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 40 

ABSTRACT 41 

Chlorophyll degradation is one of the most visible landmarks of leaf senescence. 42 

During senescence, chlorophyll is degraded in the multi-step pheophorbide a 43 

oxygenase (PAO)/phyllobilin pathway, which is tightly regulated at the transcriptional 44 

level. This regulation allows a coordinated and efficient remobilisation of nitrogen 45 

towards sink organs. Taking advantage of combined transcriptome and metabolite 46 

analyses during dark-induced senescence of Arabidopsis thaliana mutants deficient 47 

in key steps of the PAO/phyllobilin pathway, we show an unanticipated role for one of 48 

the pathway intermediates, i.e. pheophorbide a. Both jasmonic acid-related gene 49 

expression and jasmonic acid precursors specifically accumulated in pao1, deficient 50 

in PAO. We propose that pheophorbide a, the last intact porphyrin intermediate of 51 

chlorophyll degradation and unique pathway ‘bottleneck’, has been recruited as a 52 

signalling molecule of the chloroplast metabolic status. Our work challenges the 53 

assumption that chlorophyll breakdown is merely a senescence output, but propose 54 

that the flux of pheophorbide a through the pathway acts in a feed-forward loop that 55 

remodels the nuclear transcriptome and controls the pace of chlorophyll degradation 56 

in senescing leaves. 57 

 58 

 59 

INTRODUCTION  60 

In higher plants, leaf senescence is a tightly regulated process that is responsible for 61 

remobilisation of nutrients like nitrogen and phosphorus from source to sink organs 62 

(Hörtensteiner and Feller, 2002). Degradation of photosynthetic proteins, 63 

representing up to 70% of total leaf proteins, is co-regulated with chlorophyll (chl) 64 

degradation, while carotenoids are largely retained (Kusaba et al., 2009). Chl is 65 

degraded via a cascade of coordinated enzymes leading to cleavage and export of 66 

chl catabolites to the vacuole in the form of non-toxic linear tetrapyrroles, termed 67 

phyllobilins (Süssenbacher et al., 2014). Since all final phyllobilins are ultimately 68 
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derived from the porphyrin ring-opening activity of PHEOPHORBIDE A OXYGENASE 69 

(PAO), this pathway of chl breakdown is referred to as the “PAO/phyllobilin pathway” 70 

(Hörtensteiner, 2006). 71 

Two key chlorophyll catabolic genes (CCGs) that encode the chlorophyll catabolic 72 

enzymes (CCEs) and precede the opening of the porphyrin ring of chl, i.e. the 73 

magnesium dechelating enzyme NON YELLOWING (NYE) and PHEOPHYTIN 74 

PHEOPHORBIDE HYDROLASE (PPH), hydrolyzing the phytol tail, are tightly co-75 

regulated with PAO at the transcriptional level during leaf senescence. In addition, all 76 

three CCEs were shown to physically interact (Pružinská et al., 2007; Ren et al., 77 

2007; Aubry et al., 2008; Sakuraba et al., 2012). This regulation may allow quick 78 

metabolic channelling of potentially phototoxic chl catabolites. A model based on the 79 

apparent coordinated expression of these genes and under the control of one or a 80 

few main transcriptional regulator(s) could therefore be hypothesised. However, the 81 

mechanism underlying this transcriptional coordination remains unclear.  82 

Senescence is a complex process integrating hormonal and environmental signals 83 

from very distinct pathways (Kim et al., 2018). Only considering CCGs, at least three 84 

distinct hormonal signals and their respective signalling pathways have been shown 85 

to interact via some of their components with CCG promoters (for a recent review, 86 

see (Kuai et al., 2018))(Kuai et al., 2017)(Kuai et al., 2017). Jasmonic acid (JA), 87 

ethylene (ET) and abscisic acid (ABA) signalling pathways together with some 88 

components of the light signalling cascade have been shown to modulate CCG 89 

expression directly (Kuai et al., 2018).  90 

In particular, JA and its derivatives are key regulators of senescence (He et al., 2002) 91 

and typically synthesised in response to insects and necrotrophic pathogens (Kim et 92 

al., 2018; Wasternack and Feussner, 2018). Levels of JA increase during natural or 93 

dark-induced senescence (Breeze et al., 2011) and ectopic methyl jasmonic acid 94 

induces early senescence (Ueda and Kato, 1980). JA and associated oxylipin 95 

signalling have pleiotropic effects on the cellular fate, for example changing 96 

expression of defense genes (Hickman et al., 2017). Default JA signalling is 97 

perceived via CORONATINE-INSENSITIVE 1 (COI1) that in turn degrades the 98 

transcriptional repressors JA ZIM-domain proteins (JAZ) (Howe et al., 2018). For 99 

example, JAZ7 blocks MYC2 transcription factor activity that act upstream of many 100 

genes involved in dark-induced leaf senescence (Yu et al., 2016). MYC2/3/4 and 101 

their downstream targets NAC019/055/072 directly interact with NYE1, NYE2 and 102 
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NYC1 promoters (Zhu et al., 2015). In a very similar manner, NAC019 and MYC2 103 

interact with each other to synergistically up-regulate NYE1 (Zhu et al., 2015). Other 104 

transcription factors involved in ET signalling (EIN3, EEL, ORE1 and ERF17), ABA 105 

signalling (NAC016, NAC046, NAP, ABF2/3/4, ABI5) were also reported as direct 106 

interacting transcription factors of some cis-elements in CCG promoters (Kim et al., 107 

2014; Sakuraba et al., 2014; Qiu et al., 2015; Sakuraba et al., 2016; Yin et al., 2016). 108 

These multiple intertwined hormonal cues eventually lead to chlorosis, by way of 109 

degradation of chl, as a visible landmark of dark-induced, aged-induced and also 110 

(a)biotic stress-induced senescence. Interestingly, constitutive overexpression of 111 

single CCGs in Arabidopsis thaliana (Arabidopsis) led in most cases to an 112 

acceleration of chl breakdown after senescence induction (Sakuraba et al., 2012). 113 

This suggests a feedback mechanism by which the chloroplast coordinates the rate 114 

of chl degradation during leaf senescence. The extent to which the speed of chl 115 

degradation itself could regulate the various hormonal cues and thereby inform cells 116 

about the current status of their senescing chloroplasts remains to be shown.  117 

Here, in an attempt to identify such a link and simultaneously shed more light onto 118 

these complex regulatory networks, we used genome-wide transcriptome analysis of 119 

CCG mutants during early dark-induced senescence. By combining these data with 120 

metabolite profiling, we aim at understanding processes that regulate the dynamics of 121 

the production of chl catabolites in the PAO/phyllobilin pathway and the extent to 122 

which accumulation of pathway intermediates remodel nuclear gene expression, and 123 

more precisely the JA response.  124 

Based on our data, we propose a model where transient accumulation of the 125 

intermediate pheophorbide (pheide) a acts as a sensor for the rate of chl 126 

degradation, and thereby regulates the speed of leaf senescence tuned by JA 127 

signalling. This model highlights a new function for the PAO/phyllobilin pathway of chl 128 

breakdown, not only as an irreversible prerequisite to senescence-driven nitrogen 129 

remobilization, but also as a sensing mechanism of the stress status of the 130 

chloroplast.  131 

 132 

 133 

RESULTS 134 

Coordinated Variations of the Leaf Transcriptome During Dark-Induced 135 

Senescence 136 
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The extent of variations in gene expression during dark incubation of detached 137 

leaves (DET) was assessed using RNAseq. Mature leaves number six (see Materials 138 

and Methods) were sampled in triplicate at 0 and 2 days in the dark (dd). Using these 139 

time points allowed us to profile early events of the senescence program before any 140 

distinct visible phenotype (Fig. 1A).  141 

In wild type (WT) leaf, a total of 21,403 genes were detected (genes with normalised 142 

counts ≥ 1 in at least one of the samples), amongst these 6,124 (29% of detected) 143 

genes were considered as being differentially expressed during DET (after applying 144 

EBSeq test using a posterior probability of differential expression ≥ 0.95 and a 145 

minimum fold change of two times). Of these, 3,389 genes were upregulated after 146 

dark treatment (Table 1). In an analogous experiment on Arabidopsis leaf 147 

senescence using microarrays, 2,153 genes were differentially expressed between 0 148 

and 2 dd, of which 65% (1,353) were common to our dataset (Supplemental Fig S1) 149 

(Van der Graaff et al., 2006). Another microarray-based analysis of the transcriptome 150 

during natural leaf senescence in Arabidopsis showed perturbation in 6,370 genes, of 151 

which 2,825 (44%) were common to our differentially expressed genes Supplemental 152 

Fig S1) (Breeze et al., 2011). These results show the biological relevance of our data. 153 

The differences observed being likely due to the biases associated with different 154 

techniques used to induce senescence. A relatively high number of genes have been 155 

shown to be similarly expressed when comparing different methods of senescence 156 

induction, such as DET, dark incubation of attached leaves and natural senescence 157 

(Van der Graaff et al., 2006). Analysis of the WT transcriptome signature using Gene 158 

Ontology (GO) terms revealed that photosynthesis, starch metabolism, 159 

glucosinolates, tetrapyrrole synthesis and redox terms were under-represented 160 

during DET (Fig. 2A), while terms gathering genes involved in lipid, amino acid and 161 

protein degradation but, more interestingly, also micro-RNA, retrotransposons and 162 

the bZIP family of transcription factors were over-represented during senescence 163 

(Fig. 2A). This is consistent with described major gene expression changes during 164 

leaf senescence (Van der Graaff et al., 2006; Breeze et al., 2011).  165 

 166 

Disruption of Specific CCGs Modifies Phyllobilin Accumulation that Lead to 167 

Distinct Stay-Green Phenotypes 168 

In order to determine the extent to which the disruption of the PAO/phyllobilin 169 

pathway influences the global leaf senescence process, we analysed three mutants 170 
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that are defective in this pathway: nye1-1, pph-1 and pao1, and analysed 171 

senescence of detached leaves after dark incubation (Pružinská et al., 2003; Ren et 172 

al., 2007; Schelbert et al., 2009). After 2 dd, chl was retained in these lines (Fig. 1A 173 

and B). Noteworthy, pao1 contained slightly less chl before dark incubation (0 dd) in 174 

comparison to WT (Fig. 1B). In addition to chl retention, pao1 accumulated pheide a 175 

during dark incubation and exhibited a light-independent cell death (LICD) phenotype 176 

(Pružinská et al., 2003; Hirashima et al., 2009), as deduced from an increase in 177 

electrolyte leakage of pao1 leaf tissue in the dark (Fig. 1C). The molecular basis of 178 

LICD in this line is unclear, but this phenotype is specific to pao1, and may to some 179 

extent be linked to pheide a accumulation (Fig. 1D) (Hirashima et al., 2009). Absence 180 

of PAO in pao1 led to a complete halt of the PAO/phyllobilin pathway with virtually no 181 

phyllobillin accumulation (Fig. 1D). By contrast, nye1-1 and pph-1 accumulated the 182 

major phyllobilins of Arabidopsis to about one third of the WT level after two days of 183 

dark treatment but virtually no pheide a (Fig. 1D) (Christ et al., 2013).  184 

Stopping the PAO/phyllobilin pathway artificially at various levels seems to imply 185 

largely distinct phenotypic modifications. On the top of its relatively well described 186 

implication on nitrogen remobilisation (mostly due to photosystem degradation), the 187 

control of chl catabolite homeostasis within the degradation pathway is a potentially 188 

overlooked signal that may inform the cell about the status of chloroplast integrity or 189 

metabolism.  190 

 191 

Transcriptome Analysis of CCG Mutants Gives Insight Into Molecular Bases of 192 

Phenotypic Variations Observed in the Dark 193 

We then assessed alterations in the leaf transcriptome during DET in all three 194 

mutants. In nye1-1 and pph-1, 6,227 and 6,764 genes were differentially expressed 195 

between 0 and 2 dd, respectively, numbers that were comparable to the changes 196 

observed in WT (Table 1). By contrast, about two times more genes (11,408) were 197 

differentially expressed in pao1 during DET (Table 1). In order to detect variations in 198 

gene expression that were specific to mutations of one or several of the CCGs, 199 

genes differentially expressed during DET in every line were compared (Fig. 2B, C). 200 

2,692 and 3,524 genes, respectively, were specifically down- and up-regulated in 201 

pao1, while for pph-1 (76 and 139 genes, respectively) and nye1-1 (265 and 326 202 

genes, respectively) these numbers were much smaller (Fig. 2C). A core set of 3,203 203 

genes (1,912 up- and 1,291 down-regulated) showed similar patterns of expression 204 
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in all four lines. The most enriched genes among these were genes involved in 205 

catabolic processes, senescence, aging and autophagy, while genes involved in 206 

chloroplast and various photosynthesis-related processes were the most repressed 207 

ones (Supplemental Dataset 2). Analysis of GO term enrichment showed that altered 208 

genes showing a very similar pattern in all four lines included genes involved in 209 

photosynthesis, starch metabolism, glucosinolate synthesis (down-regulated) as well 210 

as protein and amino acid degradation (up-regulated) (Fig. 2A). Collectively, this 211 

indicated that mutations in any of the three CCGs, despite clear phenotypic 212 

differences in these lines, had little effect on general background senescence 213 

processes.  214 

Most of the genes whose expression specifically changed in pao1 while remaining 215 

unchanged in all other lines belonged to GO terms related to ethylene and WRKY 216 

and PHOR1 transcriptional regulators (Fig. 2A). Among GO terms that were 217 

significantly enriched in pao1, categories of genes involved in various stresses were 218 

the most enriched ones: these include response to stress, stimulus, chitin, 219 

carbohydrate, chemical stimuli as well as genes involved in post-transcriptional 220 

processes (Supplemental Dataset 2).  221 

Thirty-six of the 50 most highly expressed genes after 2 dd were different between 222 

pao1 and WT (Supplemental Dataset 3), among them, PLEIOTROPIC DRUG 223 

RESISTANCE 12 (PDR12/ABCG40), involved in ABA transport (Kang et al., 224 

2010)(Kang et al., 2010)(Kang et al., 2010), LIPOXYGENASE 1 (LOX2) involved in 225 

JA synthesis (Wasternack and Feussner, 2018), as well as NYE1. Taken together 226 

our data suggest major remodelling of gene expression in pao1 leaves upon dark 227 

incubation, while absence of NYE1 or PPH only mildly affect the senescence leaf 228 

transcriptome, at least at an early stage of senescence.  229 

 230 

The PAO/Phyllobilin Pathway Is Mainly Regulated at the Transcriptional Level 231 

Most of the core CCGs like PAO, PPH and NYE1, as well as genes encoding some 232 

catabolite-modifying enzymes, i.e. METHYLESTERASE 16 (MES16) and 233 

CYTOCHROME P450 MONOOXYGENASE 89A9 (CYP89A9) were transcriptionally 234 

up-regulated during DET in WT (Supplemental Dataset 1 and Fig. 3) (Sakuraba et al., 235 

2012). In all four lines studied, genes encoding enzymes involved in the oxidative half 236 

of the chl cycle, namely CHLOROPHYLL A OXYGENASE (CAO) and 237 

CHLOROPHYLL SYNTHASE (CHLG), were down-regulated, whereas genes 238 
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involved in chl b to chl a conversion (NYC1 and NOL) were up-regulated. This is 239 

consistent with the assumption that conversion of chl b to chl a is a prerequisite for 240 

chl degradation (Sakuraba et al., 2010). Noteworthy, expression of RCCR was 241 

repressed during DET and, thus, not correlated with the expression of PAO or of any 242 

of its proposed interacting partners (Fig. 3) (Sakuraba et al., 2012). Except for a slight 243 

decrease in HCAR, nye1-1 and pph-1 did not exhibit significant differences in CCG 244 

expression compared to WT. By contrast, major changes were observed in pao1 with 245 

strong overexpression of NYE1 and NYC1 (but not NOL) and down-regulation of 246 

CAO and HCAR, suggesting a “feed-forward” regulation of the catabolic pathway.  247 

 248 

The PAO/Phyllobilin Pathway Is Controlled by Multiple Intertwined Signalling 249 

Pathways 250 

In order to evaluate the impact of CCG mutations on upstream regulators of the 251 

pathway, we extracted expression data for signalling pathways involving JA, ET, ABA 252 

and light signalling in all four lines as described (Kuai et al., 2018) (Fig. 4). Out of the 253 

41 genes represented here that are key genes involved in these hormonal pathways, 254 

only JAZ10 was significantly downregulated in pao1 as compared to WT (none in 255 

pph-1 or nye1-1, Supplemental Dataset 5), suggesting minor function of the hormonal 256 

cues before dark incubation. Expression of genes involved in ET and ABA signalling 257 

was mostly up-regulated in all lines during dark-induced senescence. The most 258 

striking difference between pao1 and all other three lines was the pattern of 259 

expression of genes involved in JA signalling: COI1 expression was increased 260 

significantly during dark treatment in WT, pph-1 and nye1-1, but not in pao1, while 261 

nine of the twelve jasmonate-ZIM domain (JAZ) proteins showed an inverse pattern 262 

of expression. Intriguingly, among the very few genes differentially expressed after 263 

dark treatment in both nye1-1 and pph-1, a subset of JAZ genes, namely JAZ1, 264 

JAZ5, JAZ7, JAZ8 and JAZ10, were significantly down-regulated compared to WT 265 

(Supplemental Dataset 1).  266 

It also appears that expression of transcription factors that are repressed by JAZ 267 

proteins like MYC2/3 and downstream factors like NAC019/055 and 072 were also 268 

up-regulated exclusively in pao1 at 2 dd (Fig. 4).  269 

 270 

Accumulation of Pheide a in pao1 Modifies JA-Related Signalling 271 
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Having noticed strong variations of JA-related gene expression in pao1 after dark 272 

incubation, we analysed whether JA synthesis and levels of JA metabolites were also 273 

modified in this line. To this end, JA precursors (12-OPDA, dn-OPDA, OPC6, and 274 

OPC4) as well as JA and some of its derivatives (JA-Val, JA-Ile, JA-Leu, 12OH-JA-275 

Ile, 12COOH-JA-Ile, 12O-Glc-JA and 12HSO4-JA) were quantified in both WT and 276 

pao1 (Fig. 5 and Supplemental Dataset 4). JA levels were significantly increased in 277 

WT during dark incubation, but in pao1, JA accumulated with an order of magnitude 278 

higher, i.e. up to 2 nmol g-1 fresh weight (Fig. 5 and Supplemental Dataset 4). Levels 279 

of endogenous JA after dark treatment are known to increase in WT (Seltmann et al., 280 

2010a) and are regulated under strong circadian control (Goodspeed et al., 2012). 281 

However, the dark-induced increase of JA in WT not necessarily triggers JA-282 

signalling pathways (Seltmann et al., 2010b). In pao1, not only JA levels were 283 

dramatically increased, but also downstream metabolites, i.e. JA-Val, JA-Leu, 12OH-284 

JA-Ile and the active phytohormone JA-Ile (Fig. 5 and Supplemental Dataset 4). 285 

Genes involved JA biosynthesis (LOX2, AOC1, AOC2, OPR3) and degradation 286 

(CYP94B1, CYP94B3) were also strongly upregulated in pao1. Interestingly, 287 

expression of JMT and JAR1 were unchanged in both lines.  288 

Taken together, these data show a complex rewiring of the JA signalling pathway and 289 

indicate a link between the pao1 phenotype and JA responses. Next, we tried to 290 

decipher the exact extend of this feedback using patterns of gene co-expression. 291 

 292 

Co-Expression Analysis Reveals Structure of Regulatory Networks of the 293 

PAO/Phyllobilin Pathway 294 

To further characterise a possible link between the PAO/phyllobilin pathway and JA 295 

signalling, we computed the genome-wide expression data for all four lines studied 296 

and tried to decipher co-expression patterns underpinning relevant gene networks. 297 

The basic assumption being that genes that show a similar pattern of expression 298 

during DET and/or in various genetic backgrounds could be involved in a similar 299 

process and most probably share similar regulating pathways. We used Weighted 300 

Genome Co-expression Network Analysis (WGCNA) (Zhao et al., 2010) to perform 301 

comparative analysis of gene co-expressed modules among darkness treatment in all 302 

four lines. Genes were clustered in 16 co-expression modules, each harbouring 303 

genes that generally showed a similar pattern of expression across genetic 304 

background and treatment (Fig. 6A, Supplemental Fig. S2). Three modules (blue, 305 
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pink and yellow) were highly correlated with the darkness treatment. The pink and 306 

yellow modules contained genes that showed consistent changes expression during 307 

dark incubation in all four lines, but not the blue motif that did not correlate to pao1 308 

after 2 dd (Fig. 6B). Modules were subsequently characterised using GO term 309 

enrichment (Fig. 6B & Supplemental Dataset 6). All three motives were enriched in 310 

terms related to mRNA catabolic process, fatty acid catabolism, senescence and 311 

autophagy (Supplemental Dataset 6). Red, black and green modules that mostly 312 

correlated with pao1 after dark incubation were enriched in terms representing 313 

various responses to stress as well as hormonal response (namely ET, JA and ABA 314 

responses, Supplemental Dataset 6). Interestingly, PPH is the hub gene. i.e. the 315 

most highly connected gene in this module (Langfelder and Horvath, 2008), of the 316 

blue module that contains most CCGs (PAO, CYP89A9, PPH, NYE2) (Fig. 6C). This 317 

module may gather conserved elements of the response to darkness. Finally, 318 

networks of genes neighbouring expression for CCGs and known transcriptional 319 

regulators of the PAO/phyllobilin pathway (as in Fig. 4) were extracted and their 320 

respective position in the networks visualised (Fig. 6C, for the sake of clarity, only the 321 

three most correlated genes are shown here). Surprisingly, not all CCGs were co-322 

expressed in a unique cluster, and not necessarily with the predicted pathway, they 323 

were shown to interact with (Fig. 6C). For example, MYC2/3/4 and JAZ genes were 324 

scattered across various modules, whereas genes involved in ethylene signalling 325 

(EIN2, EIN3 and ERF17) were mostly grouped within the blue module. As shown 326 

before (Hickman et al., 2017), differences in the networks of JA-related genes may 327 

be explained by the interplay between several factors that are linked to the treatment 328 

and genotypes used here and that are thus represented in these data, i.e. dark 329 

treatment, pheide a and JA. 330 

Validation of the clustering approach can be seen, for example, by the fact that 331 

NAC019, NAC055 and NAC072, clustering closely together, have already been 332 

shown to be homologs (Zheng et al., 2012). Similarly, ORE1 and ANAC046 are 333 

closely related, but act in distinct clusters, suggesting a distinct regulation mechanism 334 

as shown recently (Park et al., 2018). The WGCNA approach can also be a fruitful 335 

approach to identify new candidates in the PAO/phyllobilin pathway, like for example 336 

phytanoyl CoA 2-hydrolase (phyH) that was suggested to be involved in phytol chain 337 

degradation (Araújo et al., 2011) and clustered within the yellow module with MES16 338 

and NYC1. Taken together, the co-expression data suggest that the PAO/phyllobilin 339 
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pathway is regulated by multiple layers of transcriptional factors. This approach may 340 

help deciphering multiple gene networks involved in the regulation of chl degradation 341 

that are tightly associated with developmental cues, nitrogen levels, and biotic and 342 

abiotic stresses. Further work is necessary to confirm the relative influence of each of 343 

these clusters.  344 

 345 

 346 

DISCUSSION 347 

We have shown that the PAO/phyllobilin pathway is mostly regulated at the 348 

transcriptional level during dark-induced senescence. A tight control of the 349 

expression of genes involved in this pathway is necessary to prevent possible 350 

oxidative damage due to a release of toxic tetrapyrrole breakdown intermediates. By 351 

genetically modulating the homeostasis of chl catabolites, we unravelled a retrograde 352 

signalling function for the PAO/phyllobilin pathway that uses JA-signalling to 353 

coordinate chloroplasts and the nucleus during dark-induced senescence. 354 

 355 

Pheide a Is a Key Signalling Molecule of Chloroplast Function 356 

The pao1 mutant has originally been identified in a screen for lines that show 357 

abnormal response to pathogens by accelerated severe cell death (Greenberg and 358 

Ausubel, 1993). The basis of this light-dependent cell death phenotype is relatively 359 

well understood (Yang et al., 2004; Pružinská et al., 2005). Pheide a phototoxicity is 360 

even observable in mammalian systems (Jonker et al., 2002). However, another 361 

peculiar feature of pao1 is a light-independent cell death phenotype, whose 362 

underlying molecular basis is still unclear (Hirashima et al., 2009) (Fig. 1C). Two 363 

hypotheses were proposed to explain cell death caused by pheide a accumulation in 364 

the dark: it may act directly on chloroplast membrane integrity (via lipid peroxidation 365 

or increased oxidative stress levels) or it may itself be a signalling molecule 366 

regulating cell death. The acd2-2 mutant that is deficient in the next committed step 367 

of the PAO/phyllobilin pathway, i.e. red chlorophyll catabolite reductase (RCCR) 368 

accumulates red chlorophyll catabolite (RCC), a linear tetrapyrrole. Surprisingly, 369 

although RCC is phototoxic like pheide a, acd2-2 is exclusively affected in a light-370 

dependent manner (Supplemental Fig. S3) (Greenberg et al., 1994; Pružinská et al., 371 

2007). The main difference is that pheide a, unlike RCC, is likely trapped within the 372 

chloroplast. Indeed, miss-targeting of the cytosolic phyllobilin-modifying enzyme 373 
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MES16 into the chloroplast in a pao1 background revealed that in vivo pheide a is 374 

not a substrate for MES16. It can, therefore, be concluded that pheide a is unlikely to 375 

be released from the chloroplast (Christ et al., 2012), in contrast to RCC, which has 376 

been shown to (partially) localize to the vacuole (Pružinská et al., 2007).  377 

Independent of the exact molecular basis underlying light-independent cell death in 378 

pao1, pheide a appears to have two specific properties: it is a metabolic “bottleneck” 379 

of degradation, i.e. once formed, chl molecules must be irreversibly degraded further, 380 

and it exhibits certain light-independent bioactive properties that act on chloroplast 381 

homeostasis. These two features render pheide a a very good candidate compound 382 

for sensing the rate at which chl is degraded, not only in the context of 383 

(natural/induced) senescence, but also during the pathogen-induced hypersensitive 384 

response (Mur et al., 2010). Sensing the rate at which chl is degraded is essential to 385 

coordinate various senescence processes such as nitrogen remobilisation 386 

(Hörtensteiner and Feller, 2002). Taking advantage of our large dataset, we propose 387 

a model of how pheide a-dependent signalling possibly works. 388 

 389 

Pheide a Metabolism Underpins a Specific Jasmonic Acid Response 390 

Absence of PAO during dark incubation and the concomitant accumulation of pheide 391 

a seem to be characterised by enhanced gene expression of most of the genes from 392 

JA synthesis and signalling pathways, as well as by an increase in JA and many of its 393 

derivatives. One common feature among the CCG mutant lines studied here is the 394 

variation of levels/flux of pheide a: lower amounts in nye1-1/pph-1 (formation blocked 395 

by up-stream mutations) vs. higher amounts (further degradation blocked) in pao1. 396 

We propose a model, in which the quantity of pheide a that accumulates in/flows 397 

through the PAO/phyllobilin pathway at a defined time may act as a signal that 398 

triggers a specific JA response (Fig. 7).  399 

Noteworthy, JA levels increase during dark-induced senescence in WT plants, but 400 

this is not necessarily followed by a coordinated JA response (Seltmann et al., 401 

2010b). Prolonged darkness treatment is thought to induce degradation of 402 

chloroplast membranes and leads to an increase in lipid β-oxidation (Seltmann et al., 403 

2010a). Breakdown of membrane lipids leads to a considerable increase in free α-404 

linolenic acid, a precursor of JA. However, in pao1, even if the extent remains 405 

unknown to which dark-dependent pheide a accumulation may damage chloroplast 406 

membranes, we could observe a massive increase of JA, way above the levels of 407 
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WT, and a change in most genes associated with the JA response. All these 408 

elements are strongly indicative of a fully coordinated and transduced JA response. 409 

This response is partially similar to JA responses observed during defense processes 410 

against insects, necrotrophic pathogens or ozone stress (Howe et al., 2018). It is 411 

important to note, however, that increase in LOX expression resulting in increased 412 

LOX activity might in itself be sufficient to increase lipid peroxidation and changes in 413 

α-linolenic acid availability and modulate oxidative stress that in turn would 414 

deteriorate chloroplast homeostasis (Wasternack, 2014; Mata-Perez et al., 2015; 415 

Wasternack and Feussner, 2018).  416 

The pheide a-dependent JA response could also be differentiated across the CCG 417 

mutants studied here depending on their level of impairment in the pathway. Indeed, 418 

expression of several JAZ genes was reversed in pao1 as compared to nye1-1/pph-1 419 

(Fig. 4). Simultaneous increase in JAZ expression and JA accumulation might be 420 

indicative of a heavy transduction load of the pathway (i.e. JAZ degradation by 421 

SCFCOI1) making new synthesis of JAZ transcriptional inhibitors necessary. 422 

The co-expression patterns of the JA signalling networks confirm that some of the JA 423 

signalling elements were co-expressed with various CCGs, but also illustrate the 424 

underlying complexity of the JA response (Fig. 6) (Hickman et al., 2017). For 425 

example, not all MYC2 target genes are triggered in the same manner after pheide a 426 

accumulation: the defensin gene PDF1.2 (At5g44420), a known marker of ET and JA 427 

(Lorrain et al., 2003), or VSP1 (At5g24780), induced by wounding and JA, were not 428 

differentially expressed in any of the CCG mutants, whereas PR4 (At3g04720), a 429 

pathogenesis-related gene, was significantly overexpressed during dark incubation in 430 

pao1 exclusively. Further studies deciphering the various interacting sub-networks 431 

involved in the JA response upon developmental and various pathogenic cues will be 432 

needed to possibly explain these discrepancies.  433 

Several independent pieces of evidence point towards an effect of chl degradation on 434 

JA signalling. For example, NYE mutants are less sensitive to pathogens and have a 435 

reduced JA response compared to WT (Mecey et al., 2011). Thus, preventing chl 436 

catabolites to be metabolised by the pathway by mutating NYE can apparently have 437 

some protective effect. Interestingly, pxa1, a mutant impaired in a peroxisomal ABC 438 

transporter essential for fatty acid degradation, accumulates α-linolenic acid and 439 

pheide a during extended darkness (Kunz et al., 2009; Nyathi et al., 2010). This 440 
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further supports the idea of an intricate link between chloroplast membrane integrity, 441 

levels of pheide a and JA signalling.  442 

 443 

Pheide a Signalling: Another Porphyrin-Based Retrograde Signal? 444 

Tetrapyrrole intermediates, like Mg-protoprophyrin IX or heme have been long 445 

suggested to be involved in plastid-to-nucleus retrograde signalling (Chi et al., 2013). 446 

Coordination of chloroplast function with nuclear genome expression is equally 447 

important during early developmental stages as during senescence. Interestingly, 448 

hy1-101 (also referred to as gun2), a mutant deficient in HEME OXYGENASE 1 449 

(HO1) that catalyses heme degradation into biliverdin IX as a key step for 450 

phytochrome chromophore biosynthesis, constitutively accumulates high amounts of 451 

JA and high levels of JA-responsive genes (Zhai et al., 2007). Deficiency in HO1 452 

leads to the accumulation in the chloroplast of protoporphyrin IX, a circular porphyrin 453 

with a structure similar to pheide a. It remains to be shown, to which extent this 454 

phenotype is similar to the one observed in pao1 and whether porphyrin-induced JA 455 

responses could be effectively coordinated signalling mechanisms, by which the 456 

status of the chloroplast can be further transduced to the nucleus during both 457 

synthesis and degradation of chl (Lin et al., 2016). 458 

 459 

 460 

CONCLUSION 461 

Taken together, our data show that the homeostasis of chl derivatives in the 462 

PAO/phyllobilin pathway impacts leaf metabolism; specifically, the rate of 463 

accumulation of pheide a triggers JA-related responses that, to a certain extent, 464 

mimic pathogen responses. The JA-induced transcription factor MYC2 is involved in 465 

PAO/phyllobilin pathway activation by directly binding to the promoter of various 466 

CCG, like PAO, NYC1 and NYE1 (Zhu et al., 2015; Kuai et al., 2018). Here, we show 467 

a positive feedback loop mediated by pheide a, that in turn activates JA-responsive 468 

genes. While JA signalling is central to senescence regulation, this suggests an 469 

additional signalling function of the PAO/phyllobilin pathway besides default 470 

porphyrin detoxification.  471 

Pheide a has likely been recruited during evolution as a signalling molecule of the 472 

chloroplast metabolic status, due to its particular position within the chl degradation 473 

pathway and because of its intricate chloroplast toxicity. Pheide a signalling may act 474 
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via accumulation of JA and its bioactive derivatives that in turn induce JA-dependent 475 

responses. However, the exact molecular mechanism, in particular the nature of the 476 

retrograde signal(s) that links chloroplast pheide a-sensing to nuclear variation in 477 

gene expression remains to be identified. To the best of our knowledge, this report is 478 

the first to postulate retrograde signalling during leaf senescence. We show how 479 

critical the control of such signals is during late leaf development stages. This 480 

proposed mechanism allows a chloroplast-controlled remodelling of the nuclear 481 

transcriptome and aims at an efficient coordination of the cellular fate during 482 

senescence.  483 

 484 

 485 

MATERIALS AND METHODS 486 

Plant Material  487 

WT and CCG mutant lines, i.e. the T-DNA lines pao1 (Pružinská et al., 2005) and 488 

pph-1 (Schelbert et al., 2009) and the EMS line nye1-1 (Ren et al., 2007), were 489 

grown in short day condition (8 h light/16 h dark, 23°C, 65% humidity) for eight 490 

weeks. At least four leaves n°8 for each triplicates were harvested and frozen in 491 

liquid nitrogen at 0 days in the dark (dd) and after 2 days incubation on H20-soaked 492 

filter paper in complete darkness at 23°C.  493 

 494 

RNA Isolation and Sequencing 495 

RNA was isolated using RNAeasy minikit (Qiagen) together with on-column DNAse 496 

treatment. Quality was assessed using Bioanalyzer RNA nanochip (Agilent). Three 497 

replicates samples for each condition were multiplexed randomly on two lanes (12 498 

samples per lane) of HiSeq 2500 (Illumina).  499 

 500 

Read Processing and Gene Expression Analysis 501 

Single-end 100 bp reads were subjected to adapter trimming and removal of low 502 

quality bases in leading, trailing and sliding window (4 bp) mode with Trimmomatic 503 

v0.35 (Bolger et al., 2014). Reads shorter than 40 bp after trimming were discarded. 504 

Remaining reads were aligned to the protein-coding transcripts from the ENSEMBL 505 

release of the TAIR10 Arabidopsis thaliana transcriptome (Swarbreck et al., 2008) 506 

using Bowtie v1.0.1 (Langmead, 2010). Expression of genes and transcripts was 507 

quantified using RSEM v1.2.11 taking into account strand-specific information (Li and 508 
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Dewey, 2011). Differential expression was estimated using EBSeq by estimating the 509 

posterior probability of genes to be differentially expressed across all conditions 510 

(Leng et al., 2013). Coverage data were visualized using IGV viewer 2.3.34 511 

(Thorvaldsdottir et al., 2013) using RSEM-generated .bam files (see Supplemental 512 

Data). Gene ontology enrichment was performed using a corrected Benjamini-513 

Hochberg enrichment score implemented in Pageman (Usadel et al., 2006). 514 

 515 

Co-Expression Network Analysis 516 

WGCNA was used to identify modules gathering genes showing similar pattern of 517 

expression across all conditions (Langfelder and Horvath, 2008). Genes below 50 518 

mean read count were excluded, leaving 14,691 genes in the analysis. An unsigned 519 

network was constructed from a signed topological overlap matrix and module 520 

detection was performed using the default deepSplit setting of 2. In order to visualize 521 

the direct subset of genes co-regulated with CCG and selected regulatory gene 522 

candidates, subnetworks were generated and visualized using VisANT 5.51 (Hu et 523 

al., 2007). In order to evaluate the extent to which expression of genes involved in 524 

the regulation of the PAO/phyllobilin pathway (all present in Fig. 4) were linked to 525 

CCE genes, subnetworks containing either of these genes (CCGs and regulators) 526 

were extracted from the WGCNA networks and the three most connected genes for 527 

each gene were displayed (Fig. 6C). Larger nodes show the input genes and smaller 528 

nodes the top three connected genes for each input gene. Edges represent 529 

connection between the genes and node colors represent the modules in which the 530 

genes clustered.  531 

 532 

Chlorophyll Extraction 533 

Chl was extracted from liquid-nitrogen homogenised tissue using extraction buffer 534 

(90% cold acetone and 10% 0. 2 M Tris-HCl, pH 8) (Guyer et al., 2014). Chl content 535 

was determined by photospectrometry at A649 and A665. Chl concentrations were 536 

calculated as published (Strain et al., 1971).  537 

 538 

Chlorophyll Catabolites Profiling  539 

Metabolite profiling was performed by liquid chromatography (LC)-tandem mass 540 

spectrometry (MS) (LC-MS/MS) according to a published protocol (Christ et al., 541 

2016). Briefly, leaf samples from 5 replicates were harvested, frozen and 542 
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homogenized in liquid nitrogen. Metabolites were extracted in five volumes of ice-cold 543 

extraction buffer [80% methanol, 20% water, 0.1% formic acid (v/v/v)] and centrifuged 544 

(5 min at 14,000 rpm, 4°C). Supernatants were then analyzed by LC-MS/MS.  545 

Samples were run on an Ultimate 3000 Rapid Separation LC system (Thermo Fisher 546 

Scientific) coupled to a Bruker Compact ESI-Q-TOF (Bruker Daltonics). The system 547 

consisted of a 150 mm C18 column (ACQUITY UPLC BEH, 1.7 μm; Waters Corp., 548 

Milford, MA, USA). In order to efficiently separate phyllobilins, the following gradient 549 

of solvent B [acetonitrile with 0.1% (v/v) formic acid] in solvent A [water with 0.1% 550 

(v/v) formic acid] was run at a flow rate of 0.3 mL min−1: 5% B for 0.5 min, 5% B to 551 

100% B in 11.5 min, 100% B for 4 min, 100% B to 5% B in 1 min and 5% B for 1 min. 552 

Pheide a and phyllobilins were quantified from extracted ion chromatograms as 553 

relative peak areas using QuantAnalysis (Bruker Daltonics). 554 

 555 

Determination of Phytohormones 556 

Extraction was performed as previously described for lipids (Matyash et al., 2008) 557 

with some modifications. Five replicates were used for each condition and each time 558 

point. Plant material (100 mg) was extracted with 0.75 mL of methanol containing 10 559 

ng D5-JA (C/D/N Isotopes Inc., Pointe-Claire, Canada), 30 ng D5-oPDA, 10 ng D4-560 

JA-Leu (both kindly provided by Dr. Otto Miersch, Halle, Germany) as internal 561 

standards. After vortexing, 2.5 mL of methyl-tert-butyl ether (MTBE) were added and 562 

the extract was shaken for 1 h at room temperature. For phase separation, 0.6 mL 563 

H2O were added. The mixture was incubated for 10 min at room temperature and 564 

centrifuged at 450 g for 15 min. The upper phase was collected and the lower phase 565 

re-extracted with 0.7 mL methanol/water (3:2.5, v/v) and 1.3 mL MTBE as described 566 

above. The combined upper phases were dried under streaming nitrogen and re-567 

suspended in 100 μL of acetonitrile/water (1:4, v/v) containing 0.3 mM NH4COOH 568 

(adjusted to pH 3.5 with formic acid).  569 

Reversed phase separation of constituents was achieved by LC using an ACQUITY 570 

UPLC system (Waters) equipped with an ACQUITY UPLC HSS T3 column (100 mm 571 

x 1 mm, 1.8 µm; Waters). Aliquots of 10 µL were injected. Elution was adapted from 572 

a published procedure (Balcke et al., 2012). Solvent A and B were water and 573 

acetonitrile/water (9:1, v/v), respectively, both containing 0.3 mM NH4COOH 574 

(adjusted to pH 3.5 with formic acid). The flow rate was 0.16 mL min-1 and the 575 

separation temperature held at 40°C. Elution was performed with two different binary 576 
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gradients. Elution profile 1 was as follows: 10% B for 0.5 min, to 40% B in 1.5 min, 577 

40% B for 2 min, to 95% B in 1 min, 95% B for 2.5 min; elution profile 2: 10% B for 578 

0.5 min, to 95% B in 5 min, 95% B for 2.5 min. In both elution profiles, the column 579 

was re-equilibrated in 10% B in 3 min. 580 

Nano-electrospray ionization (nanoESI) analysis was achieved using a chip ion 581 

source (TriVersa Nanomate; Advion BioSciences, Ithaca, NY, USA). For stable 582 

nanoESI, 70 µL min-1 of 2-propanol/acetonitrile/water (7:2:1, v/v/v) containing 0.3 mM 583 

NH4COOH (adjusted to pH 3.5 with formic acid) delivered by a Pharmacia 2248 584 

HPLC pump (GE Healthcare, Munich, Germany) were added just after the column via 585 

a mixing tee valve. By using another post column splitter, 502 nL min-1 of the eluent 586 

were directed to the nanoESI chip with 5 µm internal diameter nozzles. Jasmonates 587 

were ionized in negative mode at -1.7 kV (after UPLC separation with elution profile 588 

1) and in positive mode at 1.3 kV (after UPLC separation with elution profile 2), 589 

respectively, and determined in scheduled multiple reaction monitoring mode with an 590 

AB Sciex 4000 QTRAP tandem mass spectrometer (AB Sciex, Framingham, MA, 591 

USA). Mass transitions were as previously described (Iven et al., 2012), with some 592 

modifications as follows: 214/62 [declustering potential (DP) 35 V, entrance potential 593 

(EP) 8.5 V, collision energy (CE) 24 V] for D5-JA, 209/59 (DP 30 V, EP 4.5 V, CE 24 594 

V) for JA, 237/165 (DP 45 V, EP 6 V, CE 24 V) for OPC4, 265/221 (DP 50 V, EP 6 V, 595 

CE 24 V) for OPC6, 305/97 (DP 30 V, EP 4 V, CE 32 V) for 12HSO4-JA, 338/130 (DP 596 

45 V, EP 10 V, CE 30 V) for 12OH-JA-IIe, 352/130 (DP 45 V, EP 10 V, CE 30 V) for 597 

12COOH-JA-IIe, 387/59 (DP 85 V, EP 9 V, CE 52 V) for 12O-Glc-JA, 325/133 (DP 65 598 

V, EP 4 V, CE 30 V) for D4-JA-Leu, 308/116 (DP 45 V, EP 5 V, CE 28 V) for JA-Val, 599 

322/130 (DP 45 V, EP 5 V, CE 28 V) for JA-Ile, 296/170.2 (DP 65 V, EP 4 V, CE 28 600 

V) for D5-OPDA, 263/165 (DP 40 V, EP 5 V, CE 20 V) for dnOPDA and 291/165 (DP 601 

50 V, EP 5 V, CE 26 V) for 12-OPDA. The mass analyzers were adjusted to a 602 

resolution of 0.7 amu full width at half-height. The ion source temperature was 40°C, 603 

and the curtain gas was set at 10 (given in arbitrary units). Quantification was carried 604 

out using a calibration curve of intensity (m/z) ratios of [unlabeled]/[deuterium-605 

labeled] vs. molar amounts of unlabeled (0.3-1000 pmol) compound. Due to the lack 606 

of standards, only relative amounts of 12HSO4-JA, 12OH-JA-Ile, 12COOH-JA-Ile and 607 

12O-Glc-JA were determined.  608 

 609 

Ion Leakage Measurements 610 
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For determining cell death in the lines during senescence, leaf discs (0.4 cm 611 

diameter) were punched with a cork-borer under green safe light, avoiding the mid 612 

vein. They were placed in a multi-well plate ion conductivity meter (Reid & 613 

Associates, South Africa) (1.5 mL H2O and two discs per well) and relative ion 614 

leakage (displayed as µS) was determined in the dark.  615 

 616 

Accession Number 617 

The raw sequencing data from RNAseq are available in the ArrayExpress database 618 

(www.ebi.ac.uk/arrayexpress) under accession number (E-MTAB-6965).  619 

 620 

 621 

Supplemental Data 622 

The following supplemental materials are available. 623 

 624 

Supplemental Figure S1. Overlap between the data presented here and two 625 

independent leaf senescence transcriptome datasets.  626 

 627 

Supplemental Figure S2. Dendrogram of the modules generated by WGCNA 628 

 629 

Supplemental Figure S3. Electrolyte leakage data of pao1 and acd2-2 mutants 630 

during dark-induced senescence.  631 

 632 

Supplemental Figure S4. Mapping of the RNAseq reads to genes of interest in 633 

respective mutant lines.  634 

 635 

Supplemental Dataset S1. RNAseq gene expression data during DET in the four 636 

lines. 637 

 638 

Supplemental Dataset S2. GO terms enrichment for each pairwise comparison of 639 

gene expression. 640 

 641 

Supplemental Dataset S3. List of 50 most highly expressed genes after dark 642 

incubation. 643 

 644 
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Supplemental Dataset S4. Data from quantification of jasmonic acid and its 645 

derivatives used to draw Fig. 5.  646 

 647 

Supplemental Dataset S5. Expression of hormone-related genes in the four lines 648 

before senescence induction. 649 

 650 

Supplemental Dataset S6. GO terms enrichment of all 16 clusters originating from 651 

the WGCNA analysis and WGCNA scoring matrix for dark-treated leaves across all 652 

lines and for pao1 after 2 dd incubation. 653 

 654 
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FIGURE LEGENDS 880 

Figure 1. Phenotypic characterisation of CCGs mutants during dark-induced 881 

senescence of detached leaves.  882 

A WT, pao1, nye1-1 and pph-1 detached leaves before and after 2 and 5 days of 883 

dark induced senescence (dd). B Chlorophyll degradation of CCG mutants during 884 

dark-induced senescence. C Electrolyte leakage of CCG mutants during dark-885 

induced senescence. D Profile of the accumulation of pheophorbide a and the major 886 

phyllobilin (DNCC_618) in CCG mutants during dark-induced senescence. Data in B-887 

D are mean values of a representative experiment with three (B), at least ten (C) and 888 

five (D) replicates, respectively. Error bars indicate SD. 889 

  890 

Figure 2. RNAseq profiling of CCG mutants provide new insight into the 891 

relationship of the PAO/phyllobilin pathway to global leaf senescence.  892 

A Major enriched gene ontology terms identified in the three CCG mutants during 893 

dark-induced senescence (0 dd vs 2 dd) using Wilcoxon test implemented in 894 

Pageman tool (Usadel et al., 2006). B Principal Component Analysis of the RNAseq 895 

data. C Venn diagrams showing common patterns of differential expression (0 dd vs 896 

2 dd) of up- and down-regulated genes during dark-induced senescence.  897 

 898 

Figure 3. Influence of dark-induced senscence on the expression of the genes 899 

involved in the PAO/phyllobilin pathway.  900 

Heat maps represent log2 (fold change) of gene expression in each of the four 901 

studied lines during dark-induced senescence. Genes/enzymes: CAO, chlorophyll a 902 

oxygenase; CHLG, chlorophyll synthase; CYP89A9, cytochrome P450 903 

monooxygenase 89A9; HCAR, 7-hydroxymethyl chlorophyll a reductase; MES16, 904 

methylesterase 16; NYC1, non-yellow coloring 1 (chlorophyll b reductase); NYE1, 905 

non yellowing 1 (magnesium dechelatase); NYE2, non yellowing 2; PAO, 906 

pheophorbide a oxygenase; PPH, pheophytinase; RCCR, RCC reductase; TIC55, 907 

translocon at the inner chloroplast envelope 55. Phyllobilins: DNCC, dioxobilin-type 908 

NCC; NCC, non-fluorescent chlorophyll catabolite; pFCC, primary fluorescent 909 

chlorophyll catabolite; RCC, red chlorophyll catabolite.  910 

 911 

Figure 4. Transcriptional regulation of the PAO/phyllobilin pathway during 912 

dark-induced senescence is mainly affected in pao1.  913 
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Heat maps represent log2 (fold change) of gene expression in each of the four 914 

studied lines during dark-induced senescence. JA, jasmonic acid; ET, ethylene; ABA, 915 

abscisic acid; COI1, coronatine insensitive 1; JAZ, jasmonate-ZIM domain; NAC, 916 

NAM, ATAF1/2 and CUC2 domain protein; NAP, NAC-like, activated by PA3/PI; EIN, 917 

ethylene insensitive; ELF3, early flowering 3; PIF, phytochrome interacting factor; 918 

SOC1, suppressor of overexpression of coi1; ERF17, ethylene response factor; 919 

ORE1, oresara 1; EEL, enhance em level ; ABI5, ABA insensitive 5; ABF, ABA-920 

responsive element binding factor; SnRK2, serine/threonine kinase 2; PYL9, 921 

pyrabactin resistance 1-like 9.  922 

 923 

Figure 5. Jasmonic acid metabolism during dark-induced senescence in WT 924 

and pao1.  925 

Levels of JA and JA-related metabolites in grey (0 dd) and black (2 dd) for WT and 926 

pao1 are shown as histograms. Expression levels are shown using heat maps of 927 

log2(fold change). Genes/enzymes: DAD1, delayed anther dehiscence 1; LOX2, 13-928 

lipoxygenase 2; AOS, allene oxide synthase; AOC, allene oxide cyclase; OPR3, 929 

OPDA reductase 3; IAR3, IAA-alanine resistant 3; JMT, jasmonate 930 

methyltransferase; JAR1, JA-amino acid synthetase 1; JOX, JA-induced oxygenase; 931 

CYP, cytochrome P450 monooxygenase; ST2A, sulfotransferase 2. Metabolites: 932 

OPDA, 12-oxo-phytodienoic acid; OPC 3-oxo-2-cis-2-pentenyl cyclopentyl-octanoic 933 

acid; JA-CoA, jasmonate-coenzyme A. Asterisks indicate significant differences (p < 934 

0.05). 935 

 936 

Figure 6. Weighted gene co-expression analysis (WGCNA) sheds new light on 937 

the regulation of the PAO/phyllobilin pathway.  938 

A Heat map showing a module-sample association matrix. Each row corresponds to 939 

a module. The heat map colour code from blue to red indicates the correlation 940 

coefficient between the module and either the treatment (first column; darkness) or 941 

the genetic background. B Patterns of expression (left panel) and size (right panel) of 942 

gene co-expression modules. On the left panel, heat maps indicate mean expression 943 

[log2 (fold change)] of the 10% most representative genes (highest connectivity) for 944 

each WGCNA module during dark-induced senescence. C The regulatory network of 945 

the PAO/phyllobilin pathway as exported from WGCNA and visualized in VisANT 946 

5.51 (Hu et al., 2007). Larger nodes show the input genes (CCGs, transcriptional 947 
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regulators according to Fig. 4), smaller nodes were limited to the top 3 most 948 

connected genes for each input gene, the edges represent connections between the 949 

genes. Node colours represent the module in which the genes clustered during 950 

WGCNA analysis. 951 

 952 

Figure 7. Model illustrating the influence of pheophorbide a homeostasis on JA 953 

signalling.  954 

The middle panel shows the PAO/phyllobilin pathway under normal senescence 955 

conditions, leading to the complete degradation of chlorophyll to vacuole-localized 956 

phyllobilins. Left and right panels show modulation of catabolite homeostasis caused 957 

by mutations of either nye1-1 or pph1 (left panel) or pao1 (right panel), and the 958 

respective observed downstream modulation of the JA response (hatched arrows). 959 

Arrow sizes schematically represent relative flux (metabolite) and response (JA 960 

signalling) intensities. Among the few genes differentially expressed in nye1-1 and 961 

pph-1, JAZ genes were downregulated compared to WT. On the other hand, in pao1, 962 

JA biosynthesis and signalling genes as well as some JA bioactive derivatives were 963 

induced.  964 
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Table 1. Number of genes differentially expressed during dark 

incubation of detached leaves (DET) in WT and three CCG mutant lines. 

25,920 genes were detected in at least one of the 24 samples.  

 

Total transcripts detected (non zero) 21,403 

Differentially expressed during DET 

(PPDE ≥0.95 and FC≥2) 
Total Up-regulated Down-regulated 

WT 6,124 3,389 2,735 

nye1-1 6,227 3,325 2,902 

pph-1 6,764 3,777 2,987 

pao1 11,408 5,723 5,685 
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Figure 1. Phenotypic characterisa on of CCGs mutants during dark-induced senescence of detached leaves. A WT, 
pao1, nye1-1 and pph-1 detached leaves before and a er 2 and 5 days of dark induced senescence (dd). B Chlorophyll 
degrada on of CCG mutants during dark-induced senescence. C Electrolyte leakage of CCG mutants during dark-induced 
senescence. D Profile of the accumula on of pheophorbide a and the major phyllobilin (DNCC_618) in CCG mutants 
during dark-induced senescence. Data in B-D are mean values of a representa ve experiment with three (B), at least ten 
(C) and five (D) replicates, respec vely. Error bars indicate SD.
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Figure 2. RNAseq profiling of CCG mutants provide new insight into the rela onship of the PAO/phyllobilin pathway to 
global leaf senescence. A Major enriched gene ontology terms iden fied in the three CCG mutants during dark-induced 
senescence (0 dd vs 2 dd) using Wilcoxon test implemented in Pageman tool (Usadel et al., 2006). B Principal Component 
Analysis of the RNAseq data. C Venn diagrams showing common pa erns of differen al expression (0 dd vs 2 dd) of up- and 
down-regulated genes during dark-induced senescence. 
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89A9; HCAR, 7-hydroxymethyl chlorophyll a reductase; MES16, methylesterase 16; NYC1, non-yellow coloring 1 (chlorophyll 
b reductase); NYE1, non yellowing 1 (magnesium dechelatase); NYE2, non yellowing 2; PAO, pheophorbide a oxygenase; 
PPH, pheophy nase; RCCR, RCC reductase; TIC55, translocon at the inner chloroplast envelope 55. Phyllobilins: DNCC, 
dioxobilin-type NCC; NCC, non-fluorescent chlorophyll catabolite; pFCC, primary fluorescent chlorophyll catabolite; RCC, red 
chlorophyll catabolite. 
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Figure 4. Transcrip onal regula on of the PAO/phyllobilin pathway during dark-induced senescence is mainly affected in 
pao1. Heat maps represent log2 (fold change) of gene expression in each of the four studied lines during dark-induced 
senescence. JA, jasmonic acid; ET, ethylene; ABA, abscisic acid; COI1, corona ne insensi ve 1; JAZ, jasmonate-ZIM domain; 
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Figure  5. Jasmonic acid metabolism during dark-induced senescence in WT and pao1. Levels of JA and JA-related metabo-
lites in grey (0 dd) and black (2 dd) for WT and pao1 are shown as histograms. Expression levels are shown using heat maps 
of log2(fold change). Genes/enzymes: DAD1, delayed anther dehiscence 1; LOX2, 13-lipoxygenase 2; AOS, allene oxide 
synthase; AOC, allene oxide cyclase; OPR3, OPDA reductase 3; IAR3, IAA-alanine resistant 3; JMT, jasmonate methyltransfer-
ase; JAR1, JA-amino acid synthetase 1; JOX, JA-induced oxygenase; CYP, cytochrome P450 monooxygenase; ST2A, sulfotrans-
ferase 2. Metabolites: OPDA, 12-oxo-phytodienoic acid; OPC 3-oxo-2-cis-2-pentenyl cyclopentyl-octanoic acid; JA-CoA, 
jasmonate-coenzyme A. Asterisks indicate significant differences (p < 0.05). 
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Figure 6. Weighted gene co-expression analysis (WGCNA) sheds new light on the regula on of the PAO/phyllobilin path-
way. A Heat map showing a module-sample associa on matrix. Each row corresponds to a module. The heat map colour 
code from blue to red indicates the correla on coefficient between the module and either the treatment (first column; dark-
ness) or the gene c background. B Pa erns of expression (le  panel) and size (right panel) of gene co-expression modules. 
On the le  panel, heat maps indicate mean expression [log2 (fold change)] of the 10% most representa ve genes (highest 
connec vity) for each WGCNA module during dark-induced senescence. C The regulatory network of the PAO/phyllobilin 
pathway as exported from WGCNA and visualized in VisANT 5.51 (Hu et al., 2007). Larger nodes show the input genes (CCGs, 
transcrip onal regulators according to Fig. 4), smaller nodes were limited to the top 3 most connected genes for each input 
gene, the edges represent connec ons between the genes. Node colours represent the module in which the genes 
clustered during WGCNA analysis.
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