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22 Abstract

23 Non-invasive prenatal testing (NIPT) enables accurate detection of fetal chromosomal 

24 trisomies. The majority of existing computational methods for sequencing-based NIPT 

25 analyses rely on low-coverage whole-genome sequencing (WGS) data and are not applicable 

26 for targeted high-coverage sequencing data from cell-free DNA samples.

27

28 Here, we present a novel computational framework for a targeted high-coverage sequencing-

29 based NIPT analysis. The developed methods use a hidden Markov model (HMM)-based 

30 approach in conjunction with supplemental machine learning methods, such as decision tree 

31 (DT) and support vector machine (SVM), to detect fetal trisomy and parental origin of 

32 additional fetal chromosomes. These methods were tested with simulated datasets covering a 

33 wide range of biologically relevant scenarios with various chromosomal quantities, parental 

34 origins of extra chromosomes, fetal DNA fractions and sequencing read depths. 

35 Consequently, we determined the functional feasibility and limitations of each proposed 

36 approach and demonstrated that read count-based HMM achieved the best overall 

37 classification accuracy of 0.89 for detecting fetal euploidies and trisomies. Furthermore, we 

38 show that by using the DT and SVM methods on the HMM state classification results, it was 

39 possible to increase the final trisomy classification accuracy to 0.98 and 0.99, respectively.

40

41 We demonstrated that read count and allelic ratio-based models can achieve a high accuracy 

42 (up to 0.98) for detecting fetal trisomy even if the fetal fraction is as low as 2%. Currently 

43 existing methods require at least 4% fetal fraction, which can be an issue in the case of early 

44 gestational age (<10 weeks) or elevated maternal body mass index (>35 kg/m2). More 

45 accurate detection can be achieved at higher sequencing depth using HMM in conjunction 

46 with supplemental methods, which significantly improve the trisomy detection especially in 
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47 borderline scenarios (e.g., very low fetal fraction) and can enable to perform NIPT even 

48 earlier than 10 weeks of pregnancy.

49
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50 Introduction

51 It is well known that chromosomal aneuploidies are the leading cause of spontaneous 

52 miscarriages and congenital disorders in humans (1,2). At least 10% of all clinically 

53 diagnosed pregnancies are trisomic or monosomic. It is assumed that many aneuploid 

54 conceptions are eliminated during the earliest stages of pregnancy (3). The most common 

55 aneuploidies are trisomies, which are characterized by the presence of an additional 

56 chromosome and caused by segregation errors, occurring during meiotic divisions. In case of 

57 trisomy of chromosome 21, approximately 90% are of maternal origin and 73% occur during 

58 first meiotic division (4–9). Despite routinely performed prenatal screenings in most 

59 developed countries, more than 0.1% of all live births are trisomic and the corresponding risk 

60 continues to rise with increasing maternal age (10). 

61

62 Advanced non-invasive methods for prenatal screening using cell-free DNA (cfDNA) have 

63 considerably improved the detection of fetal aneuploidies (11). The most commonly used 

64 technique, whole-genome sequencing (WGS)-based non-invasive prenatal testing (NIPT) 

65 enables inference of the ploidy of each chromosome by counting the specifically mapped 

66 sequencing reads to each chromosome (12,13). Although NIPT offers increased accuracy 

67 compared to the first trimester serum screening and ultrasound, it is usually not a part of 

68 conventional prenatal screenings due to its high cost.

69

70 Alternative NIPT techniques have the potential to reduce high-cost limitations by using a 

71 targeted sequencing approach (14–16). Instead of low coverage WGS, only certain genomic 

72 regions are analyzed at high coverage. Targeting involves the use of hybridization-based 

73 capture or multiplex PCR amplification to enrich the genomic regions of interest (14,15). 

74 Compared to the WGS-based methods, targeted approaches require less cfDNA and enable to 
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75 study more samples in parallel, making it a cost-efficient alternative. A few already available 

76 targeted solutions rely on sequencing single nucleotide polymorphisms (SNPs). In these 

77 cases, allelic information from sequencing read counts can be used to calculate allelic ratios 

78 obtained from heterozygous SNPs and also serve as an extra source of information for 

79 inferring fetal aneuploidies (17). For example, NATUS software, developed by Natera, Inc., 

80 considers parental genotypes and crossover frequency data to calculate the expected allele 

81 distributions for SNPs and possible fetal genotypes based on recombination sites in the 

82 parental chromosomes (18). The algorithm compares predicted allelic distributions with 

83 measured allelic distributions by employing a Bayesian-based maximum likelihood approach 

84 to determine the relative likelihood of chromosomal copy number hypothesis. The likelihoods 

85 of each sub-hypothesis are summarized and the hypothesis with the maximum likelihood is 

86 the chromosome copy number in the fetal DNA fraction (FF). Although feasible, this method 

87 is proprietary and not available to the community. An alternative approach is to model a 

88 chromosome as hidden Markov model (HMM) of sequential loci and determine the most 

89 likely chromosomal copy number status at each locus and consequently the overall 

90 chromosomal ploidy. Kermany and colleagues used HMM to detect fetal trisomy using high-

91 density SNP markers from a trisomic individual and one parent (19), and similar HMM-based 

92 approaches have been previously used to detect both full and sub-chromosomal aneuploidies 

93 using binned read counts (20,21).

94

95 In the current study, we present a novel statistical framework for detecting fetal trisomy and 

96 possibly the parental origin of the trisomy from targeted high-coverage sequencing data of 

97 pregnant women’s cfDNA. The framework incorporates three different HMMs that utilize 

98 read counts of targeted loci, allelic ratios of targeted SNPs, or both in combination with a 

99 decision tree (DT) or support vector machine (SVM)-based trisomy detection, without 
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100 requiring any prior knowledge of parental genotypes. We provide a comprehensive 

101 evaluation of the performance and limitations of these methods on simulated datasets 

102 generated for a wide range of biologically and technically relevant scenarios. These results 

103 can be used as guidelines for appropriate study design and feasibility analysis for future NIPT 

104 studies using targeted sequencing approach.

105
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106 Materials and Methods

107 Sequencing data simulation

108 A total of 1,800 datasets were generated with different parameters to mimic the read count 

109 data obtained from targeted sequencing of 10,000 pregnant women’s cfDNA samples in 

110 various conditions. Simulated datasets varied in the context of (1) fetal condition – euploidy, 

111 maternally or paternally originated trisomy characteristic to meiosis I segregation failure; (2) 

112 sequencing read depth (RD) – in the range of 500 to 15,000 at increments of 500; and (3) FF 

113 – in the range of 1 to 20% at increments of 1%. Each dataset incorporated 10,000 individual 

114 chromosome sets, each chromosome incorporated 1,000 SNPs.

115

116 As the cfDNA of a pregnant woman contains both maternal and fetal DNA, we started the 

117 simulation with the formation of parental chromosomes. For both parents, we generated two 

118 sets of 1,000 SNPs representing a pair of homologous chromosomes. Each SNP was biallelic 

119 and both alleles had an equal likelihood of occurrence (MAF = 0.5). Before creating a fetal 

120 set of chromosomes, parental homologous chromosomes underwent a chromosomal 

121 crossover by exchanging a random number of homologous alleles. The resulting recombined 

122 chromosomes were used to form a set of fetal chromosomes according to the fetal conditions.

123

124 In addition, we generated allele counts for each SNP according to the mean sequencing 

125 coverage and FF of the dataset. One might assume that all reads in a given region would 

126 follow a Poisson distribution with a mean proportional to the copy number of the region. 

127 However, due to the various technical biases, the process is over-dispersed and the simulation 

128 distribution followed the negative binomial distribution with a variance-to-mean ratio of 3 

129 (22).

130
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131 Allelic ratio calculation

132 Based on the simulated data, we calculated the allelic ratio for every “informative” SNP. 

133 Only SNPs which were heterozygous in mother and/or fetus were considered as informative.

134 If both alleles have equal likelihood of occurrence (MAF = 0.5), on average 75% of SNPs 

135 were informative in case of maternally originated trisomy and the proportion of informative 

136 SNPs was even higher in the case of paternally originated trisomy as both paternal alleles 

137 contributed to heterozygosity independently. The allelic ratio was defined as the number of 

138 sequencing reads carrying a major allele for a certain variant divided by the number of 

139 sequencing reads carrying a minor allele.

140

141 Fetal fraction calculation

142 FF showed the proportion of fetal cfDNA in total cfDNA. We estimated the FF of a cfDNA 

143 sample using the allelic counts of the sample’s reference chromosome. First, we filtered the 

144 informative SNPs on the reference chromosome, where the mother was homozygous and the 

145 fetus was heterozygous (allelic ratio > 2.5). In this subset, the major allele count was the sum 

146 of maternal allele counts and 1/2 of the fetal allele count. The minor allele count was 

147 proportional to 1/2 of the fetal allele count. The FF was calculated as the median value of the 

148 ratios between 2 × minor allele counts and the sum of major and minor allele counts.

149 The FF of a sample was calculated using the following formula:

150 ,𝐹𝐹 = median( 2 × 𝑚𝑖𝑛𝑖

𝑚𝑎𝑥𝑖 + 𝑚𝑖𝑛𝑖)
151 where FF denotes the fetal fraction, maxi – the major allele count of SNP i, and mini – the 

152 minor allele count of SNP i. The median value over all informative SNPs was considered as 

153 estimated FF of a sample, which showed high similarity to actual FF (Fig in S2 Fig).

154
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155 Hidden Markov model

156 For the detection of fetal trisomy and the parental origin of the trisomy, we implemented 

157 HMM in Python (version 3.6.2) using the hmmlearn (version 0.2.0) package. First, we 

158 created three distinct models based on the observed measurements of sequential SNPs – (1) 

159 read counts (Fig A in S1 Fig), (2) allelic ratios (Fig B in S1 Fig), and (3) the combination of 

160 both read counts and allelic ratios (Fig B in S1 Fig). Second, we estimated the parameters for 

161 the models empirically using a simulated training dataset. Finally, we used the Viterbi 

162 algorithm to find the most likely underlying fetal condition behind each SNP.

163

164 Read count model

165 The read count (RC) model is a 2-state HMM which enables detection of underlying fetal 

166 conditions of sequential SNPs using read counts (Fig A in S1 Fig). The possible outcome 

167 states of the model are “euploidy” and “trisomy”. The RC model is based on the hypothesis 

168 that the mean coverage of a given region is proportional to the copy number of the region. In 

169 the case of fetal trisomy, there is an extra chromosome and therefore we would expect to see 

170 a 1/3 increase in fetal read counts compared to the euploid chromosome.

171

172 Allelic ratio and combined models

173 The allelic ratio (AR) model and the combined model of read count and allelic ratio (RCAR) 

174 are both 7-state HMMs, which enable detection of underlying fetal conditions and the 

175 parental origin of SNPs (Fig B in S1 Fig). The AR model uses allelic ratios of sequential 

176 informative SNPs as inputs. The RCAR model incorporates sequential read counts and allelic 

177 ratios as inputs. Both models classify loci into seven categories by the allelic pattern. The 

178 allelic pattern depends on the maternal and fetal genotypes and the fetal condition (Table in 

179 S6 Table). The possible outcome states of the model are “euploidy”, “trisomy”, and “paternal 
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180 trisomy”. Although the “trisomy” condition includes loci typical to both maternally and 

181 paternally originated trisomy, here we associated “trisomy” with maternally originated 

182 trisomy to avoid over-estimation of paternally originated trisomy.

183

184 Parameter estimation

185 In all three HMMs, no prior distribution of the initial state was assumed. Each possible state 

186 had an equal likelihood of occurrence. The HMM transition probability was set to 10 times 

187 more likely to stay in the same state than to switch between states with different fetal 

188 conditions. The emission probabilities were obtained using the training datasets. For each test 

189 dataset, we simulated a training dataset of 100 cfDNA samples with corresponding FF and 

190 sequencing coverage. In our models, the emission probabilities were approximated to a 

191 Gaussian distribution. The distribution parameters were obtained for each state by calculating 

192 the mean and variance of the read counts and allelic ratios of the training dataset.

193

194 Fetal condition estimation

195 The chromosomal condition of a cfDNA sample was determined by the most frequently 

196 occurring underlying condition of targeted loci using the RC, AR, and RCAR models. If no 

197 condition was prevalent, the cfDNA sample was marked as unclassified. 

198

199 To improve the accuracy, especially in the case of paternally originated trisomy, we applied 

200 the DT and the SVM on HMM-classified state proportions of the targeted loci. Both methods 

201 were implemented in Python (version 3.5.5) using scikit-learn (version 0.19.1). The DT was 

202 used with default parameters, except the maximum depth of the tree was set to three and the 

203 random state generator to 123. The SVM also used default parameters and the random state 

204 generator was set to 123. As the DT and SVM are supervised learning models, we used the 
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205 training dataset to fit the models. Eventually, each cfDNA sample was classified using both 

206 models by the following features – RD, FF and HMM state frequencies. The possible 

207 classification output values were identical to HMM.

208

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 3, 2018. ; https://doi.org/10.1101/486282doi: bioRxiv preprint 

https://doi.org/10.1101/486282
http://creativecommons.org/licenses/by/4.0/


12

209 Results and Discussion

210 We developed three novel HMM-based statistical methods to detect fetal chromosomal 

211 trisomies from targeted sequencing assays. In addition to a naïve HMM-based frequentist 

212 approach for trisomy detection, we applied two machine learning (ML) methods to infer fetal 

213 trisomy. While considering a wide range of biologically and technically motivated 

214 conditions, we simulated datasets mimicking cfDNA sequencing assays and used these data 

215 to perform a comprehensive evaluation of our proposed computational methods (Fig 1).

216

217 Novel HMM-based methods for trisomy detection

218 By considering the sequencing read counts (RC) of targeted loci, allelic ratios (AR) of 

219 targeted SNPs, or both (RCAR), the developed HMM models were used to classify 

220 consecutive target loci on a studied chromosome into pre-defined underlying states. In the 2-

221 state RC model, these unique states represented fetal euploidy and trisomy (Fig A in S1 Fig). 

222 In the case of the 7-state AR and RCAR models, these different states can occur with fetal 

223 euploidy or maternally/paternally originated trisomy (Fig B in S1 Fig). Consequently, the 

224 proportion of loci classified into these distinct states can be used to estimate the fetal 

225 condition of each studied chromosome (see “Fetal condition estimation” in Methods). And 

226 although such naïve classification works relatively well in case of high sequencing read depth 

227 (RD) and fetal fraction (FF) scenarios, the proportion of loci classified into these underlying 

228 states can be similar and thus difficult to distinguish unambiguously in the case of low RD 

229 and FF (Fig 2).

230

231 Therefore, the precise calculation of FF is also crucial for controlling the precision and 

232 uncertainty of fetal trisomy detection and sequencing-based NIPT. Notably, in the case of the 

233 RC model and autosomal chromosomes there is no information that could be used to infer the 
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234 FF of the studied sample so that optimal corresponding model parameters can be used. One 

235 possible solution to overcome this challenge is to use the expected median FF of 10% (23). In 

236 the case of the AR and RCAR models, we used informative polymorphic SNPs with 

237 heterozygous alleles in mother and/or fetus to infer the sample-specific FF (Fig in S2 Fig), 

238 similarly to previous studies (24–26). Additionally, in the case of the AR and RCAR models, 

239 allelic count data at informative SNPs can be used to calculate allelic ratios, distinguishing 

240 maternally and paternally originated trisomies (see “Allelic ratio calculation” in Methods) 

241 according to their distinct allelic patterns (Table in S6 Table). On the other hand, these 

242 models only consider informative targeted SNPs that are polymorphic in a given sample, 

243 which reduces the total number of analyzed SNPs least by 25% and therefore somewhat 

244 decreases the detection accuracy (data not shown).

245

246 Supplemental methods for trisomy detection

247 Since in some possible scenarios, such as paternally originated trisomy, the previously 

248 described HMM-based models did not unambiguously infer the underlying fetal condition 

249 (Fig 2), we developed two additional “supplemental” machine learning (ML)-based methods 

250 to improve the sample classification accuracy. The supplemental methods, which take HMM-

251 classified state proportions as input, significantly improved the sample classification 

252 especially when the proportion of loci inferred into one or the other HMM state was not an 

253 obvious majority and where the frequentist approach, therefore, did not work (Table 1 and 2).

254

255 All three HMMs (RC, AR, and RCAR) independently and conjointly with the supplemental 

256 methods (DT and SVM) were tested on the same collection of simulated cfDNA datasets 

257 representing all combinations of different fetal chromosomal conditions (euploidy, maternally 
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258 and paternally originated trisomy) and FFs (1-20%) sequenced with various RDs (500-15,000 

259 reads), which is feasible for targeted sequencing assays.

260

261 Read count (RC) model

262 The RC model enables detection of fetal euploidy and trisomy by using sequencing read 

263 counts in successive (targeted) regions along the chromosome of interest. As read count data 

264 alone cannot be used to infer the FF of a studied sample, we assumed FF as 10% in this 

265 testing model. Nevertheless, the HMM method showed excellent accuracy in detecting fetal 

266 euploidy (Fig 3). On the other hand, this method was ineffective at detecting fetal trisomy if 

267 the FF was lower than 6% and increasing the RD induced only a minor increase in detection 

268 accuracy (Table 1). It is also important to note that since there is no direct method to 

269 distinguish between paternally and maternally inherited alleles, the read count model does not 

270 enable determination of the parental origin of the trisomy. Since it uses only sequencing read 

271 count information to detect fetal trisomies, it is relatively straightforward to integrate this 

272 model with most existing sequencing-based solutions.

273

274 In general, applying supplemental methods significantly improved the RC model-based 

275 classification at lower FFs (Table 2). The DT method allowed accurate detection of fetal 

276 euploidy and trisomy even if the FF was as low as 3%; the SVM method successfully 

277 lowered that limit even further, allowing accurate detection of fetal trisomies at FF 2%, with 

278 a small trade-off in detecting aneuploid chromosomes (Fig 3). Unexpectedly, DT trisomy 

279 detection improved at a lower read coverage. This can be explained by the strictly set 

280 maximum depth (max_depth = 3) of the DT, which prevented overfitting of the model; on the 

281 other hand, this method was not suitable for classifying a wide range of FF values. This 
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282 shortcoming is due to the fixed FF parameter rather than the properties of the DT (Fig 3, Fig 

283 in S3 Fig).

284

285 Allelic ratio (AR) model

286 The AR model uses counts of sequencing reads containing one or the other allele at 

287 informative SNP loci along the chromosome of interest to estimate if the studied sample has 

288 euploid, maternally or paternally originated trisomy to infer the FF of the corresponding 

289 sample. The AR model showed excellent accuracy detecting fetal euploidy even at an FF of 

290 1% and an RD of 500 and reasonable accuracy to detect maternally originated trisomy if FF 

291 was ≥ 6% and RD was higher than 10,000 (Fig 4). In contrast to the DT and the SVM 

292 methods, it was unable to detect paternally originated trisomy in a given range of FF and RD 

293 (Fig in S4 Fig). 

294

295 Compared to the read count data, allelic ratio information was used to estimate the FF of a 

296 sample using specific allelic patterns (Table in S6 Table). In addition, allelic ratio data were 

297 used to separate maternally and paternally originated trisomies. As for the HMM, the 

298 inability to detect paternally originated trisomy can be explained by the overlapping emission 

299 distributions of the allelic ratios of maternally and paternally originated trisomies. 

300

301 In general, the supplementary methods increased the detection accuracy for the AR model 

302 significantly (Table 2), especially in the case of paternally originated trisomy (Table 1, Fig in 

303 S4 Fig). In the case of maternally originated trisomy, all three methods had similar 

304 characteristics as the detection accuracy was positively correlated with both sequencing RD 

305 and FF (Fig 4). The read count had a stronger impact on the AR model, whereas the RC 

306 model was mostly affected by FF. The DT had a slight fetal trisomy detection improvement 
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307 compared to the HMM, and the SVM in turn had a slight advantage over the DT. DT 

308 methods also showed excellent accuracy in detecting fetal euploidy. Unlike the other 

309 methods, the SVM showed slightly better maternally originated trisomy detection accuracy 

310 and consistently good results if the read coverage was low (RD = 500); on the other hand, the 

311 SVM had poor results detecting fetal euploidy if the read coverage was low (RD = 500). The 

312 SVM failure for euploidy and excellent results for maternally originated trisomy at low read 

313 coverage contradicted each other, which was a sign of maternally originated trisomy over-

314 estimation. In the case of paternally originated trisomy, the DT and SVM had excellent 

315 detection accuracy (Table 1).

316

317 Combined (RCAR) model

318 Finally, we studied the RCAR model, which incorporates both read count and allelic ratio 

319 information to predict fetal euploidy or trisomy. Furthermore, it utilizes informative SNPs, 

320 which enables separation of maternally and paternally originated trisomy by allelic patterns 

321 (Table in S6 Table) and estimated FF. The RCAR model showed excellent results in 

322 detecting fetal euploidy (Fig in S5 Fig). Compared to the HMM, the supplemental methods 

323 were inefficient to detect fetal euploidy when the FF and read coverage were low (RD ≤ 

324 1,500; FF ≤ 3%). All three methods showed a positive correlation between detection 

325 accuracy, RD and FF, while the HMM detection accuracy was approximately twice as worse 

326 compared to the supplemental methods. In case of maternally originated trisomy, the DT and 

327 the SVM had better detection accuracy than HMM (Fig 4). In the case of paternally 

328 originated trisomy, the DT had excellent detection accuracy followed closely by the SVM 

329 (Table 1). However, the HMM was unable to detect paternally originated trisomy in any give 

330 range of FF and read coverage (Fig in S5 Fig).

331
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332 The RCAR model showed significantly higher accuracy in conjunction with supplemental 

333 methods (Table 2). Compared to the HMM, the supplementary methods increased the 

334 detection accuracy in the case of fetal trisomies (Fig in S5 Fig). As for the HMM, the 

335 inability to detect paternally originated trisomy can be explained by the overlapping emission 

336 distributions (allelic ratios) of maternally and paternally originated trisomy. Similarly to the 

337 AR model, the overall accuracy of the RCAR model was affected by both FF and sequencing 

338 RD, whereas the RC model was mostly affected by FF (Fig in S5 Fig, Fig 3).

339
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340 Conclusions

341 Targeted sequencing approaches have the potential to reduce the price of NIPT and improve 

342 the quality of healthcare. In the current study, we present HMM-based models in conjunction 

343 with supplemental methods (DT and SVM), which enabled the detection of fetal trisomy and 

344 the parental origin of an extra chromosome using targeted sequencing-based prenatal (NIPT) 

345 assays. The developed methods were tested on simulated datasets generated for a wide range 

346 of biologically and technically motivated scenarios to determine the functional feasibility and 

347 limitations of each approach.

348

349 We determined that regardless of the computational method used, the most challenging factor 

350 in fetal trisomy detection is low FF. In our study, the RC model in conjunction with ML-

351 based supplemental methods can detect fetal trisomy at 2% FF, which enables earlier testing 

352 compared to the current NIPT assays. Although the RC model can be easily incorporated into 

353 currently available targeted workflows, the RCAR model is the recommended choice for its 

354 high accuracy and ability to determine the parental origin of the trisomy and to accurately 

355 estimate the studied sample FF.

356
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463 Supporting information captions

464 S1 Fig. Architecture of 2- and 7-state hidden Markov models (HMMs). (A) The 2-state 

465 HMM classified sequential single nucleotide polymorphisms (SNPs) into 2 underlying states, 

466 which represent fetal euploidy (white) and trisomy (grey), using read counts. (B) The 7-state 

467 HMM classified SNPs into 7 underlying states, which represent fetal euploidy (white), 

468 maternally (white-grey) and paternally originated trisomy (grey-white), using allelic ratios 

469 with or without read counts.

470

471 S2 Fig. Difference between estimated and simulated fetal fraction (FF). The simulated FF 

472 was subtracted from the estimated FF for each simulated cell-free DNA sample to determine 

473 the FF difference (y-axis). The differences were grouped as boxplots by sequencing read 

474 depth (x-axis). The results show a positive correlation between sequencing read depth and FF 

475 estimation accuracy.

476

477 S3 Fig. Results of the read count model. The simulated datasets of fetal euploidy and 

478 trisomy (vertical panels) were classified by three methods – hidden Markov model (HMM), 

479 decision tree (DT) and support vector machine (SVM) (horizontal panels). Each panel 

480 includes cells with different fetal DNA fractions (x-axis) and sequencing read coverages (y-

481 axis). Each cell includes 10,000 cell-free DNA samples and the color represents the model 

482 classification accuracy.

483

484 S4 Fig. Results of the allelic ratio model. The simulated datasets of fetal euploidy, 

485 maternally and paternally trisomy (vertical panels) were classified by three methods – hidden 

486 Markov model (HMM), decision tree (DT) and support vector machine (SVM) (horizontal 

487 panels). Each panel includes cells with different fetal DNA fractions (x-axis) and sequencing 
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488 read coverages (y-axis). Each cell includes 10,000 cell-free DNA samples and the color 

489 represents the model classification accuracy.

490

491 S5 Fig. Results of the combined model. The simulated datasets of fetal euploidy, maternally 

492 and paternally trisomy (vertical panels) were classified by three methods – hidden Markov 

493 model (HMM), decision tree (DT) and support vector machine (SVM) (horizontal panels). 

494 Each panel includes cells with different fetal DNA fractions (x-axis) and sequencing read 

495 coverages (y-axis). Each cell includes 10,000 cell-free DNA samples and the color represents 

496 the model classification accuracy.

497

498 S6 Table. Allelic patterns. Allelic ratio depends on fetal condition and maternal and fetal 

499 genotype.

500
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