
Implementation of the Perfect Plasticity Approximation
with biogeochemical compartments in R

Adam Ericksona,⇤, Nikolay Strigula

aDepartment of Mathematics and Statistics, Washington State University
14204 Salmon Creek Avenue, Vancouver, WA, 98686, USA

Abstract

Modeling forest ecosystems is a landmark challenge in science, due to the com-

plexity of the processes involved and their importance in predicting future plane-

tary conditions. While there are a number of open-source forest biogeochemistry

models, few papers exist detailing the software development approach used to

develop these models. This has left many forest biogeochemistry models large,

opaque, and/or di�cult to use, typically implemented in compiled languages

for speed. Here, we present a forest biogeochemistry model from the SORTIE-

PPA class of models, PPA-SiBGC. Our model is based on the Perfect Plasticity

Approximation with simple biogeochemistry compartments and uses empiri-

cal vegetation dynamics rather than detailed prognostic processes to drive the

estimation of carbon and nitrogen fluxes. This allows our model to be used

with traditional forest inventory data, making it widely applicable and simple

to parameterize. We detail the conceptual design of the model as well as the

software implementation in the R language for statistical computing. Our aim

is to provide a useful tool for the biogeochemistry modeling community that

demonstrates the importance of vegetation dynamics in biogeochemical models.
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1. Motivation and Significance

The practice of modeling ecological systems began around 1920 with a calcu-

lus model of chemical dynamics applied to the trophic interaction of herbivory

[1]. The logistic growth model used was inspired by Malthusian carrying ca-

pacity [2]. The concept of Ökologie (ecology) had been formalized by Haeckel5

in 1866, with ecosystems soon to be coined by Tansley in 1935. Lotka-Volterra

equations, a type of periodic Kolmogorov system, were next applied to fish pop-

ulations [3]. Four decades later, empirical di↵erential equations were developed

to model the growth and yield of forest stands [4, 5, 6]. These models extended

the principle of growth tables, used in Germany since the 18th century and in10

China since the 17th century [7].

The simplicity of early forest ecosystem models reflected the computational

limits of the era – models were tractable by necessity, solved by mechanical

calculators or hand. Digital computers brought a landmark innovation in the

ability to explicitly simulate processes of forest succession at an individual-15

tree level [8]. For the first time, direct analysis of forest dynamics theory [9]

was possible. These forest ’gap’ models exhausted computational resources of

the era beyond the stand or landscape scale – a limitation that continues to

date. Concurrently, the first one-dimensional physiological or biogeochemical

process models and forest fire models were developed. Many components of20

modern terrestrial biosphere models were built separately and later assembled

into comprehensive global modeling systems.

Until recently, the number of transistors in integrated circuits doubled every

two years in accordance with Moore’s Law. Despite the growth in compute, gap

models remain computationally impractical for regional- or global-scale model-25

ing. While many modeled processes are inherently serial, others are poised to

greatly benefit from mass parallelization (e.g., using general-purpose graphics

processing units, or GPGPUs). There is surprisingly little research in this area

currently, as most modeling groups prefer to add new processes rather than

optimize existing ones. Yet, there is a critical need to produce ”a relatively30
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simple mechanistic ecosystem model that is equitable in detail and that will

run at large scales” [10]. Such a model is required to improve representation of

vegetation dynamics in earth system models in order to produce more robust

predictions of the global carbon cycle [11].

A lack of detailed field observations made (and still make) models of forest35

dynamics di�cult to parameterize and validate, due to the long timescales and

large number of parameters and processes involved [12]. While long-term eco-

logical research (LTER) began formally with NSF funding of six sites in 1980,

less than four decades have since passed. There are few research forests with a

century of data or more. Even for sites with a long history of data (e.g., Harvard40

Forest), the sparsity data makes the validation of complex models non-trivial.

Meanwhile, forest measurement techniques have radically advanced since the

1980s, first in the 1990s with eddy covariance flux towers and second in the

2000s with geometric point cloud models generated by laser scanning or pho-

togrammetric computer vision (e.g., structure-from-motion). These new data45

sources provide detail on forest energy and biogeochemistry fluxes, canopy dy-

namics, species distributions, demography, and other metrics of vital importance

to developing and validating new forest biogeochemistry models.

Over the past century, models of forest ecosystems grew in complexity from

di↵erential equations to detailed models of physiological and spatial processes.50

This progression entailed seven landmark stages of model development: (i)

growth-and-yield tables or equations [7]; (ii) physical soil-plant-atmosphere con-

tinuum models [13]; (iii) forest fire models [14]; (iv) forest ’gap’ models [8, 12];

(v) ’big-leaf’ physiological process models including early land surface mod-

els [15, 16]; (vi) hybrid and landscape models [17, 18]; (vii) ’cohort-leaf’ hy-55

brid models including ED/ED2/FATES [19, 20], LM3-PPA [21], and the simple

PPA-SiBGC compartment model presented herein. Model stages i–v entailed

increases in complexity with each new process, resulting in the desire for new

approximation schemes in stage vii models. While stage vi models expanded to

include modeling spatial processes at the landscape scale, stage vii models blend60

physiological and demographic processes through robust gap model reductions.

3
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Thus, current state-of-the-art (stage vii) models follow the modeling approach

advocated in the seminal works of [22] and [23]: prefer realism and generality

to precision.

Models of forest ecosystems entail a number of scale- and application-specific65

assumptions. Historically, this has required the selection of di↵erent models for

di↵erent applications or research questions [24, 25]. Terrestrial biosphere mod-

els, for example, were separated into diagnostic and prognostic models [26].

While model structure diverged over the previous four decades into specialized

applications, it has converged during the past two with the development of hy-70

brid models. The recent development of ’cohort-leaf’ models has made this con-

vergence complete, integrating aspects of each class of model, from individual-

based gap models to global-scale terrestrial biosphere models. The distinction

between diagnostic and prognostic models has similarly faded.

It is beneficial to comprehend that the mathematical approximations devel-75

oped in stage VII models were made possible by detailed individual-based gap

models. In e↵ect, gap models were applied as generative models to produce data

for di�cult-to-measure dynamics needed in developing approximations. This is

conceptually similar to the sim2real paradigm currently at the forefront of artifi-

cial intelligence and robotics research [27]. Using gap models as data generators80

was necessary due to a lack of detailed long-term observational data. In other

words, the approximations are model emulators, as demonstrated in the seminal

publication describing the PPA model [28, 29]. Unlike most statistical emula-

tors (e.g., machine learning models), the PPA model is analytically tractable,

thereby surpassing the requirement for an e�cient model approximation pro-85

viding macroscopic equations of forest dynamics [10].

In recent work [30], we demonstrated that the PPA model extended with

simple biogeochemistry compartments (PPA-SiBGC) is adequate to produce

model realism and precision surpassing LANDIS-II and its latest NECN biogeo-

chemistry model, which is an adaptation of the CENTURY model. This work90

is important because it demonstrates that improving the representation of veg-

etation dynamics in forest biogeochemistry models may yield model accuracy
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surpassing far more complex models lacking explicit canopy dynamics. More-

over, our presented model is computationally e�cient, with speeds an order of

magnitude faster than LANDIS-II despite being implemented in an interpreted95

rather than compiled language (R rather than C#).

2. Conceptual Framework

In the following sections we describe the conceptual framework behind the

PPA-SiBGC model.

2.1. Perfect Plasticity Approximation100

The Perfect Plasticity Approximation (PPA) model [28] was developed based

on the SORTIE individual-based model of forest ecosystems, or gap model [31].

The PPA model reduces the dimensionality of the classical SORTIE gap model

by approximating the 3-D geometric interactions of individual tree crowns at the

cohort level. The PPA model was based on the observation that the inclusion105

of phototropism (i.e., stem-leaning) and crown plasticity (i.e., space-filling) in

the crown-plastic SORTIE model, CP-SORTIE, reduced the variation in canopy

join height to a negligible level [28]. Thus, assuming perfect plasticity would

yield zero variation in canopy join height, allowing the canopy to simply and

e↵ectively be segmented into separate canopy layers. This property is extremely110

important for application in modern terrestrial biosphere models, which widely

adopt one-dimensional big-leaf representation of processes. The PPA model is

succinctly described by Equation 1:

1 =

Z 1

z⇤

kX

j=1

Nj(z)Aj(z
⇤, z)dz (1)

where k is the number of species, j is the species index, Nj(z) is the density

of species j at height z, Aj(a⇤, z) is the projected crown area of species j at115

height z, and dz is the derivative of tree height. Thus, we compute the height

where the integral of tree crown area is equal to the stand ground area. This

yields the theoretical z⇤ height that marks the transition from above to below

5
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one canopy layer [28]. There may be one or many z⇤ heights. The number of

theoretical z⇤ heights in a stand is a function of the stand’s leaf-area index, or120

LAI, where nz⇤ = bLAIc. Each additional closed canopy layer, including shrubs

and grasses, follows the form z⇤⇤, z⇤⇤⇤, et cetera.

This partitioning of canopy layers allows for the use of separate coe�cients

or models of growth, mortality, and fecundity to be applied across the strata.

The first moment of these canopy layer dynamics accurately approximates the125

dynamics of individual-based models [28]. We extend the SORTIE-PPA model

by adding a simple compartment-based representation of biogeochemistry us-

ing allometric and stoichiometric relations, along with simple prognostic (i.e.,

climate-driven) model of soil respiration [32, 33] and a constant representation

of organic carbon by soil type [34].130

2.2. Allometry and Stoichiometry

The tree allometric model and parameters were adapted from previously

published research [35, 36]. Tree height is modeled as a non-linear function of

stem diameter as follows:

h = 1.35 + (hmax � 1.35)⇥ (1� e(�1⇤b⇤DBH)) (2)

where h is the tree height (m), hmax is the maximum potential tree height,135

DBH is the depth-at-breast-height (cm), e is Euler’s constant, and b is an ex-

ponential decay coe�cient. Tree crown radius and depth are also modeled as a

function of DBH, but are instead intercept-free linear models.

dcrown = cd⇥DBH (3)

where dpcrown is the crown depth (m) and cd is the crown depth regression

coe�cient. The equation form is similar for crown radius:140

rcrown = cr1 ⇥DBHcr2 (4)

6
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where rcrown is the crown radius (m) and, cr1 and cr2 are the crown radius

regression coe�cients. Basal area is also calculated as a function of DBH, using

the forester’s constant for DBH in centimeters:

ba = DBH2 ⇥ 0.00007854 (5)

National species-specific biomass equations [37] were used to model tree

biomass as a function of DBH:145

log AGB = �0 + �1 ⇥ logDBH (6)

where AGB is the tree aboveground biomass (kg) and, �0 and �1 are regres-

sion coe�cients. Empirical coe�cients are used for the aboveground biomass

fractions contained in stem, branch, and leaf compartments, as well as soil. Root

biomass is partitioned into coarse and fine root components based on existing

equations for the United States [37], following the general form:150

log ratio = �0 + �1 logDBH (7)

where ratio is the biomass fraction for the root component and, �0 and �1

are regression coe�cients. The coe�cients used for coarse roots were -1.4485

for �0 and -0.03476 for �1. For fine roots, the coe�cients were -1.8629 and -

0.77534, respectively. The biomass of each root compartment is then calculated

by multiplying tree AGB by the corresponding ratio.155

Tree belowground biomass is calculated as the sum of root and soil biomass,

while total biomass is calculated as the sum of below- and above-ground com-

partments. Separate empirical biomass carbon fraction and C:N stoichiometric

coe�cients were used for each compartment. Thus, C and N content are fixed

fractions of biomass values, based on empirical point estimates or samples from160

distributions.

2.3. Soil Respiration

In the PPA-SiBGC model, we use the simple prognostic soil respiration

model of Raich et al. (2002):

7
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RS = F ⇥ e(Q10⇤Ta) ⇥ [P/(K + P )] (8)

where e is Euler’s constant, Q10 is the respiration temperature sensitivity165

coe�cient per 10 °C increase, b is a temperature sensitivity constant, Ta is mean

monthly air temperature (°C), P is mean monthly precipitation (cm), F is the

soil respiration rate at 0 °C, K is the half-saturation constant for the hyperbolic

relationship between soil respiration and rainfall, and RS is soil respiration (g

C m2 day�1). The version of the model used in PPA-SiBGC includes updates170

parameters based on infrared gas analyzer measurements of soil CO2 flux [33].

2.4. Soil Organic Carbon

For modeling soil organic carbon (SOC) in PPA-SiBGC, we use the simple

approach of Domke et al. (2017), which is based on the STATSGO US national

soil database. Thus, the model is currently limited to forest soil types present175

in the US. The model is defined as follows:

CS = (
jX

F=1

SOCSG ⇥ E)⇥ (
jX

F=1

E)�1 (9)

where CS is the county-specific areal SOC by forest type (Mg/ha), SOCSG

is the areal SOC for the STATSGO map unit (Mg/ha), E is a vector of weights

for the areal coverage of each USFS Forest Inventory and Analysis (FIA) plot,

and F is the number of FIA plot records within forest types. We used the best180

fit model of [34] to model the vertical SOC profile:

log10 SOC = I + log10 D (10)

where log10 SOC is the volumetric soil organic carbon density (Mg C ha�1cm�1),

I is the intercept, and D is the profile midpoint depth (cm). We integrated over

a range of profile depths to produce total SOC values:

log10 SOC100 =
100X

d=1

I + log10 d (11)

8
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where d is the profile midpoint depth (cm). And thus:185

SOC100 = 10log10 SOC100 (12)

Both the original SORTIE-PPA model and the PPA-SiBGC model presented

herein have undergone extensive validation with field data. The SORTIE-PPA

model validation is described in the original paper [28], while the PPA-SiBGC

model was recently validated at two research forests for a range of metrics [30].

Despite the simplicity of the representation of biogeochemical dynamics in the190

PPA-SiBGC model, it outperformed LANDIS-II with NECN (i.e., CENTURY)

biogeochemistry across a range of metrics and sites in the model intercomparison

exercise [30].

3. Software Description

The PPA-SiBGC model is implemented in a standalone R script that is195

designed to be run from a command-line interface, or CLI. Since the model is

implemented in R with no external dependencies, it can be used on any platform

that R supports (e.g., Windows, Linux, MacOS). The model implementation

begins by loading all input data into memory and parsing the configuration

CSV file. If cohort mode is enabled, the GenerateCohorts function aggregates200

the individual trees into cohorts based on a predefined DBH interval (e.g., every

2 cm), recording the number of trees per cohort.

Next, the allometric and stoichiometric C:N equations are applied to the

individual trees or cohorts in order to calculate the initial C and N pools. The

simulation is then run for each year in the defined temporal range. The overall205

model process is shown in Algorithm 1.

9
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Algorithm 1 PPA-SiBGC model procedure

1: procedure Model

2: Load input files

3: Generate cohorts

4: Initialize tree allometry and biogeochemistry

5: Calculate soil organic matter profile

6: for year, ..., Nyears do

7: Calculate soil respiration

8: Calculate z⇤ height (PPA algorithm)

9: for species, ..., Nspecies do

10: for type, ..., Ntypes do

11: Apply mortality

12: Apply growth

13: Calculate allometry

14: end for

15: Calculate biomass

16: Calculate C and N

17: end for

18: Append annual outputs to CSV

19: Calculate year execution time

20: end for

21: Calculate total execution time and export to CSV

22: end procedure

10
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Vectorization is used where possible to accelerate the model operations. This

optimization comes at no cost to the programmer in interpreted languages such

as R, as it is built into the language. Distributions such as Microsoft R Open

(MRO) ship with the Intel MKL optimized algebra library. An implementation210

of the PPA algorithm used to find the theoretical z⇤ height is shown in Algorithm

2:

Algorithm 2 simplified PPA algorithm

Input: T1 . . . TN (tree list from forest inventory), Afield (field area)

Output: T (height-sorted tree list), zstar (calculated z⇤ height)

1: procedure PPA(T ,AField)

2: zStar  NULL

3: T  Sort(THeight, Descending) . sort trees by descending height

4: for i = 2, ..., TN do

5: CrownAreaT [i] CrownAreaT [i] + CrownAreaT [i� 1]

6: if CrownAreaT [i] > AField then

7: zStar  HeightT [i]

8: return T , zStar . return from function

9: else

10: continue

11: end if

12: end for

13: return T , zStar . return from function

14: end procedure

11
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The software implementation provided is an approximation of the PPA al-

gorithm that simplifies its calculation:
215

Trees <� Trees [ order ( Trees$height , d e c r ea s i ng=TRUE) , ]

Trees$canopy area <� cumsum( Trees$crown a ∗ Trees$n t r e e s )

index <� which .min(abs ( Trees$canopy area � f i e l d area ) )

z s t a r <� Trees [ index , ]
220

Our implementation of the soil respiration model [33] is straightforward, as

shown below:

r e s p i r a t i o n s o i l <� function (Ta , P) {

i f (Ta < �13.3) {225

Rs = 0

} else {

i f (Ta > 33 . 5 ) { Ta = 33 .5 }

e = exp (1 )

Q10 = 0.05452 ( C �1)230

F = 1.250

K = 4.259

Rs = F ∗ e ˆ(Q10 ∗ Ta) ∗ (P / (K + P) )

}

return (Rs)235

}

Meanwhile, our implementation of the soil organic carbon (SOC) profile

model [34] is based on a lookup table containing soil classes and corresponding

regression model intercepts and slopes. The parameters are extracted and the240

linear model is applied to calculate SOC along the defined profile interval. By

default, the profile interval is set to [1 . . 100].

12
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soc depth <� function (order , depth cm=100) {

soc table = data . frame (245

order = c ( ”Al l ” , ” A l f i s o l s ” , ”Andi so l s ” ,

” A r i d i s o l s ” , ” En t i s o l s ” , ” H i s t o s o l s ” , ” I n c e p t i s o l s ” ,

” Mo l l i s o l s ” , ” Spodoso l s ” , ” U l t i s o l s ” , ” V e r t i s o l s ” ) ,

i n t e r c e p t = c ( 1 . 1 795 , 1 . 1 122 , 1 . 3 837 , 0 . 2 065 , 0 . 9 300 ,

1 . 6 227 , 1 . 1 631 , 1 . 0 163 , 1 . 4 262 , 1 . 1 576 , 0 . 5 145 ) ,250

s l ope = c (�0.8228 ,�0.8330 ,�0.8425 ,�0.1300 ,

�0.7207 ,�1.0109 ,�0.7331 ,�0.6214 ,�0.9801 ,�0.8867 ,

�0.2427)

)

rowval = soc table [ soc table\$order==order , ]255

c o e f f s = as .numeric ( rowval [ , c ( ” i n t e r c e p t ” , ” s l ope ” ) ] )

soc = sapply ( seq (1 , depth cm, 1 ) , function ( x ) {

10ˆ( c o e f f s [ 1 ] + c o e f f s [ 2 ] ∗ log10 ( x ) )

})

return (sum( soc ) )260

}

4. Illustrative Example

For model parameterization, validation, and comparison with the LANDIS-

II model at Harvard Forest EMS flux tower in Massachusetts, USA and Jones265

Ecological Research Center RD flux tower in Georgia, USA, readers may refer

to our recent model intercomparison paper [30]. An example of running the

PPA-SiBGC program (ppa v50.r) from the CLI is shown below:

Rscr ip t ��v a n i l l a ppa v50 . r ��wd /home/model ��verbose270

Here, the Rscript executable is used with the –vanilla option to run the

program within a new R session. Additional options include the –wd flag to

13
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specify a working or target directory containing parameter files in a pre-defined

directory structure and the –verbose flag to run the model in verbose mode for275

monitoring progress or debugging. The predefined directory structure expected

for model input files containing parameters and drivers (i.e., climate data) is as

follows:

lut
allometry.csv
biomass.csv
carbon.csv
growth.csv
mortality.csv
regeneration.csv
stoichiometry.csv

climate.csv
configuration.csv
trees.csv

Figure 1: Directory structure of PPA-SiBGC inputs

When the simulation run is completed, the following CSV files are produced

in an outputs directory within the target directory:280

outputs
fluxes.csv
loop times.csv
mortality.csv
regeneration.csv
som.csv
trees [year].csv
zstar.csv

Figure 2: Directory structure of PPA-SiBGC outputs

These outputs contain the ecosystem biogeochemistry fluxes, time to com-

plete each model iteration, cohort mortality with allometry and biogeochemistry,

species regeneration, soil organic matter (SOM) pools, cohort list by simulation

year with allometry and biogeochemistry, and the theoretical z⇤ height by year.

14
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5. Anticipated Impact285

We anticipate that the PPA-SiBGC model will showcase the importance of

realistically approximating vegetation dynamics in order to develop forest bio-

geochemistry models with improved generality and precision. This is because

the inclusion of even simple allometric and stoichiometric biogeochemistry re-

lations with the PPA model showed accurate estimation of ecosystem fluxes290

[30]. The robustness of allometric scaling theory, rooted in the self-similarity of

tree species and shaped by physical constraints, is well supported in theoreti-

cal research using highly detailed models [38]. Thus, species-specific allometric

models remain a useful modeling abstraction in global-scale modeling.

We believe that our work also demonstrates the the classical modeling trade-295

o↵ of Levins (1966) between generality, precision, and realism is unduly imposed;

in our work, model generality and precision were possible only through enhanced

model realism. Thus, no trade-o↵ was apparent in our case. We therefore

reiterate his suggestion that modelers focus on improving realism over generality

and precision, which may result in improvements of all three criteria.300

From a practical standpoint, we hope that our work will help to advance

the field by making forest biogeochemistry models more approachable, cross-

platform, and easier to use. All input and output files use a CSV file structure

in order to facilitate simplified key-value parsing of all data in user-developed

programs. This is in contrast to models such as LANDIS-II that use unstruc-305

tured TXT files that are laborious and ine�cient to parse. In future work, we

will soon release model wrapper libraries in R and Python for simplifying the

operation, parameterization, optimization, and validation of forest ecosystem

models.

6. Conclusions310

In conclusion, we provide a new forest biogeochemistry model, PPA-SiBGC,

based on the Perfect Plasticity Approximation (PPA) algorithm in the R lan-

guage of statistical computing. The program is cross-platform and is designed

15
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to be simple to deploy and apply. The program is designed to run from a

command-line interface, while all model inputs and outputs are in CSV for-315

mat to facilitate simplified data pre- and post-processing. The structure of the

program is simple and e↵ective, using vectorization where possible to speed op-

erations without the programmer and computational overhead of multi-thread

or multi-core parallelization. Our model uses only base R libraries, facilitating

ease of deployment across a variety of systems. We demonstrate that e↵ective320

forest biogeochemistry models need not be comprised of hundreds of thousands

of lines of code in di�cult-to-use compiled languages. In future work, we will

release forest biogeochemistry model wrapper libraries in R and Python to ease

the operation and extend the use of this and other forest biogeochemistry mod-

els. All model code is made available at our GitHub repository under an Apache325

2.0 license:

https://github.com/adam-erickson/ecosystem-model-comparison/blob/

master/models/ppa_bgc/hf_ems/ppa_v50.r
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