Xi and concentrations by xi = Xi/V .
The law of mass action implies that the dynamics of the
concentrations is given by the set of nonlinear equations

ẋi = gi(x), i = 1, 2, . . . , n, (29)

where gi are some nonlinear functions of the arguments
that depend upon the set of chemical reactions that take
place in the system. E.g., if there is a chemical reaction
of the kind A + 2B → C, then ẋC will contain a term of
the kind kxAx

2
B . It is important to note that the r.h.s. of

(29) is a function of the concentrations of the chemicals,
not their populations.

Now assume the container is expanding, with the vol-
ume having a time dependence V = V (t). Then the

above equation would be modified to

ẋi = gi(x)− xi
V

dV

dt
, (30)

with the second term reflecting the effect of dilution due
to expansion. Let us ask for the dynamical equations in
terms of the populations Xi = V xi. In a fixed (constant)

volume, Ẋi = V ẋi = V gi(x) = V gi(X/V ). In an ex-

panding volume Ẋi = V ẋi + V̇ xi = V gi(X/V ) − xiV̇ +

V̇ xi = V gi(X/V ). Thus in terms of the population vari-
ables the dynamics in the expanding container does not
contain any extra term and is given by

Ẋi = V gi(X/V ). (31)

Now suppose the volume of the container is a function of
the populations, V = V (X), i.e., it depends upon time
only through X(t). This feature would modify the nature
of the dependence of the r.h.s. of (31) on X:

Ẋi = V (X)gi

(
X

V (X)

)
≡ fi(X). (32)

A particularly interesting situation arises when V (X) is
a linear function of the populations (as is possibly true
for bacterial cells):

V (X) =
n∑
i=1

viXi, (33)

where vi are constants. (This can happen for example
due to osmotic pressure. If we assume that water en-
ters or leaves the cell on a short time scale compared to
the time scales of the dynamics (31) to maintain the to-
tal concentration of solute inside equal to that outside

the cell xext, then
∑n

i=1Xi

V = xext or V = 1
xext

∑n
i=1Xi.

This is a particular case of (33) where the sum over i in-
cludes all the chemical species in the bulk (interior) of the
cell.) Then it follows that fi satisfies the class-I property.
For, (33) implies that V (βX) = βV (X); then fi(βX) =

V (βX)gi
(

βX
V (βX)

)
= βV (X)gi

(
X

V (X)

)
= βfi(X).

Thus the class-I property (24) follows from well stirred
mass action kinetics in an expanding container Eq. (30),
and the assumption that V is itself a homogeneous
degree-1 function of the molecular populations (in partic-
ular its special case (33) that it is a linear function of the
populations). Note that the gi(x) can be highly nonlin-
ear functions of their arguments, and so will in general
fi(X) be; nevertheless the fi will satisfy the condition
(24). This property of well stirred mass action kinetics
is hidden when the dynamics is formulated in terms of
concentrations but is apparent when formulated in terms
of populations which are extensive quantities.

Note that the dynamical system (31) in terms of exten-
sive variables is not fully specified until V is specified as a
function of time or as a function of X. Similarly the dy-
namical system (30) in terms of intensive variables is not
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fully specified until V̇ /V is specified as a function of time
or as a function of x. The choice (33) specifies both dy-
namical systems completely where the constants vi are
treated as parameters of the system. With this choice
the concentrations satisfy the constraint

∑
i vixi = 1,

obtained by dividing both sides of (33) by V . It can be
easily seen that this constraint is preserved by the time
evolution under (30). Thus there are only n−1 indepen-
dent intensive variables, which can be taken to be the
n − 1 independent xi or the n − 1 ψi (each set can be
expressed in terms of the other set).

It is important to note that the specification (33) al-
lows us to find the steady state growth rate as a function
of the parameters. (33) implies that the fi appearing in
(32) satisfy the class-I property and this leads to (27)
under the ansatz (25) from which both µ and the ψi (or
xi) can be determined. The x so obtained is a fixed point
of (30). The µ and x so obtained depend, among other
things, on the parameters vi appearing in (33) (see, e.g.,
(8c)). If, instead of specifying V as a function of X, we

had simply replaced V̇ /V by µ in (30), we could still
solve for the fixed point of (30) in terms of µ and other
parameters appearing in the functions gi but we would
not be able to solve for µ in terms of the parameters.

C. Consequences of the class-I property

The class-I property allows us to generalize the re-
sults of the PTRZ model to a much more general class
of models described in section II. In this subsection we
discuss the generalizations and the assumptions under
which they hold.

1. Exponential growth of size, expressions for the average
birth volume and interdivision time scale

Exponential trajectories. Most mathematical models of
cellular dynamics are formulated in terms of concen-
trations, with particular choices of the functions gi in
(29). For cells in a steady state culture it is usually as-
sumed that the volume grows exponentially; consequently
a term −µxi is added to account for dilution due to vol-
ume expansion. However, the exponential dependence of
V on t is, a priori, a puzzling fact given the nonlinear
nature of cellular dynamics. The discussion above pro-
vides an explanation of that, and also explains why the
exponential growth property is so generic and indepen-
dent of the form of gi. As remarked in section V A we
find exponentially growing chemical trajectories (25) as
attractors of the dynamics for a wide range of systems
irrespective of the form of fi when the fi are class-I. In
all these cases fi were derived from physically motivated
gi via Eqs. (32) and (33). Then, since the volume of the
container is a linear function of the populations (33), it
follows that the container size in the attractor also grows
exponentially with the same rate: V (t) ∼ eµt. Thus

the ubiquity of exponential growth of V is a consequence
of the fact the fi are class-I irrespective of the form of
gi, and that such systems possess exponential solutions
which are often the attractors of the dynamics.

This explanation also exposes a physical property
that is required for exponential trajectories that has not
been so far recognized, namely the linear dependence
(33) of V on the populations (or, more generally,
V (βX) = βV (X)). This suggests that the biophysical
origins of the assumption (33) need to be explored
further. In particular the constants vi, which also affect
the steady state growth rate of the cell (and hence
cellular fitness), should be determined experimentally
and estimated theoretically. This also provides a
possible explanation of the departure from exponential
trajectories observed in certain eukaryotic unicellular
organisms [4, 13]. The departure may be in part a
consequence of the violation of (33), caused by other
structural features of the cell such as the cytoskeleton.

Expression for τ . Let us consider the consequences of
this for the general model described in section II. We
assume, for the rest of this section and the next section
that (a) V is a linear function of the populations and
the functions fi satisfy the class-I property, and (b) that
an exponential solution (25) is the attractor of the X
sector dynamics for the initial conditions of interest. In
discussing averages we ignore all forms of stochasticity
and treat the dynamics as deterministic. Then, the Xi

variables flow towards the CBG defined by the vector
ψ whose components, the ratios of populations, as well
as µ, satisfy (27). This flow is not affected by the

change of Z because Ẋi is independent of Z, except
at discrete points when all the Xi are halved. The
latter interruption does not disturb the flow towards
the CBG because ψ̇i are unaffected by it (as mentioned

above (1a) and (24) imply that ψ̇i = fi(ψ) − ψifn(ψ),
which is invariant under change of scale of the X). The
dynamics of ratios of chemicals and their concentrations
(30) therefore does not see any discontinuity at division.
Thus the X variables reach the CBG in the presence of
the division process. This will be true as long as division
changes all the Xi by the same scale (not necessarily
half), and irrespective of whether division is triggered
by the Z dynamics as in the present case, or by some
other process. Thus, in particular it is guaranteed that
in the attractor of the growth-division dynamics, the cell
volume and all populations Xi will grow exponentially
with time between birth and division. Furthermore in
the steady state, since the variables must grow by a
factor of 2 between birth and division (assuming Xi

are halved at division), the interdivision time is given
by τ = ln 2/µ. Note that τ only depends upon the
parameters of the X sector and not the Z sector.

Expression for Vb. Now let us further assume that (c) the
function h(X, Z) in (1b) is independent of Z and satisfies
the class-I property, h(βX) = βh(X) (as is the case in
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the PTRZ model, Eq. (5)). When the X have reached
their CBG we can write Xi(t) = Xibe

µt = Xnbψie
µt or

X(t) = Xnbψe
µt, where Xib is the value of Xi at a birth

of the cell (taken to be t = 0 for convenience). Then

Ż = h(X) = Ceµt, with the last step following from (c),
and C = Xnbh(ψ). This is the same as (10), except that
the expression for C is now more general. The argument
below (10) and in the Supplementary text section S2 A
applies as before, fixing the absolute scale of the Xib and
Vb. In particular Xnb = Nµeµτ1/h(ψ) and since V =∑n
i=1 viXi = Xnb

∑n
1=1 viψi, we get

Vb = Aeµτ1 =
Nµ

h(ψ)

n∑
i=1

viψie
µτ1 . (34)

This is the expression for cell size at birth in terms of
the parameters for the general model described in sec-
tion II when the conditions (a)-(c) hold. (13), (14) for
the PTRZ model are special cases of this formula. Note
that µ and ψi are determined in terms of the parameters
appearing in the fi through (27).

2. Balanced growth of chemicals

In order to replicate itself a growing cell must solve
a high dimensional coordination problem between its
chemicals. The amount of each chemical in the mother
cell at division must be double that in the daughter cell at
birth (assuming that upon division a daughter gets half
of every chemical from its mother). Otherwise daughters
at birth in successive generations will not be identical.
How does the cell manage to double all of its chemicals
(and there are thousands of them) at the same time?
This is a puzzle because each chemical is produced and
consumed in a specific set of reactions that have their
own specific rate constants, varying from reaction to re-
action. However if the exponential solution (25) is an
attractor of the dynamics (1a) the problem is automat-
ically solved because in the attractor each chemical has
the same growth rate µ and ratios of chemicals are pre-
served in time. It is remarkable that class-I systems de-
scribing cells seem to have such attractors. This is not
true for systems that are not Class-I (for an example, see
Fig. S10), which must solve their coordination problems
by other means (to be discussed elsewhere).

3. Genericity of the adder property and the ∆ and τ
distributions

So far in this subsection we have discussed the conse-
quences of the class-I property for the general system (1)
at the deterministic level (without stochasticity). Now
consider the inclusion of intrinsic stochasticity in the
chemical dynamics of Z, while still treating the dynam-
ics of the X sector chemicals as deterministic, and also

ignoring all other sources of stochasticity such as par-
titioning stochasticity, threshold stochasticity, etc. The
adder property and the ∆ and τ distributions discussed
in section IV D derived from three key ingredients: (i)
V (t) = Vbe

µt, (ii) cell division occurs at the time when
Z first reaches Zc, whereupon it is reset to a fixed value,
and (iii) the dynamics of Z is the stochastic version of
(10) in which C is an extensive quantity proportional to
the chemical populations and hence to the volume of the
cell. In the class of models described in section II prop-
erty (ii) is taken for granted (it is part of the definition).
Property (i) follows from assumptions (a) and (b) men-
tioned above (in section V C 1). As noted above, when
assumption (c) holds, then on the CBG attractor of the
X sector deterministic dynamics, (10) also holds with C
and Vb both proportional to Xnb and hence to each other.
Thus (iii) also holds provided we treat the Z dynamics
as stochastic. This proves that under conditions (a)-(c)
when we treat the X sector dynamics as deterministic
and the Z dynamics as stochastic the general model de-
scribed in section II displays the adder property and the
∆ and τ distributions given in section IV D (Eqs. (15) to
(18)) arise with C = h(Xb) and B = C/µ. Further, the
populations Xb (rescaled by their means) also show the
same distribution as Vb and exhibit the adder property.

When the X sector dynamics are also treated stochas-
tically, and other sources of stochasticity such as parti-
tioning stochasticity and stochasticity of Zc are included,
we expect that the model will exhibit a behaviour similar
to that discussed for the PTRZ model in section III B,
e.g., a non-trivial α distribution will arise, the adder
property for the cell volume will continue to hold un-
less Zr and Zc are correlated, the CV of molecular pop-
ulations as a function of the mean X̄ will decline as X̄
increases for small X̄ � N and flatten out for X̄ � N ,
etc.

VI. UNIFIED DESCRIPTION OF BACTERIAL
CELL SIZE BEHAVIOUR AND GROWTH LAWS

So far we have discussed issues related to the size of
bacterial cells in a growth culture. The models consid-
ered here have a modular character, in that there are
two sectors, the Z sector which is concerned with the
triggering of division, and the X sector which contains
all other chemicals in the cell. We have seen that certain
properties of the models are independent of the details of
the X sector, as long as certain broad conditions are met
(class-I nature of dynamics, linear dependence of V on
populations, etc.). The average cell volume at birth de-
pends upon various cellular parameters (13),(14),(34). It
depends on the X sector parameters through the growth
rate µ, the ratios of chemicals ψi and the coefficients vi,
and on the Z sector parameter N/KZ (or N/h(ψ) in gen-
eral). It also has the exponential factor eµτ1 . The overall
dependence of V on µ is complicated in light of the fact
that the ratios ψi also depend upon the same parameters
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of the X sector that µ depends upon (through a solution
of (27)) and this would be different for different models.
On the other hand the fluctuations in V and the popu-
lations Xi, in particular their CV, as well as the CV of τ
are governed by a single parameter N , and are largely in-
dependent of the details of what happens in the X sector.
Experiments seem to constrain the parameter N between
20 and 60, as discussed in section III B 4. The properties
of exponential growth and the adder property for V and
Xi are also largely independent of the details of the X
sector.

We now mention another aspect of bacterial growth
physiology that pertains to the effect of the medium on
the growth rate and composition of the cells, the bacterial
growth laws. These are summarized in three empirically
derived equations:

µ = µ∞
[F ]

C1 + [F ]
, (35a)

ΦR = Φmin
R +

µ

κt
, (35b)

ΦR = Φmax
R − µ

κn
. (35c)

The first [64] describes the dependence of the steady state
growth rate on the concentration [F ] of a limiting food
resource in the external medium. The second [40–43] de-
scribes how the fraction of total protein in the cell that
is ribosomal protein, ΦR, increases as µ is increased by
improving the nutritional quality of the limiting food re-
source. The third [43] describes how ΦR increases as µ
is decreased by adding antibiotics to the medium that di-
minish the translational efficiency of ribosomes or by pro-
ducing mutants that specifically target the translational
efficiency. The six constants µ∞, C1,Φ

min
R ,Φmax

R , κt, κn
are phenomenological constants [43] whose values are ex-
tracted from experiment.

In [50] the above three laws were derived from the PTR
model, which is the X sector of the PTRZ model dis-
cussed above. There are two classes of macromolecules
represented in the PTR model, T and R, made up of
mT and mR units of P respectively, and the ribosomal
fraction can be defined as ΦR = mRR/(mTT +mRR) =
mR/(mTψT + mR). To derive the growth laws (35) the
expression (8c) for the steady state growth rate was max-
imized with respect to fR, keeping all other parameters
fixed. This implements an underlying regulatory mecha-
nism in the cell that regulates the fraction of ribosomes
that are engaged in making ribosomal protein. The value
of fR that maximizes the r.h.s. of (8c) was substituted
in (8a) to get an expression for ψT (and hence ΦR) and
in (8c) to get an expression for µ. This yielded the equa-
tions (35) for the growth laws together with expressions
for the six phenomenological constants in terms of the
parameters of the PTR sector. For the parameter values
given in Fig. 1 the predictions of the model agree with
the experimental data up to factors of order unity.

It is clear that the above procedure and its results are
unaffected by the presence of the Z sector in the PTRZ

model. The modular structure of the PTRZ model and
the fact that the division process does not cause any dis-
continuity in the dynamics of the intensive variables of
the X sector ensures that the PTRZ model also repro-
duces the same equations for the bacterial growth laws.
Setting fR to a particular value (that optimizes µ) affects
the values of µ and the ratios ψT and ψR, and hence the
value of Vb in (14), but does not affect the existence of
exponential growth. In particular (10) still holds albeit
with values of C and µ given by the above procedure.
Thus the consequences of the Z sector dynamics are also
unaffected. The PTRZ model thus provides a unifed
explanation of the bacterial growth laws together with
fluctuations of size, interdivision time, growth rate and
intracellular molecular populations as well as the adder
property.

The PTR sector can be augmented [62] by introducing
other chemical species whose dynamics model the reg-
ulation of fR mechanistically instead of using the op-
timization procedure. Standard regulatory mechanisms
are consistent with the general form (29) and do not al-
ter the class-I nature of the X sector. The feature of
exponentially growing trajectories remains intact in such
models. The results above about cell size and fluctua-
tions will therefore also hold for such models.

VII. SUMMARY AND DISCUSSION

We have presented a class of mathematical models that
explain a number of observed properties of bacterial cells
and make testable predictions. The work also introduces
new concepts that may help further theoretical analysis
and identify new experiments.
Summary of assumptions and results. The models
assume that the cell can be described in terms of the
intracellular chemical populations Xi, i = 1, . . . , n,
whose growth dynamics, at the deterministic level, is
given by coupled ordinary differential equations (1a).
The cell volume V is assumed to be a linear function of
the chemical populations, Eq. (33). The models have
further structure to describe the control of cell division,
but already, even without that structure, certain key
properties of the cell, summarized in the next paragraph,
are fixed by the ‘X sector’ itself. These are governed by
the character of the functions fi appearing in (1a).

Class-I property: Exponential trajectories, growth rate
and interdivision time scale, intensive quantities. The
models provide an explanation of the observation that
cell size and intracellular molecular populations grow
exponentially with time between birth and division in
steady state bacterial cultures. Exponential growth
is shown (in section V A) to be a consequence of the
‘class-I’ property (Eq. (24)) of the functions fi. This
property in turn is a general consequence of mass action
kinetics in expanding containers (see section V B) when
the cell volume V depends linearly on the populations
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(Eq. (33)) and could therefore hold for a large class of
models applicable to bacteria. When the class-I prop-
erty holds, we find that the populations are typically
attracted to a ‘curve of balanced growth’ (CBG) in
which their ratios ψi ≡ Xi/Xn are constant, and the
populations themselves grow exponentially in time (Eq.
(25)) with a constant growth rate µ. This explains
the phenomenon of balanced growth [18] in bacterial
cells. This also explains why V grows exponentially in
the steady state. The ratios ψi and µ are determined
in terms of the constant parameters of the model as
solutions to a set of (typically algebraic) equations
(Eqs. (27)), which constitute a nonlinear analogue of
the eigenvalue equation of a matrix. Hence all the
intensive quantities in the steady state including the
concentrations xi ≡ Xi/V of the chemicals are fixed.
The interdivision time scale τ is fixed by the reciprocal
of µ. E.g., if the division is symmetric (i.e., the two
daughters are identical), then eµτ = 2 since all chemicals
should double in quantity between birth and division in
the steady state; hence τ = ln 2/µ. Explicit solutions for
µ and ψi (Eq. (8)) are presented for a nonlinear model
with n = 3 populations, the PTR model [50] defined by
Eqs. (2). We also show examples of non-class-I models
where the growth trajectory of the individual cell is not
exponential (section V A, Fig. S10).
Bacterial growth laws. The PTR model also reproduces
the bacterial growth laws of composition [40–43] when
regulation is implemented through an optimization
procedure [50] or by introducing additional molecular
species [62] while preserving its class-I property and
exponential trajectories (section VI).

Division control: Absolute size and populations. While
intensive quantities and the interdivision time scale in
the steady state are fixed by the previous assumptions,
the absolute scale of cell size and populations requires a
specification of the division control mechanism. In this
work we assume that the cell commits itself to division
when one of the chemical populations (denoted by Z
and separated out from the Xi for convenience) reaches
a threshold Zc, with division following commitment
after a possible delay τ1. The dynamics of Z depends
upon the Xi through (1b). For simplicity we assume
that Z contributes negligibly to its own dynamics, to
the continuous time dynamics of the Xi and to V .
Immediately after it reaches its threshold Zc we allow
Z to be reset to a value Zr ≤ Zc. Upon division all the
populations are halved. With these assumptions division
is governed by the nature of the function h appearing
in (1b). In this paper we have primarily considered the
consequences of h also satisfying the class-I property like
the fi (Eq. (24)). Then we can get a general formula
for the birth volume Vb (Eq. (34)) in terms of h and
a specific formula in the case of the PTRZ model (Eq.
(14)) when a specific form (given by (5)) of h is chosen.
The absolute populations are also fixed (expressions
given above (34) and (13)).

Stochasticity in chemical dynamics of Z: Analytic
distributions of τ and ∆; the adder property for cell
size and chemical populations. The preceding two
paragraphs summarize results for deterministic versions
of the models, and therefore pertain to averages across
cells in the cultures. In order to understand cell-to-cell
variation in steady state cultures we include various
sources of stochasticity. Our stochastic results are
obtained for the case τ1 = 0. It is convenient to
distinguish four sources of stochasticity that we have
considered (which have distinct physical consequences):
(A) Intrinsic stochasticity in the chemical dynamics of
Z, (B) intrinsic stochasticity in the chemical dynamics
of the X sector chemicals, (C) partitioning stochasticity,
and (D) stochasticity in the value of the threshold Zc.
Intrinsic stochasticity results from the fact that each
chemical reaction is a molecular event with a certain
probability. In particular this makes the inter-division
time, which by assumption is the first passage time for Z
to reach Zc, a stochastic quantity. Our implementation
of (C) and (D) is defined in section III B 5. We have
investigated different types of stochasticity in isolation
and in suitable combinations. When type A is the only
stochasticity present we obtain some analytic results for
general class-I systems, namely, the distributions of τ
(15), and of added volume ∆ (16), both conditional on
the birth configuration of the cell. The conditional ∆
distribution is independent of Vb, thereby proving the
adder property. In fact the rescaled ∆, u ≡ ∆/〈∆〉, has
a distribution (18) that depends on only one parameter,
N = Zc − Zr/2 and is independent of the details of
the functions fi, h and other parameters (section V C 3;
Fig. S1). Molecular populations also satisfy the adder
property and their rescaled increments have the same
distribution as u. However, the distribution of growth
rate α has zero width when only type A stochastic-
ity is present (discussed in the beginning of section IV D).

Other sources of stochasticity: Robustness of size and
τ distributions; cross-over of population distributions;
origin of the growth rate distribution; departure from
the adder property. We have studied stochasticities of
type B,C,D with numerical simulations of the nonlinear
PTRZ model (defined by Eqs. (2)(3)(5)) and two linear
models, the XZ and XYZ models (Eq. (23)). We find,
in the parameter ranges considered, that the rescaled
distributions of ∆, τ , Vd, Vb obtained with purely A
type stochasticity are robust to the inclusion of B type
stochasticity (Figs. S17), and also to the inclusion of the
C and D type stochasticities (section III B 5; Figs. S5)
provided their strength is not too large. The robustness
of the rescaled size and interdivision time distributions
to parameter values (except N) and other sources of
stochasticity is one of the striking results of this work.
The CV of all these distributions is proportional 1/

√
N

when only the A and B type stochasticities are included
(Fig. 2C), with proportionality constants given by Eq.
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(6). The rescaled distributions of the populations Xi are
also robust, provided the population mean 〈Xi〉 is not
too small. We find a crossover behaviour of the CV of
Xi as a function of 〈Xi〉 (Fig. 5), with CV ∼ 〈Xi〉−1/2

for 〈Xi〉 � N and CV constant for 〈Xi〉 � N . The
adder property of the volume and populations is also
found to be robust to the introduction of the BCD type
stochasticities (Figs.4, S4, S6A). However the adder
property is lost with D type stochasticity if Zc and
Zr are correlated with each other (Fig. S6B). The
distribution of growth rate α acquires a non-zero width
upon the introduction of type B stochasticity (Fig.
2), depends upon parameters other than N (Fig. S1)
and is strongly influenced by type C stochasticity (Fig.
6). We show that the origin of the α distribution is
in part a consequence of the fact that type B and C
stochasticities throw the populations off the CBG and
thereby cause a mixing of a pure exponential function
of time (having a rate µ) with other functions of time
(including exponentials with rates other than µ).

Comparison with experiment. At the level of averages,
the models reproduce the exponential trajectory of the
volume and intracellular populations as seen in E. coli
experiments, as well as the bacterial growth laws of
composition. At the level of fluctuations, they reproduce
the adder property of cell volume fluctuations in E. coli.
Experimental distributions of ∆, τ, Vd [11] constrain
the parameter N of the models to be between 20 and
60 (section III B 4). The models find a much narrower
distribution of α than the one observed in [11] when
only the intrinsic stochasticity of chemical dynamics is
included, and require a significant strength (perhaps
unnaturally large) of partitioning stochasticity to reach
the observed width (section III B 5). This discrepancy
needs to be explored further, both theoretically and
experimentally. The models reproduce the observed
crossover behaviour of the CV of a molecular population
as a function of its mean population X̄: CV ∼ X̄−1/2

for X̄ � N and constant for X̄ � N (section III B 3).

Discussion. A key question is: Which molecular pop-
ulation in the cell does Z correspond to? One possible
candidate is the DnaA molecule, which is known to ini-
tiate DNA replication and has been suggested as an up-
stream trigger for cell division (for reviews see [65–68])
DNA replication in E. coli is known to be initiated when
a certain number, believed to be between 20 and 30, of
active (ATP-bound) molecules of DnaA bind to sites on
the DNA molecule at oriC, a region of DNA at the ori-
gin of replication. Soon after the initiation of replication
the DnaA is deactivated by other enzymes; the complex
of active DnaA falls apart to prevent multiple rounds of
initiation. Each initiation is followed first by the repli-
cation of DNA (referred to as the C period in the bac-
terial growth cycle) and then by the separation of the
chromosomes into two halves of the cell and cell division
(referred to as the D period). After division, the daugh-

ter cells have a smaller number of active DnaA molecules
bound to the above mentioned sites, and this number
grows in the period between birth and the initiation of
replication (known as the B period). Various aspects of
the dynamics of DnaA have been modeled mathemati-
cally [67, 69–72].

In the context of the present model it is tempting to
identify Z with the number of active DnaA molecules
in the initiation complex bound to oriC. Then present
experiments with DnaA suggest that the parameter Zc
of the model should be between 20 and 30, Zr should
be essentially zero (the initiation complex dissociates af-
ter triggering replication) and τ1 = C + D ∼ 1 hr. It
is interesting that this identification leads to a value of
N between 20 and 30, which overlaps with the range 20-
60 obtained from a completely independent experimental
constraint, the spread in the distributions of ∆, τ, Vd. In
other words, this identification provides a natural expla-
nation of why the CVs of cell size, interdivision time and
the large intracellular molecular populations are in the
ballpark of 20% (Eq. (6) with N ∼ 25). The model pre-
dicts that the average cell size increases when the rate of
production of the Z population is lowered (Vb is inversely
proportional to KZ or h(ψ), Eqs. (13),(34)). This is
consistent with the empirical observation that cell size
increases when the production of DnaA is impaired [73].
We note that the fact that cooperativity in the Z dynam-
ics leaves the adder property of the volume intact (shown
in section IV D 2 and Supplementary section S2 C) is an
encouraging sign for the above interpretation of Z, as
such cooperativity is known to exist for the active-DnaA
molecules bound at oriC.

However, the model also has problems with respect
to the above interpretation. Note that in the previous
para, Z is identified not with the total number of DnaA
protein molecules in the cell, or even the total number of
active (ATP-bound) DnaA molecules in the cell, but with
the number of active DnaA molecules bound to the DNA
molecule at oriC. A problem with the present model is
that a production term for Z such as in Eqn. (5) where Ż
is an extensive quantity may be appropriate for a chem-
ical produced in the bulk of the cell, but for a chemical
species localized in space (such as the set of active-DnaA
molecules bound to the DNA at oriC) would need fur-
ther justification or a mechanism not provided by the
present model. Further, in this interpretation it is not
clear how to account for the synchrony observed in the
initiation of replication at multiple origins [74]. The res-
olution of the above mentioned problems might lie in the
fact that oriC and the dnaA gene are close by on the
DNA molecule and spatial proximity effects need to be
taken into account. It also needs to be noted that the
dynamics of active-DnaA molecules bound to the origin
of DNA replication is affected by many factors in the cell,
including autoregulation of DnaA production, binding of
DnaA to a large number of sites other than oriC on the
DNA and sequestering of the binding sites by other en-
zymes. Another proposed model [75] is that initially in
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the cell cycle DnaA binds other sites on the DNA and
the replication initiating event is the binding of active
DnaA to a site in oriC that triggers cooperative binding
of active DnaA on a relatively short time scale to oriC. In
this interpretation Zc would correspond to the effective
number of sites that DnaA binds to before the cooper-
ative binding event occurs. In the light of the above
caveats, the question as to whether the Z population in
the present model or its extension corresponds to some
sub-population of the DnaA protein in the cell remains
an open question to be investigated further.

Note that the adder property and the ∆ distribution
(16) (and consequently Eq. (6) relating the CV of ∆ to

1/
√
N) follow from very general assumptions (Eq. (19)

and assumptions mentioned below it; or the class-I prop-
erty and assumptions mentioned in V C 3). They and
many other properties discussed above do not depend
upon other details of the Z dynamics. Thus the mod-
els could apply to other candidates for the Z molecule
than DnaA. Another candidate for Z is the FtsZ pro-
tein, which forms a ring around the cell that constricts
and causes cell division, and degrades after cell division
(for reviews see [76, 77]). However, the number of FtsZ
molecules required for ring formation seems to be large
(in the range ∼ 103 − 104, suggesting that N is in the
range ∼ 103 − 104); in which case stochasticity in the
production of FtsZ alone would not account for the ob-
served CV of cell size and division time (the model pre-

dicts CV ∼ 1/
√
N which would be too low). The present

model ignores stochasticity in the mRNA population cor-
responding to the Z protein; its inclusion would enhance
the CV of the cellular variables in (6) beyond 1√

N
and in

particular improve the case for FtsZ. Further, in the cell
stochasticity in both DnaA and FtsZ can simultaneously
contribute to the stochasticity in interdivision time and
cell size.

In sum, while there are two good candidates (DnaA
and FtsZ) for the time-keeper molecule, we believe that
more work, both experimental and theoretical, is needed
to establish whether or not the observed stochasticity in
the interdivision time and cell size is a consequence of
their populations (or appropriate sub-populations) hav-
ing to reach a critical threshold. Of course, there may
be other molecular candidates in the cell for triggering
division that we are not aware of.

The models discussed in the present work predict that
the adder property of the cell volume is accompanied by
the adder property for coarse-grained intracellular molec-
ular pools, such as the pool of amino acids in the cell or
the pool of metabolic enzymes, whose copy numbers are
� N , and that the distribution of such a molecular pop-
ulation rescaled by its mean is the same as the rescaled
volume distribution. Chemical population distributions
have been measured and found to be universal [32] but
the adder property for molecular pools has not been re-
ported to our knowledge. Susman et al [61] have reported
a departure from the adder property for two individual
protein populations in single cell trajectories of E. coli

but the adder behaviour of larger molecular pools (pre-
dicted by our models) remains an open empirical ques-
tion. The models also predict that in the presence of
threshold stochasticity (Zc being distributed over a range
of values from cell to cell) the adder property is lost if the
reset value Zr is correlated with Zc. It would be inter-
esting if this could be tested by suitable mutations of E.
coli, or by studying bacteria in which the adder property
is absent.

An experimental question that this work draws atten-
tion to is the role of osmosis and other biophysical mech-
anisms in understanding exponential trajectories of cells.
In section V B we argued that the linear dependence of
V on the intracellular populations, Eq. (33), is a crucial
requirement for exponential trajectories. As mentioned
there such an assumption might be justified if cells equal-
ize the osmotic pressure of solute inside and outside the
cell. Cells actually maintain an osmotic pressure differ-
ence between their interior and the exterior. It is im-
portant to test whether the linearity assumption is valid
and also to measure the coefficients vi. It is worth noting
that these coefficients affect the steady state growth rate
µ (see, e.g., Eq. (8c) and the expressions below it) and
thus contribute to cellular fitness. A departure from the
linear dependence of V on intracellular molecular popu-
lations, caused by other structural elements such as the
cytoskeleton, may explain the departure from exponen-
tial trajectories observed in certain eukaryotic organisms.

At a mathematical level this work suggests that a cer-
tain class of dynamical systems, class-I systems (defined
by (1a),(24)), are both generic and analytically useful for
modeling bacterial cells. The present study shows that
some physical properties (summarized above, and includ-
ing averages and fluctuations) are universal for all such
systems in that they do not depend upon the model and
(many of) its parameters, and identifies some that are
not. For this class the ‘steady states’ are exponentially
growing trajectories whose growth rate µ is a solution of
a nonlinear version of the eigenvalue equation, Eq. (27).
When the functions fi are algebraic µ is given implicitly
in terms of the model parameters as a solution to a set
of algebraic equations. In this work we have only inves-
tigated some properties in a few examples of class-I sys-
tems; other mathematical properties and examples need
to be investigated. Since exponential growth appears in
many areas where the underlying dynamics is nonlinear,
it is quite possible that these systems find applications
elsewhere.

For any fixed environment µ is a measure of the or-
ganism’s fitness. Having it as a function of the system
parameters allows us to describe the fitness landscape
including the neutral directions, valleys and hills in pa-
rameter space. Thus it specifies the evolutionary paths
in that environment. This class of models could be rel-
evant for the study of evolution because they provide µ
as a function of the parameters. It is worth mention-
ing that for the class of models studied here µ is inde-
pendent of the parameters of the division control sector
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(e.g., the function h in (1b), and the thresholds Zc and
Zr), which are therefore neutral directions of variation
as far as steady state fitness is concerned. This is a con-
sequence of a kind of modularity in the model implicit
in the assumption that the dynamics of the X sector is
independent of Z and is influenced by Z only through
division. It would be interesting to empirically explore
the extent of, or departure from, such a modularity in
real cells.

Since the models discussed here are dynamical,
they capture not just the steady state but also the
transients. Thus they could also be useful in exploring
those regulatory mechanisms that affect or seek to
optimize performance over the transients. Extension
of these models may find applications in modeling the
stationary phase [78] and antibiotic environments [79]
where the net cell population growth goes to zero with
a balance between cell growth and death. It would also
be interesting to use these models to make contact with
other allometric modeling approaches [80] that seek to
understand how the amounts of cellular components
like ribosomes and proteins depend upon cell size across
diverse bacteria.

COMPUTATIONAL METHODS

All numerical simulations were done in C programming
language. Numerical solution of the ODEs for the
mathematical models were done using the CVODE
solver library of the SUNDIALS (Suite of Nonlinear

and Differential/Algebraic Equation Solvers) package
[81] and the adaptive Runge-Kutta (RK5) method.
The stochastic simulations were done using the tau
leaping method [82, 83]. In particular the trapezoidal
variant of adaptive implicit tau leaping was used [84, 85].
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[51] F. Bertaux, J. Von Kügelgen, S. Marguerat, and

V. Shahrezaei, “A unified coarse-grained theory of bac-
terial physiology explains the relationship between cell
size, growth rate and proteome composition under vari-
ous growth limitations,” bioRxiv 078998, 2016.

[52] R. Milo, P. Jorgensen, U. Moran, G. Weber, and
M. Springer, “Bionumbersthe database of key numbers
in molecular and cell biology,” Nucleic Acids Res, vol. 38,
no. suppl 1, pp. D750–D753, 2010.

[53] B. D. Bennett, E. H. Kimball, M. Gao, R. Osterhout,
S. J. Van Dien, and J. D. Rabinowitz, “Absolute metabo-
lite concentrations and implied enzyme active site oc-
cupancy in Escherichia coli,” Nature Chemical Biology,
vol. 5, no. 8, pp. 593–599, 2009.

[54] M. Thattai and A. Van Oudenaarden, “Intrinsic noise in
gene regulatory networks,” Proceedings of the National
Academy of Sciences, vol. 98, no. 15, pp. 8614–8619,
2001.

[55] P. S. Swain, M. B. Elowitz, and E. D. Siggia, “Intrin-
sic and extrinsic contributions to stochasticity in gene
expression,” Proceedings of the National Academy of Sci-
ences, vol. 99, no. 20, pp. 12795–12800, 2002.

[56] M. Soltani, C. A. Vargas-Garcia, D. Antunes, and
A. Singh, “Intercellular variability in protein levels from
stochastic expression and noisy cell cycle processes,”
PLoS Computational Biology, vol. 12, no. 8, p. e1004972,
2016.

[57] D. Huh and J. Paulsson, “Non-genetic heterogeneity from
stochastic partitioning at cell division,” Nature Genet,
vol. 43, no. 2, pp. 95–100, 2011.

[58] W. D. Donachie, “Relationship between cell size and
time of initiation of DNA replication,” Nature, vol. 219,
pp. 1077–1079, 1968.

[59] S. Cooper and C. E. Helmstetter, “Chromosome replica-
tion and the division cycle of Escherichia coli br,” J Mol
Biol, vol. 31, no. 3, pp. 519–540, 1968.

[60] F. Si, D. Li, J. T. Sauls, O. Azizi, C. Sou, A. B. Schwartz,
M. J. Erickstad, Y. Jun, X. Li, and S. Jun, “Invariance
of initiation mass and predictability of cell size in Es-
cherichia coli,” Current Biology, vol. 27, pp. 1278–1287,
2017.

[61] L. Susman, M. Kohram, H. Vashistha, J. T. Nechleba,
H. Salman, and N. Brenner, “Individuality and slow dy-
namics in bacterial growth homeostasis,” Proceedings of
the National Academy of Sciences, 2018.

[62] P. Sharma, P. P. Pandey, and S. Jain, “Modeling the cost
and benefit of proteome regulation in a growing bacterial
cell,” Physical Biology, vol. 15, no. 4, p. 046005, 2018.

[63] C. Furusawa and K. Kaneko, “Zipf’s law in gene expres-
sion,” Phys Rev Lett, vol. 90, no. 8, p. 088102, 2003.

[64] J. Monod, “The growth of bacterial cultures,” Annu Rev
Microbiol, vol. 3, no. 1, pp. 371–394, 1949.

[65] A. Kornberg and T. A. Baker, DNA Replication. New
York: W. H. Freeman, 1992.

[66] W. Messer, “The bacterial replication initiator DnaA.
DnaA and oriC, the bacterial mode to initiate DNA repli-
cation,” FEMS Microbiol Rev, vol. 26, no. 4, pp. 355–374,
2002.

[67] W. D. Donachie and G. W. Blakely, “Coupling the initia-
tion of chromosome replication to cell size in Escherichia
coli,” Curr Opin Microbiol, vol. 6, no. 2, pp. 146–150,
2003.

[68] K. Skarstad and T. Katayama, “Regulating DNA replica-

tion in bacteria,” Cold Spring Harb Perspect Biol, vol. 5,
p. a012922, 2013.

[69] S. T. Browning, M. Castellanos, and M. L. Shuler, “Ro-
bust control of initiation of prokaryotic chhromosome
replication: Essential considerations for a minimal cell,”
Biotechnology and Bioengineering, vol. 88, pp. 575–584,
2004.

[70] J. Atlas, E. Nikolaev, S. Browning, and M. Shuler,
“Incorporating genome-wide DNA sequence information
into a dynamic whole-cell model of Escherichia coli : ap-
plication to DNA replication,” IET Systems Biology,
pp. 369–382, 2008.

[71] M. A. Grant, C. Saggioro, U. Ferrari, B. Bassetti,
B. Sclavi, and M. C. Lagomarsino, “DnaA and the tim-
ing of chromosome replication in es-cherichia coli as a
function of growth rate,” BMC Syst Biol, vol. 5, no. 1,
p. 201, 2011.

[72] J. R. Karr, J. C. Sanghvi, D. N. Macklin, M. V.
Gutschow, J. M. Jacobs, B. Bolival, N. Assad-Garcia,
J. I. Glass, and M. W. Covert, “A whole-cell computa-
tional model predicts phenotype from genotype,” Cell,
vol. 150, no. 2, pp. 389–401, 2012.

[73] A. Løbner-Olesen, K. Skarstad, F. G. Hansen, K. von
Meyenburg, and E. Boye, “The DnaA protein determines
the initiation mass of Escherichia coli k-12,” Cell, vol. 57,
no. 5, pp. 881–889, 1989.

[74] S. Kirsten, E. Boye, and T. Altung, “Timing of initiation
of chromosome replication in individual Escherichia coli
cells,” Embo J, vol. 5, pp. 1711–1717, 1986.

[75] F. G. Hansen, B. B. Christensen, and T. Altung, “The
intiator titration model: Computer simulation of chro-
mosome and mini-chromosome control,” Res Microbiol,
vol. 142, pp. 161–167, 1991.

[76] W. Margolin, “Ftsz and the division of prokaryotic cells
and organelles,” Molecular Cell Biology, vol. 6, pp. 862–
872, 2005.

[77] H. P. Erickson, D. E. Anderson, and M. Osawa, “Ftsz in
bacterial cytokinesis: Cytoskeleton and force generator
all in one,” Microbiology and Molecular Biology Reviews,
vol. 74, no. 4, pp. 504–528, 2010.

[78] Y. Himeoka and K. Kaneko, “Theory for transitions be-
tween exponential and stationary phases: universal laws
for lag time,” Phys. Rev. X, vol. 7, p. 021049, Jun 2017.

[79] S. Chib, S. Das, S. Venkatesan, A. S. N. Seshasayee, and
M. Thattai, “Using stochastic cell division and death to
probe minimal units of cellular replication,” New Journal
of Physics, vol. 20, p. 035004, 2018.

[80] C. P. Kempes, L. Wang, J. P. Amend, J. Doyle, and
T. Hoehler, “Evolutionary tradeoffs in cellular compo-
sition across diverse bacteria,” ISME Journal, vol. 10,
pp. 2145–2157, 2016.

[81] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee,
R. Serban, D. E. Shumaker, and C. S. Woodward, “Sun-
dials: Suite of nonlinear and differential/algebraic equa-
tion solvers,” ACM T Math Software, vol. 31, no. 3,
pp. 363–396, 2005.

[82] D. T. Gillespie, “Approximate accelerated stochastic sim-
ulation of chemically reacting systems,” J Chem Phys,
vol. 115, no. 4, pp. 1716–1733, 2001.

[83] M. Rathinam, L. R. Petzold, Y. Cao, and D. T. Gillespie,
“Stiffness in stochastic chemically reacting systems: The
implicit tau-leaping method,” J Chem Phys, vol. 119,
no. 24, pp. 12784–12794, 2003.

[84] Y. Cao and L. Petzold, “Trapezoidal tau-leaping formula

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 4, 2018. ; https://doi.org/10.1101/487504doi: bioRxiv preprint 

https://doi.org/10.1101/487504


29

for the stochastic simulation of biochemical systems,”
Proceedings of Foundations of Systems Biology in Engi-
neering (FOSBE 2005), pp. 149–152, 2005.

[85] Y. Cao, D. T. Gillespie, and L. R. Petzold, “Efficient step

size selection for the tau-leaping simulation method,” J
Chem Phys, vol. 124, no. 4, p. 044109, 2006.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 4, 2018. ; https://doi.org/10.1101/487504doi: bioRxiv preprint 

https://doi.org/10.1101/487504

