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Abstract 

 

Background 

I have recently shown that the number of rate-limiting driver events per tumor can be 

estimated from the age distribution of cancer incidence using the gamma/Erlang probability 

distribution. It is important to understand how these predictions relate to established risk 

factors.  

 

Methods 

The number of rate-limiting driver events per tumor was estimated using the gamma/Erlang 

distribution and correlated to the percentage of cancer cases attributable to modifiable risk 

factors. 

 

Results  

The predicted number of rate-limiting driver events per tumor strongly correlates with the 

proportion of cancer cases attributable to modifiable risk factors for all cancers except those 

induced by infection or ultraviolet radiation. The correlation was confirmed for three 

countries, three corresponding incidence databases and risk estimation studies, as well as 

for both sexes: USA, males [r=0.80, P=0.002], females [r=0.81, P=0.0003]; England, males 

[r=0.90, P<0.0001], females [r=0.67, P=0.002]; Australia, males [r=0.90, P=0.0004], females 

[r=0.68, P=0.01].  

 

Conclusions 

It is thus confirmed that predictions based on interpreting the age distribution of cancer 

incidence as the gamma/Erlang probability distribution have biological meaning, validating 

the underlying Poisson process as the law governing the development of the majority of 

cancer types, especially those driven by chemical mutagens. Importantly, this study suggests 

that the majority of driver events (60-80% in males, 50-70% in females) are induced by 

anthropogenic carcinogens, and not by cell replication errors or other internal processes. 
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Introduction 

There have been multiple attempts to deduce the number of rate-limiting steps in 

carcinogenesis from the age distribution of cancer incidence or mortality [1]. The proposed 

models for doing this, however, suffer from several serious drawbacks. For example, early 

models assumed that cancer mortality increases with age according to the power law [2-4], 

which is inconsistent with the observed deceleration of mortality growth at an advanced 

age. Moreover, when high quality data have accumulated, it became clear that, at least for 

some cancers, incidence even starts to decrease after peaking at some advanced age [5, 6]. 

More recent models of cancer progression are based on multiple biological assumptions, 

consist of complicated equations that incorporate many predetermined empirical 

parameters, and still have not been shown to describe the decrease in cancer incidence at an 

advanced age [7-12]. It is also clear that an infinite number of such mechanistic models can 

be created and custom tailored to fit any set of data, leading us to question their explanatory 

and predictive values.  

I have recently proposed that the age distribution of cancer incidence can be 

interpreted as the statistical distribution of probability to accumulate the required number 

of driver events by the given age [13]. I have shown that, of all standard probability 

distributions, the gamma distribution (and its special case with the integer shape parameter 

– the Erlang distribution) fits the actual age distribution of incidence for 20 most prevalent 

cancers the best [13]. I have then shown that the gamma/Erlang distribution is the only 

standard distribution that, in addition, approximates incidence for all studied childhood and 

young adulthood cancers, thus validating it as the universal equation describing cancer 

incidence [14]. Importantly, the Erlang distribution describes the waiting time for the 

occurrence of the given number of independent random events, as it was initially devised to 

calculate call queues at telephone exchanges. It is based on the Poisson process, which 

implies not only pure randomness of event timings but also their constant average rate. 
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Thus, the excellent fit of the gamma/Erlang distribution to the actual incidence data implies 

that cancers develop according to the Poisson process, i.e. driver events occur randomly and 

at a constant average rate. 

Interestingly, the shape parameter of the gamma/Erlang distribution can be 

interpreted as the number of rate-limiting driver events that occur by the time of cancer 

diagnosis. It is thus possible to estimate this number for any cancer type, upon fitting the 

gamma/Erlang distribution to the actual age distribution of incidence. I have shown that 

these numbers vary considerably, from 1 in retinoblastoma [14] to 41 in prostate cancer 

[13]. Next, it is important to show that these predictions correspond to experimentally 

observed variables, such as the number of driver mutations per tumor predicted from 

sequencing data. However, the variability of DNA alterations that can contribute to cancer 

progression, some of which are not yet routinely assessed, and the imperfection of 

algorithms for separating driver and passenger mutations severely complicate this task, as 

discussed in [13]. Thus, a simpler correlate is required to prove the meaningfulness of the 

predictions, before engaging in a full-scale confirmation effort. 

Here I identify such correlate as the percentage of cancer cases due to modifiable risk 

factors. This is an often-used parameter in epidemiological studies, and is also called the 

population attributable fraction (PAF). It shows, for example, what percentage of lung cancer 

cases are caused by smoking tobacco. Combined PAF shows the overall contribution of all 

potentially modifiable risk factors, which usually include air pollution, occupational hazards, 

ionizing radiation, smoking, alcohol, poor diet, insufficient exercise, obesity, infection and 

ultraviolet radiation. Here I show that the numbers of driver events per tumor predicted by 

the gamma/Erlang distribution strongly correlate with combined PAFs for most cancers, 

with the exception of cancers with the large contribution from infection or ultraviolet 

radiation. This confirms that predictions obtained from the gamma/Erlang distribution are 

meaningful, validating the Poisson process as the law governing the development of most 
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cancer types and fostering the search for correlations with tumor sequencing data. 

Importantly, the results suggest that up to 80% of driver events are caused by the 

environment and lifestyle, and not, for example, by stem cell divisions, as has been recently 

proposed [15, 16]. 

 

 

Methods 

 

I. Data acquisition 

 

a) Population attributable fractions data 

Population attributable fractions (PAFs) combining all risk factors were obtained 

directly from published open-access articles separately for each cancer type and sex. PAFs 

for USA were obtained from the publication by Islami et al., Table 2 (Ref[17]). PAFs for 

England were obtained from the publication by Brown et al., Table 2 (Ref[18]). PAFs for 

Australia were obtained from the publication by Whiteman et al., Table 2 (Ref[19]). No 

modification or processing of PAF data was performed. 

 

b) USA incidence data 

United States Cancer Statistics Public Information Data: Incidence 1999–2012 was 

downloaded from the Centers for Disease Control and Prevention Wide-ranging OnLine Data 

for Epidemiologic Research (CDC WONDER) online database 

(http://wonder.cdc.gov/cancer-v2012.HTML) in November 2018 (Ref[20]). The United 

States Cancer Statistics (USCS) are the official federal statistics on cancer incidence from 

registries having high-quality data for 50 states and the District of Columbia. Data are 

provided by The Centers for Disease Control and Prevention National Program of Cancer 
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Registries (NPCR) and The National Cancer Institute Surveillance, Epidemiology and End 

Results (SEER) program. Results were grouped by 5-year Age Groups and Crude Rates were 

selected as output. Crude Rates are calculated as the number of new cancer cases reported 

each calendar year per 100,000 population in each 5-year age group. The data were 

downloaded separately for males and females for each cancer type listed in the publication 

by Islami et al., Table 2 (Ref[17]).  

 

c) England incidence data 

England cancer incidence data were downloaded from the European Cancer 

Information System (ECIS) Data explorer (https://ecis.jrc.ec.europa.eu/explorer.php?$0-

1$1-UK$2-224$4-1,2$3-All$6-5,84$5-1999,2012$7-2$CRatesByCancer$X0_10-

ASR_EU_NEW) in November 2018 (Ref[21]). The ECIS database contains the aggregated 

output and the results computed from data submitted by population-based European cancer 

registries participating in Europe to the European Network of Cancer Registries – Joint 

Research Centre (ENCR-JRC) project on "Cancer Incidence and Mortality in Europe". Years of 

observation were limited to 1999-2012 period, to match the USA data. Incidence is 

calculated as the number of new cancer cases reported each calendar year per 100,000 

population in each 5-year age group. The data were downloaded separately for males and 

females for each cancer type listed in the publication by Brown et al., Table 2 (Ref[18]), 

except for vulva and vagina cancers, as their selection was not possible in ECIS Data 

explorer.  

 

d) Australia incidence data 

Australia cancer incidence data were downloaded from the Cancer Incidence in Five 

Continents (CI5) Volume XI Age-specific curves Online Analysis tool (http://ci5.iarc.fr/CI5-

XI/Pages/age-specific-curves_sel.aspx) in November 2018 (Ref[22]). CI5 is published 
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approximately every five years by the International Agency for Research on Cancer (IARC) 

and the International Association of Cancer Registries (IACR) and provides comparable high 

quality statistics on the incidence of cancer from cancer registries around the world. Volume 

XI contains information from 343 cancer registries in 65 countries for cancers diagnosed 

from 2008 to 2012. Incidence is calculated as the number of new cancer cases reported each 

calendar year per 100,000 population in each 5-year age group. The data were downloaded 

separately for males and females for each cancer type listed in the publication by Whiteman 

et al., Table 2 (Ref[19]).  

 

II. Data selection and analysis 

 

a) Estimation of the number of driver events per tumor 

For analysis, the incidence data were imported into GraphPad Prism 6. The following 

age groups were selected: “5–9 years”, “10–14 years”, “15–19 years”, “20–24 years”, “25–29 

years”, “30–34 years”, “35–39 years”, “40–44 years”, “45– 49 years”, “50–54 years”, “55–59 

years”, “60–64 years “, “65–69 years”, “70–74 years”, “75–79 years” and “80–84 years”. Prior 

age groups were excluded due to possible contamination by childhood subtype incidence, 

and “85+ years” was excluded due to an undefined age interval. If in the first several age 

groups (“5–9 years”, “10–14 years”, “15–19 years”) incidence initially decreased with age, 

reflecting contamination by childhood subtype incidence, these values were removed until a 

steady increase in incidence was detected. The middle age of each age group was used for 

the x values, e.g. 17.5 for the “15–19 years” age group. Incidence (new cancer cases per 

calendar year per 100,000 population) for each age group and each cancer type was used for 

the y values. Data for different countries, as well as for males and females, were analyzed 

separately. Data were analyzed with Nonlinear regression using the following User-defined 

equation for the gamma distribution: 
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Y = A*(x^(k−1))*(exp(−x/b))/((b^k)*gamma(k))  

 

The amplitude parameter A was constrained to “Must be between zero and 100000.0” 

and scale and shape parameters b and k to “Must be greater than 0.0”. “Initial values, to be 

fit” for all parameters were set to 1.0. All other settings were kept at default values, e.g. Least 

squares fit and No weighting. 

The numerical value of the shape parameter k rounded to the nearest integer is 

interpreted as the number of driver events per tumor [13]. 

 

b) Correlation of the predicted numbers of driver events per tumor with PAFs 

Obtained k values were correlated to population attributable fractions (PAFs) in 

GraphPad Prism 6 using the inbuilt Correlation tool at default settings, e.g. Pearson 

correlation with two-tailed P value. Cancer types were sorted into two classes, and 

correlation was performed separately for each class. Cancer types in which infection 

(Helicobacter pylori, Hepatitis B virus, Hepatitis C virus, Human herpes virus type 8: Kaposi 

sarcoma herpes virus, Human immunodeficiency virus and Human papillomavirus) or 

ultraviolet radiation contributed to more than 30% of cases, for a given country according to 

the published PAF data [17-19], were assigned to Class 2 (non-anthropogenic). The rest 

were assigned to Class 1 (anthropogenic), which included cancers with substantial 

contribution from air pollution, occupational exposure, exposure to ionizing radiation, 

smoking and exposure to secondhand smoke, alcohol intake, poor diet (red and processed 

meat, insufficient fiber, vegetables, fruit and calcium), excess body weight, insufficient 

physical activity, insufficient breastfeeding, postmenopausal hormone therapy and oral 

contraceptives, according to the published PAF data [17-19]. 
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Results 

To estimate the numbers of driver events per tumor, the gamma distribution was 

fitted to the actual age distributions of incidence separately for males and females in three 

countries – USA, England and Australia (Figure 1 and Table 1). The fits were generally 

excellent (R2=0.99), except for brain cancer (R2=0.98), thyroid cancer (R2=0.97), and several 

virus-induced cancers: pharyngeal (R2=0.98), nasopharyngeal (R2=0.93), vulvar (R2=0.98), 

cervical (R2=0.77), Kaposi sarcoma (R2=0.67) and Hodgkin lymphoma (R2=0.34). Due to the 

unsatisfactory fits, the last three cancer types were excluded from the further analysis. 

Successful fitting of the remaining cancer types allowed the estimation of the numbers of 

driver events per tumor using the shape parameter of the gamma distribution. 

 Plotting the correlation of the number of driver events per tumor predicted from the 

gamma distribution with the estimated percentage of cases due to modifiable risk factors 

obtained from the published studies revealed that cancers appear to cluster in two classes. 

Class 1, which included the majority of cancers, demonstrated the linear correlation, 

whereas Class 2 clustered in the upper left corner of the plot in a cloud-like fashion. 

Investigation of the Class 2 revealed that it consists entirely of cancers with substantial 

(>30%) contribution of infection to their pathogenesis, plus the melanoma cancer. Class 2 

was therefore named “non-anthropogenic”, as infections and ultraviolet radiation existed 

long before the human civilization. Interestingly, all cancers in Class 1 were induced by 

factors that arose with human civilization, such as air pollution, occupational hazards, 

ionizing radiation, smoking, alcohol, poor diet, insufficient exercise, obesity, insufficient 

breastfeeding, postmenopausal hormone therapy and oral contraceptives. Therefore, Class 1 

was termed “anthropogenic”.  

The correlation of the predicted number of driver events per tumor with the 

estimated percentage of cases due to modifiable risk factors for cancers in males is shown in 
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Figure 2 and Table 2, and in females in Figure 3 and Table 3.  It can be seen that 

anthropogenic cancers indeed exhibit the strong correlation for all studied countries and for 

both sexes, whereas non-anthropogenic cancers exhibit the correlation in none of the cases. 

Amongst anthropogenic cancers, the correlation is stronger and more significant for males 

than for females. Interestingly, the correlation is stronger and more significant for American 

females [r=0.81, P=0.0003] than for English [r=0.67, P=0.002] and Australian [r=0.68, 

P=0.01] females, but weaker and less significant for USA males [r=0.80, P=0.002] than for 

English [r=0.90, P<0.0001] and Australian [r=0.90, P=0.0004] males. These differences are 

likely explained by differing exposures to risk factors between countries and between sexes, 

as well as by variations in the screening, diagnostics and reporting protocols of different 

countries, in the sets of cancers included in the studies from which risk factor data were 

obtained, and in the methodologies of those studies. The role of population genetics also 

cannot be ruled out.  

 

Discussion 
 
One of the most interesting findings of this study is the clustering of all cancers into 

two classes, termed here anthropogenic and non-anthropogenic.  The possible explanation 

for this dichotomy is that the human body managed to evolve some protective 

countermeasures against cancer risk factors that were present for millions of years, whereas it 

appears unprepared for the novel risk factors brought by our civilization. For example, 

ultraviolet radiation has been present on Earth since the beginning, and although 

melanocytes cannot completely protect their DNA, and a lot of DNA damage occurs, it is 

likely that they developed a very slow division rate [23] to avoid conversion of this damage 

into mutations for as long as possible. This may explain why only few rate-limiting driver 

events are predicted for melanoma despite lots of DNA damage that melanocytes receive – 

rate-limiting in this case is cell division and not the DNA damage. Similarly, the human body 
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had plenty of time to adapt to viruses and install some blocks which are difficult for viruses 

to overcome, which may explain why the incidence rates of virus-induced cancers are low, 

and less driver events are predicted than would be expected from the linear correlation. It is 

also clear that viruses are inducing cancer via different mechanisms than chemical 

carcinogens [24, 25], and thus the development of such cancers may not be described by the 

Poisson process. Indeed, many of the virus-induced cancers have rather poor fits of the 

Erlang distribution to their age distributions of incidence (Table 1). 

The strong positive correlation of the predicted number of driver events per tumor 

with the contribution from anthropogenic risk factors suggests that the majority of driver 

events are caused by those factors. In other words, the higher is the number of driver events 

that are required for a given cancer type to appear, the less likely is for them to occur by 

chance (e.g. due to replication errors), and the more dependent are they on anthropogenic 

carcinogens to be induced. Indeed, as r2 is called ”the coefficient of determination” and 

describes the proportion of the variance in one variable that is explained by the other 

variable, we can calculate (by squaring Pearson r values from Figures 2 and 3) that 

anthropogenic risk factors explain 64%, 81% and 81% of the variance in the predicted 

number of driver events per tumor for males and 66%, 45% and 46% of the variance for 

females, living in USA, England and Australia, respectively. This is in accord with the 

mainstream view that the environment and lifestyle are the major contributors to 

carcinogenesis, but conflicts with the recently proposed view that the majority of cancers 

develop due to replicative mutations occurring during stem cell division [15, 16]. The latter 

view is based on predominantly mouse data handpicked from varied publications and 

processed through calculations with unobvious assumptions, and thus has been widely 

criticized [26-32]. 

It is also interesting to speculate why the observed correlations are stronger for 

males than for females. One likely explanation is that males generally are more exposed to 
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chemical mutagens, e.g. during smoking and at dangerous industries [17-19], directly 

inducing mutations in the DNA, some of which happen to be drivers. On the other hand, 

females have a higher contribution to cancer risk from disturbances in physiology, usually 

related to hormone levels, such as being obese, using oral contraceptives, undergoing 

postmenopausal hormone therapy or abstaining from breastfeeding [17-19]. These risk 

factors may not lead to an increase in the number of overall and driver mutations (discrete 

events), but promote cancer via changes in intracellular signaling levels or the 

microenvironment (gradual change) [33-37]. The latter cannot be detected and counted 

using the gamma/Erlang distribution, which is capable of recognizing only discrete random 

events. 

Overall, the correlations identified here serve as the validation of the hypothesis that 

most cancers develop according to the Poisson process and that the gamma/Erlang 

distribution can be used to predict the number of driver events per tumor for most cancer 

types, especially those driven by chemical mutagens [13, 14]. This has numerous 

implications, from the fundamental understanding of the carcinogenesis process to the 

improvement in driver prediction algorithms. 
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Tables 

Table 1. Goodness of fit (R2) of the gamma distribution to the actual cancer incidence data  

Cancer type England USA Australia 
Males Females Males Females Males Females 

Lung 0.9996 0.9989 0.9990 0.9973 0.9997 0.9994 
Uterus - 0.9965 - 0.9954 - 0.9934 
Mesothelioma 0.9997 0.9980 ND ND ND ND 
Larynx 0.9989 0.9964 0.9997 0.9945 0.9965 0.9838 
Pancreas 0.9999 0.9999 1.000 0.9998 0.9995 0.9982 
Bladder  0.9998 0.9998 0.9997 0.9996 0.9998 0.9994 
Myeloma 0.9999 0.9998 0.9994 0.9992 ND ND 
Kidney 0.9991 0.9986 0.9985 0.9959 0.9970 0.9985 
Gallbladder 0.9998 0.9991 0.9994 0.9996 0.9996 0.9992 
Ovary - 0.9990 - 0.9990 - 0.9956 
Colorectum  0.9998 0.9997 0.9993 0.9987 0.9987 0.9987 
Liver* 0.9987 0.9994 0.9839 0.9985 0.9797 0.9975 
Esophagus 0.9997 0.9997 0.9999 0.9991 0.9989 0.9981 
Non-Hodgkin 
lymphoma 

0.9970 0.9976 0.9973 0.9969 0.9985 0.9974 

Oral cavity 0.9912 0.9973 ND ND ND ND 
Oral cavity 
and pharynx 

ND ND 0.9971 0.9987 0.9972 0.9966 

Breast - 0.9828 - 0.9978 - 0.9887 
Brain 0.9797 0.9775 ND ND ND ND 
Leukemia 0.9957 0.9961 ND ND 0.9950 0.9912 
Myeloid 
leukemia 

ND ND 0.9930 0.9891 ND ND 

Thyroid 0.9859 0.9251 0.9808 0.9870 ND ND 
Melanoma 0.9970 0.9962 0.9987 0.9945 0.9983 0.9984 
Stomach 0.9988 0.9983 0.9993 0.9979 0.9999 0.9965 
Anus* 0.9982 0.9934 0.9927 0.9827 0.9926 0.9700 
Pharynx* 0.9848 0.9790 ND ND ND ND 
Nasopharynx* 0.9776 0.8836 ND ND ND ND 
Kaposi 
sarcoma* 

0.6761 0.3861 0.1997 0.9906 0.7562 0.9942 

Hodgkin 
lymphoma* 

0.5301 0.1664 0.5702 0.1730 0.4513 0.1200 

Penis* 0.9961 - 0.9982 - 0.9762 - 
Cervix* - 0.6003 - 0.9033 - 0.8016 
Vagina* - ND - 0.9985 - 0.9918 
Vulva* - ND - 0.9900 - 0.9773 

 

ND – no incidence data in the database or no corresponding PAF data in the source publication. 

Asterisk (*) denotes cancers in which viral infection contributes to more than 30% of cases, 

according to the published PAF data [17-19].  
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Table 2. Predicted numbers of driver events per tumor and estimated percentages of cases due 

to anthropogenic risk factors for cancers in males. 

Cancer type England USA Australia 
Predicted 
number 
of driver 
events 
per 
tumor 

Estimated 
percentage 
of cases due 
to 
modifiable 
risk factors 
[17] 

Predicted 
number 
of driver 
events 
per 
tumor 

Estimated 
percentage 
of cases due 
to 
modifiable 
risk factors 
[18] 

Predicted 
number 
of driver 
events 
per 
tumor 

Estimated 
percentage 
of cases due 
to 
modifiable 
risk factors 
[19] 

Mesothelioma 29 97 - ND - ND 
Lung  24 82 28 89 22 86 
Larynx 20 73 22 84 21 84 
Bladder  20 51 20 49 14 34 
Colorectum  18 57 12 58 18 56 
Oral cavity 16 53 - ND - ND 
Liver 15 53 - NA - NA 
Esophagus 14 61 19 75 14 74 
Pancreas 14 34 15 26 12 31 
Kidney 13 32 15 52 12 39 
Myeloma 12 16 16 11 - ND 
Gallbladder 12 13 18 33 11 16 
Brain 9 0 - ND - ND 
Leukemia 9 11 - ND 8 7 
Myeloid 
leukemia 

- ND 8 17 - ND 

Non-Hodgkin 
lymphoma 

8 3 7 14 7 4 

Thyroid 3 10 6 12 - ND 
 

ND – no data in the source publication, NA – assigned to the non-anthropogenic group due to 

the strong contribution of the viral infection. 
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Table 3. Predicted numbers of driver events per tumor and estimated percentages of cases 

due to anthropogenic risk factors for cancers in females. 

 
Cancer type England USA Australia 

Predicted 
number 
of driver 
events 
per 
tumor 

Estimated 
percentage 
of cases due 
to 
modifiable 
risk factors 
[17] 

Predicted 
number 
of driver 
events 
per 
tumor 

Estimated 
percentage 
of cases due 
to 
modifiable 
risk factors 
[18] 

Predicted 
number 
of driver 
events 
per 
tumor 

Estimated 
percentage 
of cases due 
to 
modifiable 
risk factors 
[19] 

Lung 23 75 30 83 22 79 
Uterus 23 34 20 71 22 33 
Mesothelioma 22 83 - ND - ND 
Larynx 18 66 25 79 28 78 
Pancreas 15 29 15 25 15 28 
Bladder  14 43 17 39 11 26 
Myeloma 14 11 16 12 - ND 
Kidney 13 36 14 56 10 24 
Gallbladder 12 23 14 37 15 13 
Ovary 13 11 8 4 7 7 
Colorectum  12 51 9 51 11 42 
Liver 12 39 - NA - NA 
Esophagus 11 54 17 68 11 76 
Non-Hodgkin 
lymphoma 

11 3 10 2 7 3 

Oral cavity 9 34 - ND - ND 
Breast 9 23 10 29 11 23 
Brain 8 5 - ND - ND 
Leukemia 7 13 - ND 8 2 
Myeloid 
leukemia 

- ND 6 13 - ND 

Thyroid 3 9 5 13 - ND 
 

ND – no data in the source publication, NA – assigned to the non-anthropogenic group due to 

the strong contribution of the viral infection. 
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Figure 1. Fits of the gamma distribution to the actual incidence data for various 
cancers 

 

10 30 50 70 90
0

100

200

300

400

500

600

Age, years

In
c

id
e

n
c

e
 (

C
a

s
e

s
 p

e
r 

1
0

0
,0

0
0

)

USA females

10 30 50 70 90
0

100

200

300

400

500

600

Age, years

In
c

id
e

n
c

e
 (

C
a

s
e

s
 p

e
r 

1
0

0
,0

0
0

)

USA males

10 30 50 70 90
0

100

200

300

400

500

600

Age, years

In
c

id
e

n
c

e
 (
C

a
s

e
s

 p
e

r 
1

0
0

,0
0

0
)

Australia females

10 30 50 70 90
0

100

200

300

400

500

600

Age, years

In
c

id
e

n
c

e
 (
C

a
s

e
s

 p
e

r 
1

0
0

,0
0

0
)

Australia males

10 30 50 70 90
0

100

200

300

400

500

600

Age, years

In
c

id
e

n
c

e
 (
C

a
s

e
s

 p
e

r 
1

0
0

,0
0

0
)

England females

10 30 50 70 90
0

100

200

300

400

500

600

Age, years

In
c

id
e

n
c

e
 (
C

a
s

e
s

 p
e

r 
1

0
0

,0
0

0
)

England males

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 15, 2019. ; https://doi.org/10.1101/486860doi: bioRxiv preprint 

https://doi.org/10.1101/486860
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

Figure 2. Correlation of the predicted numbers of driver events per tumor with the 

estimated percentages of cases due to modifiable risk factors for cancers in males. 
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Figure 3. Correlation of the predicted numbers of driver events per tumor with the 

estimated percentages of cases due to modifiable risk factors for cancers in females. 
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