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Abstract

This research examines the geographical distributions of several historical epidemics in 
the United States and investigates whether they reached a geographical equilibrium, 
however briefly. An equilibrium distribution over a geographical area, as the end state of 
a diffusion or spatial contagion process, has definitive mathematical properties. These 
permit qualitative and quantitative tests that may confirm an equilibrium and identify its 
characteristics. The analysis uses United States state-level data for several common 
infectious diseases of the 1950s, and results show geographical equilibrium distributions 
for several epidemics. These are not predicted by the most commonly used 
epidemiological models but are consistent with observed geographical disparities in 
disease prevalence that continued over a number of years in spite of recurrent epidemic 
cycles and long-term trends.
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Geographical Distributions and Spatial Equilibrium in Historical Epidemics 
of the United States

1.  Introduction

Mathematical models of epidemics provide great insight as to their development over 
time and whether they will burn out or reach an endemic equilibrium. Increasingly, 
researchers are giving more attention to the spatial dimension of an epidemic over time 
and the conditions for endemic equilibrium, which are the topics of this research. A 
steady-state incidence of disease on the time dimension does not necessarily imply a 
uniform spatial distribution. In fact, as evidence here will show, spatial differences in 
disease rates can persist for years even in the face of  recurrent epidemic cycles. 
Epidemiologists generally attribute such spatial differences to heterogeneity in the 
population (Keeling and Rohani, 2008). For example, there may be underlying 
socioeconomic conditions that differ across regions, resulting in different disease rates; or 
the dynamics of the disease may be at different stages across a geographic area. Research 
here, however, will give a different explanation for this situation based on a spatial model 
of disease contagion or diffusion. This also leads to the conclusion that the prevalent 
mathematical models of disease spread do not adequately explain observed spatial 
distributions of diseases. 

For discussion purposes one can distinguish two broad classes of models: those based on 
the SIR model and others. At the macro level, change over time and equilibrium 
conditions have been well studied analytically for the SIR model and its variants.  The 
model uses three simultaneous, ordinary differential equations to explain the proportions 
of the population who, over time, are susceptible to infection (S), infected (I), or have 
recovered (R). The model assumes, however, that all susceptible people have an equal 
chance of being infected at any time, which precludes analysis of the spatial diffusion of 
a disease. The model must be expanded to study diffusion. Here the analysis concerns the 
continuous geographical distribution of common infectious diseases across the United 
States, and a partial differential equation model is best suited to the analysis. Typically 
the model is the reaction-diffusion equation. Originating in chemistry, these are widely 
used in ecology (Holmes, et al., 1994) and have been adapted to epidemics (Kendall, 
1965; Noble, 1974; Mollison, 1977; Murray, Stanley and Brown, 1986; Lopez, et al., 
1999; Reluga, 2004). They incorporate the features of  the SIR model that explain the 
course of an epidemic over time and add the term uxx + uyy , the sum of the second partial 
derivatives of change in two spatial dimensions, to model diffusion. Note that it is the 
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movement of infected people that spreads the disease, not movement of the pathogen by 
itself. Analysts sometimes distinguish two types of diffusion: the familiar spread from 
one area to the next and so-called hierarchical diffusion, from cities to rural areas; but this 
analysis will not make the distinction.

As to whether an endemic equilibrium is reached, the SIR model with births and deaths 
predicts two possible outcomes (Keeling and Rohani, 2008): the epidemic dies out, or it 
reaches a stable fixed proportion of susceptible people equal to the inverse of the basic 
reproductive rate–the average number of people infected by a sick person when no one 
has immunity. The steady-state proportion of the population who are infected depends on 
the reproductive rate, the transmission rate of the infection, and the natural death rate. 
Continued oscillations can result, however, owing to seasonal forcing, such as when 
children go back to school in the fall (Keeling and Rohani, 2008), or when imperceptible 
changes in the transmission rate are amplified dramatically by dynamic resonance 
(Dushoff, et al., 2004). 

Reaction-diffusion models add substantial complexity to the SIR model and to questions 
about equilibrium. In the simple case of a single source of infection the model is easily 
solved and predicts a travelling spatial wave moving out from the source. More 
complicated situations can lead to intractable solutions. However, because partial 
differential equations can be solved numerically using a discrete lattice model as an 
approximation, the behavior of a reaction-diffusion equation is often studied by a 
computer simulation of the corresponding lattice model. Ultimately an infection may die 
out or reach an endemic equilibrium, as one might expect from the SIR model, or not, as 
Liu and Jin (2007) show using computer simulation of a lattice model. Complex 
labyrinthine spatial patterns can arise when births and deaths play a role, and different 
values of parameters lead to stability or instability. Often these mathematical models are 
not explicitly geographical, that is, applied to location data for an actual country, or they 
are applied to relatively simple cases. But Cahill et al (2009), for example, analyze 
influenza in the U.S. at a very fine spatial detail, combining partial differential equation 
models in their discrete form with computer simulation and actual data. 

Non-SIR approaches also are used to study epidemics as a continuous function of 
location. These usually focus on the spread of disease across an actual geographic area 
but are less suited to studying conditions of an equilibrium analytically. Grenfell, 
Bjornstad, and Kappey (2001) demonstrate spatial waves in measles epidemics in the 
U.K. with a wavelet analysis of weekly morbidity data from the 1950s and 1960s. 
Treveleyan and Smallman-Raynor (2005) make an exhaustive analysis of polio epidemics 
in the U.S. from 1910 to 1971 using a spatial autocorrelation measure (Moran’s I) and 
time-series analysis. Pyle (1986) and Xia et al. (2004) are among the analysts who use a 
gravity model, for which the diffusion between two areas is proportional to the product of 
their populations and inversely related to the distance between them to (perhaps to a 
power). Xia applies this model to measles epidemics in the U.K. comparing a computer 
simulation with actual data. 
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This analysis combines geographical data on disease rates with a partial differential 
equation model for which there is an analytical solution to the equilibrium question. The 
model is applied at the state level to a variety of infectious diseases that were prevalent in 
the U.S. in the early 1950s. The central questions are whether there is evidence of a 
spatial equilibrium in certain endemic illnesses, and whether certain epidemics at times 
may have briefly reached an equilibrium across the U.S. despite annual cycles, long-term 
trends, and geographically sporadic outbreaks. Was there an endemic spatial equilibrium 
underneath the epidemic cycles? Historical evidence suggests this possibility. For 
example, among the endemic illnesses, syphilis and TB had a long history of high rates in 
the Southeast and Southwest, respectively, and lower rates in the North. This relates to 
social conditions among nonwhite populations in those regions. Moreover, historical 
evidence for epidemic illnesses also shows that boundary states tended to have extreme 
values and that geographical disparities persisted from year to year despite annual 
epidemics. Regional diphtheria rates from 1948 to 1954, for instance,  display consistent 
differences between regions, with the highest levels in the East South Central and West 
South Central and lowest infection rates in the Middle Atlantic states (Moore and Larsen, 
1957). From the 1940s through 1950s polio, too, had distinct geographic patterns, which 
gradually changed over time (Serfling and Sherman, 1953). From 1947 to 1951 
geographic areas west of the Mississippi had considerably higher rates than those to the 
east. The reasons for this are not known. 

The focus is on several diseases that are transmitted mainly by personal contact and are 
highly contagious, so that a diffusion process is clearly involved in their spread. These 
are diphtheria, polio, measles, whooping cough (pertussis), tuberculosis, and syphilis. All 
these illnesses except polio were in a general decline by the 1950s but still common. 
Total reported cases in 1950 were: measles 319,000; syphilis (1952) 169,000; TB 
122,000; whooping cough 121,000; polio 33,300; and diphtheria 5,800. National and 
state data on disease incidence was collected through a mandatory reporting system that 
was well developed by the 1950s, but completeness of reporting cannot be guaranteed. 
Whether the disease reached a clinical state also bears on reporting; with polio, in 
particular, 95 percent of infections did not reach clinical significance. Vaccination against 
diphtheria had been available by the 1950s, but it was not yet widespread enough to 
prevent yearly outbreaks (Moore, 1958), while the Salk vaccine did not undergo field 
testing until 1954. Polio, diphtheria, and measles epidemics recurred in large annual 
cycles, whereas whooping cough was less variable over time, and TB and syphilis were 
endemic but subject to local outbreaks. With TB, in fact, people can develop the illness 
even years after exposure. 

2. Model

In its simplest form, the mathematical model for spatial diffusion over time of a quantity 
u in two spatial dimensions is

ut =  D (uxx + uyy)                 (1)
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Ideally one would model the spread of diseases with Equation (1) using both time series 
and cross-sectional data, but this has severe practical difficulties. The extent of complete 
time series data is limited. Before the Second World War state reporting was incomplete, 
and by the late 1950s the diseases were in significant decline owing to antibiotics, 
vaccination, and public health measures, meaning that a partial differential equation 
model would have to be time varying in its coefficients and therefore very complex—too 
complex for the available data. So the approach here is limited and modest but offers a 
snapshot of the geographical distributions within a limited and relatively stable regime 
not to be repeated again.  

As the diffusion process evolves over time, eventually a steady state is reached, when ut 

=  0, giving the Laplace equation (2)

uxx + uyy  =  0                 (2)

Consider that one knows the value of u(x,y) on a two-dimensional lattice of points at a 
small equidistance h from one to the next with lattice representing a geographical area. 
One can approximate Equation (2) on the lattice at point (m,n) by a Taylor expansion 
about (x,y), which after dropping negligible terms leads to 

um,n = ¼ (um+1,n + um,n+1 +um-1,n + um,n-1)      (3)

So the value of u at each point on the lattice is approximately the average of the values at 
the four adjoining points on each side. This approximation, Equation (3), can be used to 
solve the equation numerically through an iterative, relaxation process. 

Let us express the idea that because of contagion each unit becomes more like its 
neighbors, with prevalence rate u of a disease at (xi, yj) tending toward the average rates 
in the four neighbors. The units might have any rates initially. One can extrapolate what 
will happen in this arrangement by a mental or computer simulation. At each iteration 
one successively replaces the rate at each point by the average rate of its four neighbors. 

Given observed spatial disparities, it is also assumed that disease rates in the units on the 
geographic boundary of the country (or lattice) do not change, or at least change very 
slowly in relation to change in the interior. This agrees with historical evidence for 
several diseases and is  reasonable theoretically because each boundary unit interacts with 
two neighbors that are also boundary units but with only one interior unit. Change in the 
interior propagates slowly to the boundary. It is assumed that no contagion occurs across 
the borders. 

This model (3) leads to a distribution across the country or lattice that is unique and 
depends only on the values on the boundary. If the simulation continues until no further 
change occurs—the steady state—the distribution of the disease fits a mathematical 
function u(x,y) known as a harmonic or potential function (Garabedian, 1964: 458ff). It is 
this type of function that interests us, not the actual values. Such a function is a unique 
solution of the Laplace equation (2). 
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One can compare the diffusion of a disease by analogy with heat diffusion as seen, for 
example, in the daily weather maps that show contours of temperature across the country. 
So as a standard of comparison with the an endemic equilibrium the analysis here also 
includes a model for the distribution of average state temperatures across the 48 states 
from 1971 to 2000.1 The averaging reveals the climate equilibrium underneath seasonal 
cycles and other short-term temperature fluctuations (neglecting any mention of global 
warming). By analogy, the analysis here seek to uncover and explain any underlying 
steady-state in the geographic distribution of diseases, within the limits of the data. 

A harmonic function has unique properties (Kellogg, 1953) that one can use to test for the 
distribution: (1) The product of a harmonic function multiplied by a constant is harmonic 
(scale invariance), as is the sum or difference of two such functions. (2) It is invariant—
still harmonic—under translation or rotation of the axes. (3) The function over an area is 
completely determined by the values on the boundary; the solution is unique. (4) A 
harmonic function over a closed, bounded area takes on its maximum and minimum 
values only on the boundary of the area (if it is not a constant). (5) If a function is 
harmonic over an area, the value at the center of any circle within the area equals the 
arithmetic average value of the function around the circle. This implies that averages 
around concentric circles are equal. The converse is also true. If the averages around all 
circles equal the values at their centers, the function is harmonic. Note also that the 
property of scale invariance implies that the size of the units of analysis should not matter 
much. 

Here three properties of harmonic functions are tested to validate the model: (1) that the 
geographical distribution of an epidemic disease is a harmonic function; (2) that average 
rates around concentric circles are equal; and (3) that the maximum and minimum disease 
rates are in border states. These hypotheses would be satisfied trivially if the distribution 
is constant, so from a conservative approach to hypothesis testing, this situation must be 
ruled out as well. And one must verify that the distribution in not random. The specific 
harmonic function that concerns us here is a plane surface that is a function of latitude 
and longitude. A broad class of nonharmonic alternatives to this can be tested statistically 
with quadratic equations, such as u(x,y) = a x2 + b x +c or u(x,y) = a x2 + b x y + c y2 + d 
when a + b + c ≠ 0. The analysis is limited, however, to testing these hypotheses with 
areal data, which has a high degree of granularity as to location. So the hypotheses must 
be adapted to fit this type of data. 

1 http://www.esrl.noaa.gov/psd/data/usclimate/tmp.state.19712000.climo
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3. Spatial Analysis

The research plan was to examine the disease rates at approximately the same time period 
to allow a simultaneous comparison of their geographical distributions and possible 
equilibria. For diphtheria, two data elements are included: the state average rates from 
1950 to 1954 (Moore and Larsen, 1957), and the 1955 rate (Moore, 1958). State measles 
and whooping cough rates are for 1950 (Vital Statistics of the United States 1950 Vol.1, 
1953). Polio data includes 1949, 1950 (Dauer, 1951) and, separately, the first quarter of 
1950 (Public Health Reports,1950) which was the low point of the epidemic between 
epidemics of 1949 and 1950. TB data are an average from 1949 to 1951 (Anderson and 
Sauer, 1952), which helps to smooth out minor temporal and local fluctuations, and the 
natural logarithm of TB rates was used to further moderate the effect of some extreme 
values. Syphilis rate data is for fiscal year 1952 (Public Health Reports, 1954). 
Availability of data influenced these choices as well. 

This analysis uses the geographical software GeoDa 0.9.5 developed primarily by Luc 
Anselin, who pioneered many of the methods used in spatial analysis. GeoDa follows the 
ArcView standard for geometric area data files developed by ESRI, Inc. To construct a 
map and analyze the corresponding data, three different files are  required: a shape file 
(*.shp) that describes the geometry of each unit, an index file (*.shx), and a data file in 
dBase (*.dbf) format. GeoDa is available at no charge via the Internet from Arizona State 
University.2 

3.1 Test for spatial autocorrelation. The first task is to check that the spatial distribution 
of each disease is not random. The spatial autocorrelation is the correlation between the 
rate in each state and the average of rates in neighboring states. So this is also a first 
indication of diffusion of an illness among neighboring states. For this analysis the 
neighbors around each state are the set of states that have a boundary in common with it, 
which is called rook contiguity by analogy with chess. This is a gross approximation of 
the lattice model discussed earlier but is sufficient to begin testing the model. In the U.S. 
this identification of neighbors leads to different numbers for the states.3 The most 
common number of neighbors is four, and forty states have between three and six states 
sharing a border. 

Spatial autocorrelation for the entire country is assessed with Moran’s I. This is a 
measure of spatial autocorrelation with range [-1,1]. As with Pearson’s correlation, 
Moran’s I can be positive or negative, and a value close to zero implies no 
autocorrelation. It is based on the aggregate of autocorrelations in the neighborhoods of 
all states. When states with above average disease rates are neighbors of states that also 
2 http://geodacenter.asu.edu
3 Because the boundary values completely determine the solution to the Laplace equation, it does not matter 
what the exact geometric arrangement of states is or how many share borders. This arrangement can affect 
the rate of convergence toward the steady-state solution, however. 
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have above average rates, the I value increases; the same holds when below average 
states border other below average states. A seen in Table 1, all diseases but whooping 
cough are statistically significant on this measure (at p < .05); whooping cough narrowly 
misses the cutoff at p = .07. Diseases showing the strongest correlation between a state’s 
infection rate and the average of its neighbors are, in decreasing order of strength: 
average diphtheria, polio in the first quarter of 1950 and in 1949, diphtheria in 1955, 
syphilis, TB, measles in 1950, and polio in 1950. Significance levels are determined by a 
permutation test. 

3.2 Harmonic function test. If the variable distributions are solutions to the Laplace 
equation, they should be harmonic functions of their location. In this case, the models 
represent the equilibrium state resulting from a nationwide spread of the epidemic. 
Inspection of maps of the state distributions suggests that one can try to model the 
distribution as a function of latitude and, possibly, longitude. The map shapefile contains 
information on the longitude and latitude of the vertices of the polygon used to map each 
state. For each state GeoDa can compute a centroid, which is the latitude-longitude 
location of the geometric center of gravity of the state. This location is used in the 
analysis. Table 2 shows the results of linear regression of each disease distribution and 
average temperature against latitude or longitude (and those variables squared if 
statistically significant) at the state centroid.

Rates for diphtheria in 1955, ln TB, polio in 1949, and syphilis are linear functions of 
their latitude at the centroid (Fig.1-2). These are harmonic functions of latitude, namely, 
plane surfaces. The same applies to polio in the first quarter of 1950, which is a linear 
function of longitude (Fig. 3). But the average diphtheria rate form 1950 to 1954 is a 
quadratic surface as a function of latitude (Fig. 4), and whooping cough is a quadratic 
function of longitude (Fig. 5), which are not harmonic functions. The quadratic surface 
for diphtheria rate is close to linear over most of its range, however, having a minimum at 
45 degrees latitude (the latitude of Minneapolis). The change in polio models from 1949, 
which had a great epidemic, to the first quarter of 1950 when the epidemic had receded 
almost completely, to the full 1950 epidemic is striking and not well explained. The 
strongly geographically oriented distribution of 1949 is gone by the full 1950 epidemic. 
The models also were tested with the inclusion of state population and population density 
in 1950; in no case were these variables statistically significant—an important point to be 
discussed later. 

The analysis checked whether the latitude-longitude models capture all the spatial lag. As 
seen in Table 2, Lagrange Multiplier (LM) tests indicate models where there is remaining 
spatial lag and whether there is error correlation between units. When spatial lag is 
significant, the OLS coefficient estimate is biased and usually too large. The LM tests 
may also indicate a missing variable, inefficient estimates, or other regression problems. 
The spatial lag of the dependent variable remains an issue with diphtheria; for other 
diseases the effects are marginal or nonexistent. One can include the lagged dependent 
variable in the regression (note, Table 2). Such a model would suggest that the diphtheria 
rate in a state depends on both its latitude and the rates in adjacent states, and that the 
distribution had not reached an equilibrium, although the spatial lag term weakens by 
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1955. Further analysis, however, indicates an alternative approach as a model for 
diphtheria at equilibrium. 

Recall that in 1950 there were only 5,800 diphtheria cases reported nationally, and 
several states had no cases. This number is very small in comparison to the other 
epidemics studied. In such a situation it may be that the actual number of cases is more 
important than the rate in determining the spread of a disease. (This is often the case for 
animal diseases in the wild where populations are relatively small.) To test this idea, the 
analysis of diphtheria was redone with the average number of cases from 1950 to 1954 
and the number in 1955. Results (Table 2) show that this procedure completely eliminates 
any remaining effect of spatial lag or error; only latitude is statistically significant. But 
the model for 1955 is a quadratic function of latitude while the average number is a linear 
function (Fig. 6) (just the reverse of the OLS model for rates.) Generally, however, the 
shapes of the distributions on both models are similar over most of the range of latitude. 
The second approach, however, has the advantages of eliminating any problems related to 
unexplained spatial effects, giving an accurate estimate of the latitude coefficients in the 
simpler OLS model, and confirming the prediction. 

Because a harmonic distribution is completely determined by its boundary values, the 
analysis was redone for those 30 states only.4 Results are in Table 3. A comparison of 
models in Table 2 and 3 shows that for diphtheria (without spatial lag), syphilis, measles, 
and polio in 1949 the coefficients for latitude are almost the same, excepting quadratic 
models. The correspondence is somewhat weaker for TB. Whooping cough has the same 
nonharmonic model in each. Where the two models give about the same results, the 
boundary values, therefore, are about as accurate in prediction of the values of interior 
states as is the model for all states. This is further evidence that the spatial distribution is 
close to an equilibrium and in accord with the assumption of fixed boundary values.

3.3 Mean-value test for concentric circles. The next analysis checks the hypothesis that 
mean values around a circle equal the value at the center. As an approximation, one can 
compare the average value of the boundary states with that of interior states. A t-test 
shows that for syphilis, rate and number of average diphtheria 1950-54, rate and number 
of diphtheria in 1955, polio in the first quarter of 1950, polio in all of 1950, and measles 
in 1950 there is no statistically significant difference in mean rates of infection between 
boundary and interior states. Differences are statistically significant for polio in 1949, 
whooping cough, and ln TB. One must be cautious about interpreting the results, 
however, when the distribution is close to uniform across the country, subject to random 
variation at the state level. In such a case one would be likely to find no difference in 
means. This might be the situation with polio and measles in 1950, which do not have a 
statistically significant relationship with latitude or longitude. In sum, diphtheria, 
syphilis, and polio in early 1950 best meet the test of this hypothesis. 

4 Boundary states are: WA, OR, CA, AZ, NM, TX, LA, MS, AL, FL, GA, SC, NC, VA, MD, DE, NJ, NY, 
CT, RI, MA, VT, ME, OH, MI, WI, MN, IL, ND, MT. Interior states: ID, NV, UT, CO, WY, SD, OK, AR, 
IA, IN, KY, WV, TN, NH, PA, NE, KS, MO. States with very short national boundaries--Idaho, Indiana 
and Pennsylvania--are classified as interior states. 
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This proposition also was tested with a nonparametric Wilcoxon-Mann-Whitney test, 
which compared the ranked values for boundary and interior states. A statistically 
significant difference indicates that one of the two distributions is shifted in relation to 
the other. This test gives exactly the same results for each illness as the t-tests.

3.4 Maximum and minimum test. The maximum and minimum for a harmonic function 
should be on the border. Table 4 shows the states where these occur, omitting the 
diseases already shown not to be harmonic functions. Excepting also diphtheria rates, out 
of 6 cases with 12 predictions there are three missed predictions: Idaho (twice for polio) 
and Nebraska (TB). (Recall that Idaho was classified as an interior state because of its 
relatively short international boundary.) The probability of a maximum or minimum 
being in a boundary state is 30/48 = 0.625, so by the binomial theorem the chance of 
obtaining exactly 9 correct predictions of 12 is p = .17. One might say the hypothesis is 
supported by a preponderance of evidence but not beyond a reasonable doubt. Not all 
cases are statistically independent of one another, however. 

4. Conclusion

The analysis shows that several common infectious diseases of the 1950s had 
approximately an equilibrium in their geographical distribution across the states of the 
U.S. This is true for polio, TB, diphtheria (depending on the model), and syphilis. Their 
spatial distributions have the characteristics of a harmonic function, which is a solution to 
the Laplace equation, and therefore represents the end state of a diffusion process—and 
usually the geographical gradient was in a north-south direction, a function of latitude. 
This result is largely confirmed by additional tests: the regression models for boundary 
states, the equality of means between interior and boundary states, and the locations of 
maxima and minima. No analysis was made of the stability of the equilibria, but the 
geographic equilibria for polio are clearly unstable. 

The harmonic function models allow us to explain spatial distributions across the U.S. 
without further consideration of heterogeneity in state populations. The only role for 
heterogeneity in these models is that high levels of syphilis and TB were fostered by 
social conditions in the Southeast and Southwest, respectively. Any remaining effects of 
state-level heterogeneity are in the unexplained variation of the regression model. These 
would include other features of geography, topography, social linkages, and so forth that 
might additionally affect the spread of illnesses.  

Despite similar modes of infection and similarly susceptible populations, the childhood 
diseases do not reveal many commonalities in their geographical distributions. For 
measles, the main indicator of a geographical contagion effect is Moran’s I, but the 
relation between a state’s infection level and the average in neighboring states is 
relatively weak. This degree of spatial autocorrelation for measles was not great enough 
to span the country uniformly, which might have led to a harmonic function distribution. 
Unlike polio and diphtheria, whooping cough did not have a harmonic function 
distribution, although it had a distinct spatial distribution, a quadratic surface. Clearly 
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there was something quite different about the spread of whooping cough compared to the 
other childhood diseases. Whooping cough also differs in not having large annual cycles 
of infection, but overall the results suggest that the large annual cycles one sees for polio, 
measles, and diphtheria are neither necessary nor sufficient for a spatial equilibrium. 
State population heterogeneity seems unlikely to explain spatial differences between the 
childhood diseases; it is hard to imagine what types of heterogeneities could have such 
disparate effects on different diseases. These inconsistencies in the spatial distributions of 
childhood epidemics are a significant puzzle that calls for further investigation. 

The analysis also raises questions about models that rely on population size or density. 
These variables did not contribute to the models here. In the SIR-type model population 
size should not matter, but the lack of significance of state population size at equilibrium 
especially goes against a basic premise of gravity models that the rate of  disease spread 
between two areas is proportional to the product of their populations. Furthermore, 
gravity models have difficulty predicting boundary values (Bharti et al., 2008), which is 
not an issue in this research. As to population density, prior research (Holmes, et al. 
1994) relates the velocity of the spread of infection to density. If this were true for the 
epidemics of 1950, however, one would expect to find it statistically significant. 

These findings also go beyond what SIR-type models predict and cannot be deduced 
from reaction-diffusion models. Consider, for example, a typical reaction-diffusion 
equation for spatiotemporal change. Colizza et al. (2007) describe the spread of the Black 
Death in Europe with equation (4), where I and S are functions of location and time (x,y,t)

It  =  b S I  - m I  +  D (Ixx + Iyy)       (4)

At equilibrium,  It = 0  and the equation has the general form of Poisson’s equation (5)

0  =  f(x,y)  +  D (Ixx + Iyy)      (5)

If the boundary values are held constant, as when solving the Laplace equation, the 
solution is unique and analogous to the surface of a drum when the skin is distorted 
because of a force applied to it, or it is like the distribution of temperature on the surface 
of a frying pan over a flame. The distribution has an equilibrium but is not a harmonic 
function, and with the possible exception of whooping cough, it cannot reproduce the 
findings seen here. 
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Table 1. Moran’s test for spatial autocorrelation.

Variable Moran’s I p value
Average temperature 1971-
2000

.74 .001

Diphtheria 1950-54 avg. .61 .001
Polio 1st quarter 1950 .41 .001
Polio rate 1949 .40 .001
Diphtheria rate 1955 .34 .003
Syphilis rate 1952 .31 .002
LN TB rate 1949-51 avg .24 .01
Measles rate 1950 .23 .01
Polio rate 1950 .17 .02
Whooping cough 1950 .11 .07
Note: p value determined by permutation test. Disease rates are per 100,000 population. TB rate is natural 
logarithm. 
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Table 2. National model for harmonic function hypothesis test: 
Y = constant + B1 * Latitude + B2 * Latitude2 + B3 Longitude + B4 Longitude2

Variable Constant 
(error)

 B1 

(error)
B2 

(error)
B3 

(error)
B4

(error)
R 
square

p LM 
spatial 
lag p

LM
spatial 
error p

Average 
Temp.

111 (3.2) - 1.50 
(0.08)

ns ns ns .88 <.0001 .18 .006

Syphilis 
1952

555 (60) -11.5 
(1.5)

ns ns ns .56 <.0001 .09 .03

Diphtheria 
1950-54 
average

48.7 
(15.1)

- 2.12 
(0.78)

0.0237 
(0.010)

ns ns .44 <.0001 .004 .002

Number 
Diphtheria 
1950-54 
average

51,400 
(8540)

-1120 
(215)

ns ns ns .37 <.0001 .72 .92

Polio 1st 
quarter 
1950

-3.5 
(0.94)

ns ns -0.049 
(0.010)

ns .34 <.0001 .90 .74

Polio 1949 -57 (19) 2.25 
(0.50)

ns ns ns .30 <.0001 .04 .01

Whooping 
Cough 
1950

1620 
(440)

ns ns 32.2 
(9.4)

0.17 
(0.05)

.22   .003 .57 .48

LN TB 
1949-51 
avg.

6.18 
(0.56)

-0.048 
(0.014)

ns ns ns .20   .001 .67 .73

Diphtheria 
1955

8.5 (2.9) -0.18 
(0.07)

ns ns ns .16   .005 .02 .03

Number 
Diphtheria
1955

152,000 
(46000)

-7010 
(2395)

81.4 
(30.7)

ns ns .37 <.0001 .96 .52

Measles
1950

- 170 
(218)

9.6 
(5.5)

ns ns ns .04   .09 .08 .09

Polio 1950 17.2 
(11.4)

0.077 
(0.288)

ns ns ns .002   .79 .10 .10

Notes: Latitude and longitude are at the state’s centroid. The quadratic surface for average diphtheria has a 
minimum at 45 degrees latitude; for number diphtheria in 1955, at 43 degrees latitude;  for whooping 
cough, there is a minimum at  -97 degrees longitude.  Spatial lag model (with std. errors) including lagged 
dependent variable for average diphtheria is Y = 6.33 (2.21) -0.13 (.05) latitude + 0.54 (.14) spatial lag Y, 
R square = .55. For diphtheria in 1955 the spatial lag model is Y = 5.82 (2.53) – 0.12 (0.06) + 0.36 (.17); R 
square = 0.26. 
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Table 3. Boundary states model for harmonic function hypothesis test (N = 30): 
Y = constant + B1 * Latitude + B2 * Latitude2 + B3 Longitude + B4 Longitude2

Variable Constant 
(error)

 B1  

(error)
B2 
(error)

B3 

(error)
B4 

(error)
R 
square

p 

Avg. temp. 111 (3.3) - 1.48 
(0.08)

.92 <.0001

Syphilis 
1952

560 (76) -11.4 
(1.9)

.56 <.0001

Polio 1949 -56.1 
(16.8)

2.10 
(0.42)

.47 <.0001

Diphtheria 
1950-54 
average

14.3 (2.6) -0.30 
(0.07)

.42 .0001

Number 
diphtheria 
1950-54 
average

54,400 
(1,100)

-1170 
(278)

.39 .0002

Diphtheria 
1955

10.7 (2.7) -0.23 
(0.07)

.30 .002

Number 
diphtheria 
1955

35,800 
(8,400)

-786 
(211)

.33 .001

Polio 1st 
quarter 
1950

16.5 (6.2) -0.77 
(0.33)

0.0092 
(0.0042)

.26 .006

LN TB 
1949-51 
avg.

5.56 (0.50) -0.029 
(0.013)

.16 .02

Whooping 
Cough 
1950

1711 (647) 33.7 
(13.9)

0.17 
(0.07)

.13 .05

Measles 
1950

- 162 
(205)

9.0 (5.2) .10 .09

Polio 1950 not 
significant

ns   0  ns

Notes: Latitude and longitude are at state’s centroid. Quadratic surface for polio 1st quarter has a maximum 
at 42 degrees latitude; whooping cough surface minimum is at - 99 degrees longitude.
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Table 4. Locations of state maxima and minima.

Variable Maximum Minimum
Average temperature Florida North Dakota
Average diphtheria rate 
1950-54

Alabama Connecticut

Average number diphtheria 
cases 1950-54

Texas Delaware

Diphtheria rate 1955 Alabama ME,VT,RI,CT,ID,WY (tie)
Number diphtheria cases 
1955

Alabama ME,VT,RI,CT,ID,WY

Syphilis 1952 Florida Minnesota
TB Arizona Nebraska
Polio 1949 Idaho South Carolina
Polio 1st quarter 1950 Idaho Massachusetts
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Figure 1. Syphilis and ln TB rates in relation to latitude with linear fit. 
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Figure 2. Polio rate in 1949 in relation to latitude with linear fit.
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Figure 3. Polio rate in the first quarter of 1950 in relation to longitude with linear fit. 
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Figure 4. Diphtheria rate in relation to latitude; 1950-54 average with a quadratic fit. 
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Figure 5. Whooping cough rate in 1950 in relation to longitude with quadratic fit. 
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 Figure 6. Average number of diphtheria cases 1950-54 in relation to latitude with linear 
fit.
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