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ABSTRACT   47 

Purpose: Fiber tracking with diffusion weighted magnetic resonance imaging has become an 48 

essential tool for estimating in vivo brain white matter architecture. Fiber tracking results are 49 

sensitive to the choice of processing method and tracking criteria.  Phantom studies provide 50 

concrete quantitative comparisons of methods relative to absolute ground truths, yet do not capture 51 

variabilities because of in vivo physiological factors.  52 

Methods: To date, a large-scale reproducibility analysis has not been performed for the assessment 53 

of the newest generation of tractography algorithms with in vivo data. Reproducibility does not 54 

assess the validity of a brain connection however it is still of critical importance because it 55 

describes the variability for an algorithm in group studies. The ISMRM 2017 TraCED challenge 56 

was created to fulfill the gap. The TraCED dataset consists of a single healthy volunteer scanned 57 

on two different scanners of the same manufacturer.  The multi-shell acquisition included b-values 58 

of 1000, 2000 and 3000 s/mm2 with 20, 45 and 64 diffusion gradient directions per shell, 59 

respectively.  60 

Results: Nine international groups submitted 46 tractography algorithm entries. The top five 61 

submissions had high ICC > 0.88. Reproducibility is high within these top 5 submissions when 62 

assessed across sessions or across scanners. However, it can be directly attributed to containment 63 

of smaller volume tracts in larger volume tracts. This holds true for the top five submissions where 64 

they are contained in a specific order. While most algorithms are contained in an ordering there 65 

are some outliers. 66 

Conclusion: The different methods clearly result in fundamentally different tract structures at the 67 

more conservative specificity choices (i.e., volumetrically smaller tractograms). The data and 68 

challenge infrastructure remain available for continued analysis and provide a platform for 69 

comparison. 70 

Keywords: Tractography, Reproducibility, in vivo, Challenge, DW-MRI, HARDI 71 
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1. INTRODUCTION  76 

Diffusion weighted magnetic resonance imaging (DW-MRI) is a technique which allows for non-77 

invasive mapping of the human brain’s micro-architecture at milli-metric resolution. Using voxel-78 

wise fiber orientation reconstruction methods, tractography can provide quantitative and 79 

qualitative information for studying structural brain connectivity and continuity of neural pathways 80 

of the nervous system in vivo. There have been many algorithms, global, iterative, deterministic 81 

and probabilistic, that reconstruct streamlines using fiber reconstruction methods. Tractography 82 

was conceived [2] using one of the first fiber reconstruction method, diffusion tensor imaging 83 

(DTI) [1]. However, DTI has a well-known limitation: it cannot resolve complex fiber 84 

configurations [3]. With the advancement in acquisitions protocols allowing for better resolution 85 

and higher number of gradient values new methods for reconstruction of local fiber have been 86 

developed. These methods are commonly referred to as high angular resolution diffusion imaging 87 

(HARDI), e.g., q-ball, constrained spherical deconvolution (CSD), persistent angular structure 88 

(PAS) [4-6]. HARDI methods enable characterization of more than a single fiber direction per 89 

voxel, but have been often shown to be limited when more than two fiber populations exist per 90 

voxel [7, 8]. While there is definite gain in sensitivity when using HARDI methods, there remain 91 

critical questions of their reproducibility [9].  92 

There have been many validation efforts that aim to assess the anatomical accuracy of 93 

tractography. Early studies investigated how well tractography followed large white matter 94 

trajectories through qualitative comparisons with dissected human samples [10], or previous 95 

primate histological tracings [11]. Later works on the macaque [12] or porcine [13] brains 96 

highlighted limitations and common errors in tractography. Recently, the sensitivity and specificity 97 

of tractography in detecting connections has been systematically explored against tracers in the 98 

monkey [14-16], porcine [17], or mouse [18] brains. The main conclusions drawn from these are 99 

(1) that algorithms always show a tradeoff in sensitivity and specificity (i.e. those that find the 100 

most true connections have the most false connections) (2) short-range connections are more 101 

reliably detected than long-range, (3) connectivity predictions do better than chance and thus have 102 

useful predictive power, and (4) tractography performs better when assessing connectivity between 103 

relatively large-scale regions rather than identifying fine details or connectivity.         104 

Despite the wide range of validation studies, there have been few reproducibility studies of 105 

tractography [19-21]. Rather than ask how right (or wrong) tractography is, we ask how stable are 106 

the outputs of these techniques? Because tractography is an essential part of track segmentation, 107 

network analysis, and microstructural imaging, it is important that reproducibility is high, 108 

otherwise power is lost in group analyses or in longitudinal comparisons. In this study, given a 109 

standard, clinically realistic, diffusion protocol, we aim to assess how reproducible tractography 110 

results are between repeats, between scanners, and between algorithms. 111 

Publicly organized challenges provide unique opportunities for research communities to fairly 112 

compare algorithms in an unbiased format, resulting in quantitative measures of the reliability and 113 

limitation of competing approaches, as well as potential strategies for improving consistency.  In 114 

the diffusion MRI community, challenges have focused on recovering intra-voxel fiber geometries 115 

using synthetic data [22] and physical phantoms [19, 23]. Similarly, diffusion tractography 116 
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challenges [20] have provided insights into the effects of different acquisition settings, voxel-wise 117 

reconstruction techniques, and tracking parameters on tract validity by comparing results to ground 118 

truth physical phantom fiber configurations [19, 21]. Recently, more clinically relevant evaluations 119 

have been put forth. For example, a recent MICCAI challenge benchmarked DTI tractography of 120 

the pyramidal tract in neurosurgical cases presenting with tumors in the motor cortex [24]. 121 

Towards this direction, the current challenge utilized a large-scale single subject reproducibility 122 

dataset, acquired in clinically feasible scan times. This challenge was intended to study 123 

reproducibility to describe the limitations for capturing physiological and imaging considerations 124 

prevalent in human data and evaluate the newest generation of tractography algorithms.  125 

This paper is organized as follows. First, we present the analysis structure of this challenge to 126 

characterize which tracts are the most reproducible. Second, we characterize the variance across 127 

the tractography methods by design features and compare the potential containment of tracts on a 128 

per algorithm basis.  129 

2. METHODS 130 

2.1 DW-MRI Data Acquisition  131 

The data were acquired with a multi-shell HARDI sequence on single healthy human subject. The 132 

two scanners were both Phillips, Achieva, 3T, Best, Netherlands. These are referred to as scanner 133 

‘A’ and ‘B’. The three shells that were acquired: b=1000 s/mm2, 2000s/mm2 and 3000s/mm2 with 134 

20, 48 and 64 gradient directions respectively (uniformly distributed over a hemi-sphere and 135 

independently per shell, this was done in consideration of scanner hardware.). The other 136 

parameters were kept consistent for all shells. They are as follows: Delta=~48ms, delta=~37ms, 137 

partial fourier=0.77, TE = 99 ms, TR ~= 2920 ms and voxel resolution=2.5mm isotropic. A total 138 

of 15 non-weighted diffusion volumes ‘b0’ images interspersed as 5 per shell were acquired. 139 

Additionally, for scanner A & B, 5 reverse phase-encoded b0 images and 3 diffusion weighted 140 

directions were acquired to aid in distortion correction. The additional 3 diffusion-weighted 141 

direction volumes were acquired for ease of acquisition from the scanner. They do not contribute 142 

to the pre-processing of the data in any way.  143 

Additionally, a T1-weighted reference image (MPRAGE) was acquired for each session per 144 

scanner (4 volumes total). A single volume of T1 was used which was registered to the first session 145 

of scanner A where the session had already been registered to the MNI template. This was done 146 

using a 6 degree of freedom rigid body registration. 147 

For the initial data release, a technical issue resulted in 5 non-reverse phase-encoded b0 images 148 

for scanner A. Note that at the end of the challenge, the scanner ‘A’ data were completely re-149 

acquired for both sessions with 5 reverse phase-encoded b0 images and 3 diffusion weighted 150 

directions. These data were released as supplementary material, but not included in the presented 151 

challenge data. Following the protocol for tractography in [25], we delineated six tracts cingulum 152 

(CNG) Left/Right (L/R), inferior longitudinal fasciculus (ILF) (L/R), inferior fronto-occipital 153 

(IFO) (L/R). The mean intra-class correlation (ICC) inter-scanner values for the original challenge 154 

data and the updated challenge data were 0.86 and 0.89, respectively. The mean difference 155 
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between methods was 0.15 in terms of ICC. As expected, the inclusion of full reverse phase 156 

encoding for Scanner ‘A’ introduced a small increased in consistency relative to much larger 157 

differences between methods.  158 

DW-MRI Data Pre-processing as illustrated in Fig 1, the 5 repeated acquisitions from each of the 159 

four sessions (two repeated on scanner A and B) were concatenated and corrected with FSL’s eddy 160 

and topup [25-27]. Intensity normalization was performed by dividing each diffusion weighted 161 

scan by the mean of all non-weighted diffusion volume (B0) per session. The average B0 from 162 

scanner A of the first sessions was rigidly (six degrees of freedom) registered [28] to a 2.5 mm T2 163 

MNI template (this was done to ensure resampling from registration was done on both datasets). 164 

Next, the average B0 from the scanner A second session was rigidly registered to the average B0 165 

of the registered scanner A first session B0 which had already been registered to the MNI space. 166 

Successively, the sessions from scanner B were registered to the sessions of scanner A. The b-167 

vectors were rotated to account for the registration of the DW-MRI data [29].  168 

The T1 weighted MPRAGE was rigidly registered to the average registered b0 from the first 169 

session of scanner A. This transformation was applied to the T1 maintaining 1 mm isotropic 170 

resolution, thus providing a high-resolution segmentation that may be converted into diffusion 171 

space by performing a simple down-sampling. Multi-atlas segmentation with non-local spatial 172 

STAPLE fusion was used for the segmentation of the T1 volume to 133 different ROI’s [30, 31].  173 

Finally, Multi-atlas CRUISE (MaCRUISE) was used to identify cortical surfaces [32]. These were 174 

provided for ease of algorithm implementations. 175 

An informed consent under the Vanderbilt University (VU) Institutional Review Board (IRB) was 176 

obtained to conduct this study. 177 

2.2 Challenge Rules and Metrics 178 

For each of the 20 HARDI datasets (5 repetitions x 2 sessions x 2 scanners), participants were 179 

asked to submit a tractogram (i.e., “fiber probability membership function”) for each well-modeled 180 

fiber structures (uncinate (UNC) [L/R], fornix (FNX) [L/R], genu of the corpus callosum, 181 

cingulum (CNG) [L/R], corticospinal tract (CST) [L/R], splenium of the corpus callosum, inferior 182 

longitudinal fasciculus (ILF) [L/R], superior longitudinal fasciculus (SLF) [L/R], and inferior 183 

fronto-occipital (IFO) [L/R](1)). Each tractogram is a NIFTI volume at the field of view and 184 

resolution of the T1-weighted reference space where the floating-point value (32-bit single 185 

precision) of each voxel is in [0, 1] and indicates the probability of the voxel belonging to the 186 

specified fiber tract. Thus, participants submitted a total of 320 (5 x 2 x 2 x 16) NIFTI volumes 187 

using the acquisition of both the scanners. Assessment of fiber fractions was supported (i.e., the 188 

sum across all tracts is <=1 with the remainder as background). However, strict probabilities where 189 

each voxel may have a high probability of 2 or more fibers with a sum greater than 1 were permitted 190 

as well. 191 

Tractograms within a submission were compared based on reproducibility of the tracts (intra-class 192 

correlation coefficient (ICC) statistics for continuous values and Dice similarity scores based on 193 

maximum probability assignment at 0.5). Intra-session, inter-session, same scanner, and inter-194 
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scanner scanner metrics have been reported for quantitative interpretation. The ICC and dice value 195 

of unique number of combinations of pairs of repeats were used as data points for violin plots 196 

depicting results of intra-session, inter-session and inter-scanner. The unique combinations of 197 

repetitions were 40, 50 and 100 respectively for the three levels of reproducibility. 198 

2.3 Containment Analysis 199 

A key question is whether the differences in tractography are driven by different considerations of 200 

the volume of the track, i.e., the larger the volume is, the more likely the track may include the 201 

underlying true track. For example, it is plausible that a set of tractography methods could see the 202 

same underlying probabilistic connection pattern and choose to threshold it based on different 203 

preferences for the volume of tracks. If the preference was driving the tractography differences, 204 

then tractograms would essentially be able to be nested from smallest to largest. To examine this 205 

hypothesis, we define the property containment index (CI) for two tracts where  206 

𝐶𝐼(𝐴, 𝐵) = {

|𝐴| = 0: 1
|𝐴| ≠ 0 𝑎𝑛𝑑 |𝐵| = 0 ∶ 0

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ∶  |𝐴 ∩ 𝐵|/|𝐵|
      (1) 207 

For the purposes of this discussion, we define the tractogram set to be the binary volume resulting 208 

at a 0.05 threshold of the mean of all results submitted for each algorithm. A visual understanding 209 

of containment index can be observed in Fig 3.  210 

Then, an optimal ordering (“nesting”) of tractogram entries can be computed by maximizing the 211 

containment energy (CE, i.e., sum of CI for all tracts versus the tracts earlier than the one under 212 

consideration):  213 

argmax
𝒐∈𝑝𝑒𝑟𝑚(1…|𝐸𝑛𝑡𝑟𝑦|)

𝐶𝐸 =  argmax
𝒐∈𝑝𝑒𝑟𝑚(1…|𝐸𝑛𝑡𝑟𝑦|)

∑ ∑ 𝐶𝐼(𝐸𝑛𝑡𝑟𝑦{𝑜𝑖}, 𝐸𝑛𝑡𝑟𝑦{𝑖𝑗})
𝑁

𝑗≤𝑖

𝑁

𝑖

     (2) 214 

Where perm denotes the permutation operator and Entry is a list of all entered tractograms. 215 

Conceptually, this procedure finds the ideal order to stack the tractograms inside each other where 216 

the first tract is “most inside” the subsequent ones and the last tract is “most outside” all others. 217 

We define <CI> as the average containment index of all nesting for the ordered entries that are 218 

smaller than or equal to an entry provides a quantitative way to examine “nesting” (note, this 219 

approach includes the self-containment index so that the first entry has a CI of 1). Then, we can 220 

see how the nesting holds up from the inner (#‘1’) to the outer (#‘46’) entry. 221 

3. RESULTS 222 

Table 1 presents a more detailed technical contribution of each of the works: 223 

- Team 1, Team 5, Team 6, Team 8 and Team 9 used all three shells of b-values provided 224 

in the dataset. Team 2 used all shells with data from an additional 30 subjects from the 225 
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Human Connectome Project. Team 3 used shells of b-values 1000 and 2000 s/mm2. 226 

Team 7 and Team 4 only used the shell of b-value 3000 s/mm2.  227 

- Additional pre-processing has been used by four teams. Team 4: Data was up-sampled 228 

to 1mm isotropic resolution. Team 6 used image de-noising techniques and up-sampled 229 

the data to 1.25mm. Team 5 and Team 9 used different styles of segmentation of the 230 

data presented for analysis.  231 

- In terms of the fiber detection model, Team 6 and Team 3 used variants of tensor 232 

models while the others have used different variants of constrained spherical 233 

deconvolution. Notably Team 8 used a compartment analysis model using spherical 234 

harmonics. 235 

- Considering the tractography parameters - the range of step sizes that have been used 236 

lie between 0.2-1.25mm. Threshold angle lies in the range of 20-40 degrees.  237 

- Single fiber assumptions were considered with the condition of FA > 0.7 by teams 238 

Team 1 and Team 4. A notable observation here is that a general assumption was made 239 

by Team 6 to reject voxels which were less than 0.15 FA. 240 

- Team 2, Team 6 and Team 8 post-processed the tractography results for removal of 241 

spurious fibers by defining different and specific constraints.  242 

- Of note, Team 2 treated the tractography problem as a segmentation problem and 243 

developed a U-net which was trained on the HCP data. While Team 9 used a multi-244 

atlas approach to tractography. The other teams used the general approach of 245 

probabilistic or deterministic tractography. 246 

An overlay of all 46 submissions, for all estimated fiber pathways can be observed (Fig 2 Column 247 

1 & 3). Only the left side has been shown as the right side is a similar observation. There are vast 248 

differences that can be noticed in the estimated pathways. The volume of the brain occupied by 249 

each tract from different submissions varied dramatically. When all 46 submissions are overlaid, 250 

tracts occupy 14-53% of the brain volumetrically (average – 34%). Specifically, the union of all 251 

entries for FNX (L/R), CNG (L/R), IFO (L/R) and SLF (L/R) cover (30.7, 25.8), (40.9, 37.2), 252 

(42.4, 46.1), (50.6, 53.3) respectively, while CST (L/R), ILF (L/R), UNC (L/R) and Fminor and 253 

Fmajor cover (23.6, 25.4), (33.4, 33.6), (14.3, 17.4), 44.3 and 34.1. Note that individual 254 

submissions appear qualitatively reasonable (Fig 2 Column 2 & 4).   255 

The number of algorithmic submission’s team wise are Team 1: 14, Team 2: 1, Team 3: 2, Team 256 

4: 12, Team 5: 1, Team 6: 6, Team 7: 1, Team 8: 6 and Team 9: 3. It can be observed that the ICC 257 

range for the set of algorithms on a per team basis does not show a lot of variance. The ICC range 258 

of algorithms per team are Team 1 (0.61 – 0.77), Team 4 (0.52 – 0.58), Team 6 (0.77 – 0.85), 259 

Team 8 (0.81 – 0.89), Team 9 (0.27 – 0.69), Team 3 (0.64, 0.73), Team 2 (0.85), Team 7 (0.88) 260 

and Team 5 (0.97). The teams that submitted more than 3 algorithms show an average difference 261 

of 0.1 in terms of ICC. 262 

Violin plots (depict the probability density of the data) of ICC and Dice for intra-session 263 

reproducibility, inter-session, and inter-scanner measures of reproducibility are presented in 264 

Figures 4, 5 and 6, respectively. Since the observations are highly similar in the afore-mentioned 265 

figures we only present a detailed comment on Figure 4 which holds true for Figure 5 and 6 as 266 
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well. This figure helps in identifying the low, moderate and high reproducibility tracts. The intra-267 

session distributions (Figure 4B) across entries for UNC (L/R) and FNX (L/R) are bi-modal with 268 

a median of the lower mode less than 0.4 ICC. The CST (L) has a smaller fraction of the entries 269 

with ICC less than 0.4, while the remainder of the entries have only a few outlier entries less than 270 

0.4 The inter-session (Fig. 5) and inter-scanner (Fig. 6) distributions were similar, with a slight 271 

increase in outlier entries for IFO (L/R). The patterns in the dice were similar when using a quality 272 

threshold of less than 0.4 dice.  273 

We define cutoffs for high, moderate, and low reproducibility on the inter-scanner reproducibility. 274 

High reproducibility was defined as a median ICC greater than 0.6 and less than 5% of entries less 275 

than 0.4 ICC. Moderate reproducibility was defined as median ICC greater than 0.4 and less than 276 

25% of entries less than 0.4 ICC. Low reproducibility was defined as a median ICC less than 0.4 277 

or more than 25% of entries less than 0.4 ICC. Hence, the high reproducibility tracts were Fminor, 278 

CST (/R), ILF (L/R), SLF (L/R) and IFO (L/R). The moderate reproducibility tracts were CST (L), 279 

Fmajor, CNG (L/R). The low reproducibility tracts were UNC (L/R) and FNX (L/R). This above 280 

is observed when looking at all submissions however when observing the top 5 submissions we 281 

see higher reproducibility. 282 

When the analysis is restricted to only the top five submissions, we see a different picture that 283 

suggests substantively reproducible methods. The inter-scanner reproducibility among the top 5 284 

entries in ICC (min-max, average) are shown in Fig 6. 285 

Figure 7 illustrates the top five entries for the tracts with the lowest inter-scanner reproducibility 286 

alongside the volumetric median (median per voxel from five submissions) of the top five entries.  287 

Qualitatively, the volumetric profiles of the UNC (L/R) and FNX (L/R) are very different across 288 

the top five entries. The first submission has small “core” tracts labeled, while the second, third 289 

and fifth found much larger spatial extents and the fourth was mid-way between.  290 

4. DISCUSSION 291 

The most reproducible tracts were Fminor, CST (\R), ILF (L\R), SLF (L\R), IFO (L\R), while the 292 

moderately reproducible tracts were Fmajor, CNG (L\R) and CST (\L). Lowest reproducibility 293 

tracts are UNC (L\R), FNX (L\R). These tracts have a well-spread/broad probability distribution. 294 

Note that the reproducibility of these tracts was maintained across imaging sessions and change of 295 

scanner. It is evident that all the algorithms entered are not consistently identifying the same fiber 296 

structures given the extreme variance observed in Figure 2. While most of the individual 297 

submissions show a reasonable detection of the tracts if observed from a ROI point of view (Fig 298 

2), the difference between tract volumes between methods is quite high.  299 

The reproducibility (ICC) of the entered algorithms varied from 0.27 to 0.97 (Fig 8A), but most of 300 

the algorithms performed with a reproducibility of 0.6 or higher. Similar levels of reproducibility 301 

were observed for methods that used selective shells or additional data from the Human 302 

Connectome Project. Note it would be inappropriate to assume independence and there are a few 303 

methods per categorical assignment, so statistical analysis across method types was not performed. 304 
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Qualitatively, CSD was the most popular approach as the pre-processing fiber reconstruction 305 

method (Fig 8B). Tensor and compartment models perform well, but trailed slightly behind CSD 306 

when comparing maximum values that have been achieved using these methods. The modified 307 

version of CSD with the addition of Deep Learning U-net also performed well.  308 

The choices of analysis parameters appears to have affected method performance. A comparison 309 

of different step sizes that have been used shows that the most heavily used category was 0.2mm 310 

(Fig 8C). However, methods using all other step size choices (e.g., 0.005, 1 and 1.25mm) 311 

performed better in terms of ICC. A variety of threshold angles have been used lying in the range 312 

of 20 – 60 degrees (Fig 8D). The variation is hard to comment upon as this suggests that a threshold 313 

angle is specific to the type of tractography algorithm. High reproducibility has been achieved at 314 

lower threshold angles such as 20 degrees and at higher angles as well such as 45 or 60 degrees. 315 

Additional pre-processing before implementing fiber reconstruction methods shows improvement 316 

for ICC only when additional segmentation was performed (Fig 8E). A comparison of de-noising 317 

coupled with up-sampling and no additional pre-processing shows higher reproducibility when no 318 

additional steps are performed. While most of the algorithms did not use additional post-processing 319 

steps (Fig 8F), the few algorithms that used the methods of outlier rejection, spurious fiber removal 320 

and SIFT2 show improvement in reproducibility. In brief, it might be inferred that additional pre-321 

processing and post-processing techniques are helpful in increasing the reproducibility of 322 

tractography algorithms, though a systematic test of this would be necessary to draw accurate 323 

conclusions. 324 

 325 

 326 

While it would be expected that an algorithm with empty or inaccurate bundles could achieve an 327 

extremely high ICC which would be representative of ‘null’ learning. Hence, we conducted 328 

consistency analysis using the containment index as to which bundles are contained inside which 329 

ones. The inaccurate ones will lie on the outside or show up as outliers which can be observed in 330 

Fig 9. 331 

As seen in Fig 9, <CI> is moderate and variable (~0.4-0.6) for the first approximately 20 entries 332 

(after ordering) and then steadily increases for the CST, Cingulum, Forceps, ILF, IFO, and SLF. 333 

Hence, for smaller tractograms, approximately 50% of the variance is explained by nesting, but 334 

there are substantial contributions from other factors. For the larger tractograms (~20-46 ordered 335 

entries), the differences appear largely driven by increasing volume of the tracts. UNC and Fornix 336 

are a bit more variable between ordered methods, which indicates associations within methods and 337 

suggests disagreements across major categories of entries. Finally, the Fornix is highly variables 338 

across methods (~<0.4 <CI>), which point towards inconsistency of tract definition between 339 

approaches. When looking across all pairs of tracts, the overall rank correlation of the method 340 

ordering was low (mean=0.25) with a high variance (standard deviation=0.27, range=-0.28 to 1.0). 341 

Therefore, the relative volumetric differences between tracts were not consistent for methods 342 
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across white matter tracts. Examining nestings of the top five tracts showed that Submission 5 (not 343 

shown) was always the largest, while Submission 1 and Submission 4 were determined to be the 344 

most inner methods half of the time. Submission 2 was the second largest for 12/16 tracts, while 345 

Submission 3 was the second largest for the others. This is consistent with a visualization 346 

interpretation of Figure 7. The <CI> was ~1 for the fifth method, so a highly reproducible tract 347 

was feasible that encompassed the choices of the other top entries. The top 5 entries had high <CI> 348 

(>0.7) for the Fornix, IFO, ILF, but the remaining tracts were showed low CI for at least one 349 

method. Therefore, while at least one of the top methods differed from the others in a substantial 350 

manner, this could not be explained by volumetric differences of the tracts.  351 

5. CONCLUSION 352 

The most reproducible tracts considering all submitted algorithm outcomes are Fminor, CST (\R), 353 

ILF (L\R), SLF (L\R), IFO (L\R). The moderately reproducible ones are Fmajor, CNG (L\R) and 354 

CST (\L). Tracts with low reproducibility are UNC (L\R) and FNX (L\R). The most reproducible 355 

algorithms are 5A, 8D, 7A, 6E and 6F (Table 1) as per criteria of ICC. The mentioned algorithms 356 

are not an example of a consistent null learning as they all lie with in a nested containment with 357 

the largest covered volume. 358 

In conclusion, the 2017 ISMRM TraCED Challenge created a publicly available multi-scanner, 359 

multi-scan in vivo reproducibility dataset and engaged nine groups with 46 algorithm entries. The 360 

TraCED Challenge dataset is freely available at www.synapse.org. Consistent with previous 361 

studies, reproducibility of tractograms was found to vary by anatomical tract. When viewed across 362 

all entries, reproducibility was concerning (ICC <0.5); however, the cluster of top performing 363 

methods resulting in reassuringly high results (ICC > 0.85). Variation in performance were seen 364 

across processing parameters, but the challenge design did not provide sufficient number of 365 

samples to identify uniformly preferred design choices. The key novel finding of this challenge is 366 

that variations in tractography methods can be largely attributed to larger/smaller volumetric 367 

difference tradeoffs for the larger tracts, especially among methods that are tuned towards 368 

volumetrically larger tractograms. Yet, the different methods clearly result in fundamentally 369 

different tract structures at the more conservative specificity choices (i.e., volumetrically smaller 370 

tractograms). The containment index, containment energy, and containment index framework 371 

provides a consistent approach to evaluate the nesting structure tractograms, and the freely 372 

available data and results from this challenge can be used to quantify new tractography approaches.  373 

 374 

 375 

376 
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 377 

 

Figure 1: The acquisition per session included five repeats of a single b0 and successively at b-values of 3000, 

2000 and 1000 s/mm2 using 64, 48 and 20 gradient directions respectively. Each session was individually corrected 

using topup, eddy and then normalized. All the sessions were registered using flirt to the first session of scanner 

A. 
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 378 

 379 

 

Figure 2: Left: An overlay of all the 46 submissions from all sessions that were acquired using both scanners per 

tract Right: An overlay of a single submission using all sessions that were acquired using both scanners per tract 

A) Uncinate left B) Fornix left C) Cingulum eft D) Corticospinal tract left E) Inferior Longitudinal Fasciculus left 

F) Inferior Fronto-Occipital Fasciculus left G) Superior Longitudinal Fasciculus left H) Fminor.  
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 380 

 381 

 

Fig 3: A) Where the shape X is impeccably contained in Y and Y is contained in Z. The 

resulting containment CI(Y, X) = 1, CI(Z, X) = 1 and CI(Z, Y) = 1. B) Shape Y is a noisy 

representation of shape Z where CI(Y, Z) = 0.84. C) Shape Z is different from shape Y in a 

different orientation and the CI(Z,Y) = 0.17 
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 383 

 384 

 385 

 386 

 

Figure 4: Violin plots of intra-session submissions across both the scanners per tract. A) Dice similarity 

coefficients B) Intra-class correlation coefficients. The top row depicts the median of the top five intra session 

submissions. The tracts are in the following order (L/R): a) Uncinate b) Fornix c) Fminor & Fmajor d) Cingulum 

e) Corticospinal tract f) Inferior longitudinal fasciculus g) Superior longitudinal fasciculus h) Inferior fronto-

occipital tract 
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 389 

 390 

 391 

 

Figure 5: Violin plots of inter-session submissions across both the scanners per tract. A) Dice similarity 

coefficients B) Intra-class correlation coefficients. The top row depicts the median of the top five inter session 

submissions. The tracts are in the following order (L/R): a) Uncinate b) Fornix c) Fminor & Fmajor d) Cingulum 

e) Corticospinal tract f) Inferior longitudinal fasciculus g) Superior longitudinal fasciculus h) Inferior fronto-

occipital tract 
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 395 

 396 

 

Figure 6: Violin plots of inter-scanner submissions across both the scanners per tract. A) Dice similarity 

coefficients B) Intra-class correlation coefficients. The top row depicts the median of the top five inter scanner 

submissions. The tracts are in the following order (L/R): a) Uncinate b) Fornix c) Fminor & Fmajor d) Cingulum 

e) Corticospinal tract f) Inferior longitudinal fasciculus g) Superior longitudinal fasciculus h) Inferior fronto-

occipital tract 
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 398 

  399 

Figure 7: First row shows the median of Uncinate (L/R) and the top five submissions. The second row shows the 

median and submissions of Fornix (L/R).  
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 400 

401 

 

Figure 8: A) Quantifies the number of algorithms that used a specific part of the dataset or added more from other 

sources. B) Quantifies the usage of HARDI/Tensor methods by different tractography algorithms as a pre-step. C 

& D) Quantifies the step size and threshold angle parameter for tractography algorithms. E & F) Quantify the 

number of additional pre-processing and post-processing techniques applied for the tractography algorithms. 
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 404 

  405 

 406 

 407 

 408 

409 

 

Figure 9.  Ordering entries to minimize containment energy (CE) shows that containment index is generally lower 

for the volumetrically smaller tractograms (toward “inside” on each subplot) and increases for the larger 

tractograms (toward “outside” on each subplot). Variations in containment explained the least amount of entry 

variability for the UNC and Fornix, while the other tracts were more consistent. The containment between all 

methods (A) were more variable and lower than the containment for the top five methods (B). 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 3, 2018. ; https://doi.org/10.1101/484543doi: bioRxiv preprint 

https://doi.org/10.1101/484543
http://creativecommons.org/licenses/by/4.0/


20 

 

 

 

 

20 

REFERENCES 410 

1. Basser, P.J., J. Mattiello, and D. LeBihan, MR diffusion tensor spectroscopy and imaging. 411 

Biophysical journal, 1994. 66(1): p. 259-267. 412 

2. Jeurissen, B., et al., Diffusion MRI fiber tractography of the brain. NMR in Biomedicine, 413 

2017. 414 

3. Jeurissen, B., et al., Investigating the prevalence of complex fiber configurations in white 415 

matter tissue with diffusion magnetic resonance imaging. Human brain mapping, 2013. 416 

34(11): p. 2747-2766. 417 

4. Tuch, D.S., Q‐ball imaging. Magnetic resonance in medicine, 2004. 52(6): p. 1358-1372. 418 

5. Tournier, J.-D., et al., Direct estimation of the fiber orientation density function from 419 

diffusion-weighted MRI data using spherical deconvolution. NeuroImage, 2004. 23(3): p. 420 

1176-1185. 421 

6. Jansons, K.M. and D.C. Alexander, Persistent angular structure: new insights from 422 

diffusion magnetic resonance imaging data. Inverse problems, 2003. 19(5): p. 1031. 423 

7. Schilling, K.G., et al., Empirical consideration of the effects of acquisition parameters and 424 

analysis model on clinically feasible q-ball imaging. Magnetic Resonance Imaging, 2017. 425 

40: p. 62-74. 426 

8. Nath, V., Empirical Estimation of Intra-Voxel Structure with Persistent Angular Structure 427 

and Q-ball Models of Diffusion Weighted MRI. 2017. 428 

9. Smith, S.M., et al., Tract-based spatial statistics: voxelwise analysis of multi-subject 429 

diffusion data. Neuroimage, 2006. 31(4): p. 1487-1505. 430 

10. Lawes, I.N.C., et al., Atlas-based segmentation of white matter tracts of the human brain 431 

using diffusion tensor tractography and comparison with classical dissection. Neuroimage, 432 

2008. 39(1): p. 62-79. 433 

11. Schmahmann, J.D., et al., Association fibre pathways of the brain: parallel observations 434 

from diffusion spectrum imaging and autoradiography. Brain, 2007. 130(3): p. 630-653. 435 

12. Dauguet, J., et al., Comparison of fiber tracts derived from in-vivo DTI tractography with 436 

3D histological neural tract tracer reconstruction on a macaque brain. Neuroimage, 2007. 437 

37(2): p. 530-538. 438 

13. Dyrby, T.B., et al., Validation of in vitro probabilistic tractography. Neuroimage, 2007. 439 

37(4): p. 1267-1277. 440 

14. Donahue, C.J., et al., Using diffusion tractography to predict cortical connection strength 441 

and distance: a quantitative comparison with tracers in the monkey. Journal of 442 

Neuroscience, 2016. 36(25): p. 6758-6770. 443 

15. Thomas, C., et al., Anatomical accuracy of brain connections derived from diffusion MRI 444 

tractography is inherently limited. Proceedings of the National Academy of Sciences, 445 

2014. 111(46): p. 16574-16579. 446 

16. Azadbakht, H., et al., Validation of high-resolution tractography against in vivo tracing in 447 

the macaque visual cortex. Cerebral Cortex, 2015. 25(11): p. 4299-4309. 448 

17. Knösche, T.R., et al., Validation of tractography: comparison with manganese tracing. 449 

Human brain mapping, 2015. 36(10): p. 4116-4134. 450 

18. Calabrese, E., et al., A diffusion MRI tractography connectome of the mouse brain and 451 

comparison with neuronal tracer data. Cerebral Cortex, 2015. 25(11): p. 4628-4637. 452 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 3, 2018. ; https://doi.org/10.1101/484543doi: bioRxiv preprint 

https://doi.org/10.1101/484543
http://creativecommons.org/licenses/by/4.0/


21 

 

 

 

 

21 

19. Côté, M.-A., et al., Tractometer: towards validation of tractography pipelines. Medical 453 

image analysis, 2013. 17(7): p. 844-857. 454 

20. Maier-Hein, K.H., et al., The challenge of mapping the human connectome based on 455 

diffusion tractography. Nature communications, 2017. 8(1): p. 1349. 456 

21. Neher, P.F., et al., Fiberfox: facilitating the creation of realistic white matter software 457 

phantoms. Magnetic resonance in medicine, 2014. 72(5): p. 1460-1470. 458 

22. Daducci, A., et al., Quantitative comparison of reconstruction methods for intra-voxel fiber 459 

recovery from diffusion MRI. IEEE transactions on medical imaging, 2014. 33(2): p. 384-460 

399. 461 

23. Ning, L., et al., Sparse Reconstruction Challenge for diffusion MRI: Validation on a 462 

physical phantom to determine which acquisition scheme and analysis method to use? 463 

Medical image analysis, 2015. 26(1): p. 316-331. 464 

24. Pujol, S., et al., The DTI challenge: toward standardized evaluation of diffusion tensor 465 

imaging tractography for neurosurgery. Journal of Neuroimaging, 2015. 25(6): p. 875-466 

882. 467 

25. Andersson, J.L. and S.N. Sotiropoulos, An integrated approach to correction for off-468 

resonance effects and subject movement in diffusion MR imaging. Neuroimage, 2016. 125: 469 

p. 1063-1078. 470 

26. Andersson, J.L., S. Skare, and J. Ashburner, How to correct susceptibility distortions in 471 

spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage, 2003. 472 

20(2): p. 870-888. 473 

27. Smith, S.M., et al., Advances in functional and structural MR image analysis and 474 

implementation as FSL. Neuroimage, 2004. 23: p. S208-S219. 475 

28. Jenkinson, M. and S. Smith, A global optimisation method for robust affine registration of 476 

brain images. Medical image analysis, 2001. 5(2): p. 143-156. 477 

29. Leemans, A. and D.K. Jones, The B‐matrix must be rotated when correcting for subject 478 

motion in DTI data. Magnetic resonance in medicine, 2009. 61(6): p. 1336-1349. 479 

30. Asman, A.J. and B.A. Landman, Non-local statistical label fusion for multi-atlas 480 

segmentation. Medical image analysis, 2013. 17(2): p. 194-208. 481 

31. Huo, Y., et al. Combining multi-atlas segmentation with brain surface estimation. in 482 

Proceedings of SPIE--the International Society for Optical Engineering. 2016. NIH Public 483 

Access. 484 

32. Huo, Y., et al., Consistent cortical reconstruction and multi-atlas brain segmentation. 485 

NeuroImage, 2016. 138: p. 197-210. 486 

 487 

488 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 3, 2018. ; https://doi.org/10.1101/484543doi: bioRxiv preprint 

https://doi.org/10.1101/484543
http://creativecommons.org/licenses/by/4.0/


22 

 

 

 

 

22 

  489 

Synapse 

Submission id 

Algorithm 

ID ICC DICE b-value shells 

HARDI/Tensor 

Model Step size 

Threshold 

angle 

Additional Pre-

Processing Post-Processing 

syn8533598 1A 0.7753 0.6364 All shells CSD 0.2mm 30 degrees NA 

Distance transform of 

bundle volumes 

syn8643780 1B 0.6857 0.6596 All shells CSD 0.2mm 30 degrees NA NA 

syn8643793 1C 0.6343 0.6346 All shells CSD 0.2mm 30 degrees NA 

Distance transform of 

bundle volumes 

syn8648608 1D 0.7707 0.5402 All shells CSD 0.2mm 30 degrees NA 

Distance transform of 

bundle volumes 

syn8649314 1E 0.6498 0.6508 All shells CSD 0.2mm 30 degrees NA NA 

syn8649322 1F 0.6192 0.6197 All shells CSD 0.2mm 30 degrees NA 

Distance transform of 

bundle volumes 

syn8649611 1G 0.6324 0.6332 All shells CSD 0.2mm 30 degrees NA 

Automatic spurious 

fiber removal 

syn8649618 1H 0.6494 0.6503 All shells CSD 0.2mm 30 degrees NA 

Automatic spurious 

fiber removal 

syn8649622 1I 0.6517 0.6526 All shells CSD 0.2mm 30 degrees NA 

Automatic spurious 

fiber removal 

syn8649650 1J 0.6662 0.6671 All shells CSD 0.2mm 30 degrees NA 

Automatic spurious 

fiber removal 

syn8649652 1K 0.6616 0.6624 All shells CSD 0.2mm 30 degrees NA 

Automatic spurious 

fiber removal 

syn8649654 1L 0.6362 0.637 All shells CSD 0.2mm 30 degrees NA 

Automatic spurious 

fiber removal 

syn8649656 1M 0.7093 0.7103 All shells CSD 0.2mm 30 degrees NA 

Automatic spurious 

fiber removal 

syn8649658 1N 0.6984 0.6994 All shells CSD 0.2mm 30 degrees NA 

Automatic spurious 

fiber removal 

syn8555229 2A 0.8506 0.7918 

All shells + 30 

HCP subjects CSD + U-net 0.2mm 20 degrees NA 

Spurious Fiber 

Removal 

syn8656474 3A 0.7379 0.7253 

b1000 and 

b2000 Tensor Variant 0.2mm 25 degrees Data Upsampling NA 
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syn8656475 3B 0.6463 0.6341 

b1000 and 

b2000 Tensor Variant 0.2mm 25 degrees Data Upsampling NA 

syn8662707 4A 0.5285 0.5317 b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8662708 4B 0.5822 0.3207 b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8662709 4C 0.5881 NaN b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8662710 4D 0.5285 0.5317 b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8662711 4E 0.5781 0.3182 b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8662712 4F 0.5835 NaN b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8662713 4G 0.5285 0.5317 b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8662714 4H 0.5291 0.4932 b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8662715 4I 0.5302 NaN b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8662716 4J 0.5285 0.5317 b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8662717 4K 0.5596 0.5323 b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8662718 4L 0.5616 NaN b3000 CSD 0.2mm 20 degrees Data Upsampling NA 

syn8664905 5A 0.9738 0.8231 All shells CSD 1.25mm 45 degrees 

Additional 

Segmentation SIFT2 

syn8666133 6A 0.7702 0.7708 All shells Tensor Variant 1mm 40 degrees 

Denoising, 

Upsampling Outlier Rejection 

syn8666134 6B 0.8358 0.5742 All shells Tensor Variant 1mm 40 degrees 

Denoising, 

Upsampling Outlier Rejection 

syn8666135 6C 0.8171 0.7595 All shells Tensor Variant 1mm 40 degrees 

Denoising, 

Upsampling Outlier Rejection 

syn8666136 6D 0.817 0.7704 All shells Tensor Variant 1mm 40 degrees 

Denoising, 

Upsampling Outlier Rejection 

syn8666137 6E 0.8586 0.571 All shells Tensor Variant 1mm 40 degrees 

Denoising, 

Upsampling Outlier Rejection 

syn8666138 6F 0.8458 0.7646 All shells Tensor Variant 1mm 40 degrees 

Denoising, 

Upsampling Outlier Rejection 

syn8667007 7A 0.8868 0.6187 b3000 CSD 1.25mm 40 degrees NA NA 
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syn8666587 8A 0.86 0.8672 All shells 

Compartment 

Model 0.005mm 60 degrees NA 

Spurious Fiber 

Removal 

syn8666598 8B 0.8367 0.5166 All shells 

Compartment 

Model 0.005mm 60 degrees NA 

Spurious Fiber 

Removal 

syn8666602 8C 0.8349 0.5287 All shells 

Compartment 

Model 0.005mm 60 degrees NA 

Spurious Fiber 

Removal 

syn8666936 8D 0.8901 0.6409 All shells 

Compartment 

Model 0.005mm 60 degrees NA 

Spurious Fiber 

Removal 

syn8667021 8E 0.8145 0.4983 All shells 

Compartment 

Model 0.005mm 60 degrees NA 

Spurious Fiber 

Removal 

syn8667022 8F 0.8103 0.4773 All shells 

Compartment 

Model 0.005mm 60 degrees NA 

Spurious Fiber 

Removal 

syn8698866 9A 0.6145 0.6015 All shells CSD 0.2mm 40 degrees 

Addtional 

Segmentation NA 

syn8698867 9B 0.6968 0.6804 All shells CSD 0.2mm 40 degrees 

Addtional 

Segmentation NA 

syn8698868 9C 0.2703 0.2572 All shells CSD 0.2mm 40 degrees 

Addtional 

Segmentation NA 

Table 1: The table presents all the hyper-parameters of the different algorithms that were submitted and an 490 
overall evaluation of the algorithm in terms of ICC and Dice. 491 
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