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Abstract 15 

Linkage mapping is one of the most commonly used methods to identify genetic loci that determine a trait. 16 

However, the loci identified by linkage mapping may contain hundreds of candidate genes and require a 17 

time-consuming and labor-intensive fine mapping process to find the causal gene controlling the trait. With 18 

the availability of a rich assortment of genomic and functional genomic data, it is possible to develop a 19 

computational method to facilitate faster identification of causal genes. We developed QTG-Finder, a 20 

machine learning based algorithm to prioritize causal genes by ranking genes within a quantitative trait 21 

locus (QTL). Two predictive models were trained separately based on known causal genes in Arabidopsis 22 

and rice. With an independent validation analysis, we demonstrate the models can correctly prioritize about 23 

65% and 60% of Arabidopsis and rice causal genes when the top 20% ranked genes were considered. The 24 

models can prioritize different types of traits though at different efficiency. We also identified several 25 

important features of causal genes including paralog copy number, being a transporter, being a transcription 26 

factor, and containing SNPs that cause premature stop codon. This work lays the foundation for 27 

systematically understanding characteristics of causal genes and establishes a pipeline to predict causal 28 

genes based on public data. 29 

 30 

One sentence summary: We systematically analyzed the genomic characteristics of causal genes in QTLs 31 

and developed a novel computational tool to prioritize causal genes.  32 

Keywords: Arabidopsis, causal gene, machine-learning algorithm, candidates, quantitative trait loci, rice  33 
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Introduction 34 

As the world’s population expands, food security faces a major challenge in the near future. By 2050, 35 

world population is projected to grow by 34%, which will require a 70% increase of global food production 36 

to meet the demand (FAO 2009). To catch up with the growing global food demand, it is important to 37 

improve the efficiency of arable land usage by developing better crops.  38 

Many agriculturally and medically important traits are quantitative and controlled by multiple genetic 39 

loci. Examples include plant height, grain yield, and flowering time in plants and common disorders such 40 

as cancer, diabetes, and hypertension in humans. The variation in quantitative traits allows organisms to 41 

adapt to various environments (Baxter et al. 2010; Leinonen et al. 2013). Quantitative traits are determined 42 

by a combination of genetic complexity and environmental factors (Mackay 2001). The genetic complexity 43 

of quantitative traits comes from the involvement of multiple quantitative trait loci (QTL) and the non-44 

additive interactions among them (Carlborg and Haley 2004; Mackay 2014). To better understand the 45 

evolutionary forces and molecular mechanisms that shape the genetic architectures of adaptive traits, we 46 

need to identify all the causal genes that contribute to most of the phenotypic variation of the traits and 47 

elucidate the molecular mechanisms of their actions. Achieving this goal will facilitate rational engineering 48 

of plant traits and more accurate prediction of the effects of the modifications on the engineered plant. 49 

QTL linkage mapping and genome wide association study (GWAS) are two common approaches used 50 

to identify QTLs, each with its own strengths and limitations. Both mapping approaches are based on the 51 

co-segregation of a trait and genetic variants in a population. The population for linkage mapping is usually 52 

the progeny of parental plants that differ in a trait, such as an F2 population or recombinant inbred lines 53 

(Bergelson and Roux 2010). GWAS mapping uses a natural population that has a heritable variation of a 54 

trait. Compared to GWAS, linkage mapping does not suffer from issues like rare alleles and population 55 

structure (Bergelson, 2010). For example, the most significant seed dormancy QTL DOG1 identified by 56 

linkage mapping was not identified by GWAS, likely due to the rarity of the strong allele in the GWAS 57 

population (Bentsink et al. 2010; He 2014). Confounding population structure can cause a high false 58 

positive rate in GWAS, though some methods have been developed to ameliorate it (Price et al. 2010). 59 

However, efforts to correct it could result in a higher false negative rate (Brachi et al. 2010). Linkage 60 

mapping does not suffer from these issues, but it has a relatively lower mapping resolution and cannot 61 

identify QTLs of minor effects when the sample size is small (Martin and Orgogozo 2013; Otto and Jones 62 

2000; Wellenreuther and Hansson 2016; Xu 2003).  63 

For QTLs identified by linkage mapping, finding causal genes underlying them is still a big 64 

bottleneck (Bergelson and Roux 2010). In a typical rice linkage mapping, the size of a QTL can range from 65 

200kb- 3Mb, which can harbor tens to hundreds of genes depending on the mapping population and gene 66 

density (Bargsten et al. 2014; Daware et al. 2017). Even in the post-genomic era where all the genes in the 67 

genome are uncovered, identifying QTL causal genes is not straightforward since many QTLs either 68 

contain no obvious candidate genes or too many genes relevant for the trait (Nuzhdin et al. 1999). 69 
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Therefore, despite the many QTLs that have been reported in plants, only a few have been studied at the 70 

molecular level.  71 

Conventional fine mapping is a reliable but time-consuming and labor-intensive approach to narrow 72 

down the range of candidate genes in a QTL region. The basis of fine mapping is to create a population that 73 

has more recombination events within a QTL in order to identify a smaller genomic segment that co-74 

segregates with the trait. However, the enormous time and labor required for creating and screening a 75 

population of progenies limits the usage of this method (Tuinstra et al. 1997). Depending on the frequency 76 

of recombination, thousands of progenies may need to be genotyped to get to a gene-scale resolution 77 

(Dinka et al. 2007). For example, 1,160 progenies were screened to identify the Pi36 gene in rice and as 78 

many as 18,994 progenies were screened to identify the causal gene of Bph15 in rice (Liu et al. 2005; Yang 79 

et al. 2004). The high cost associated with genotyping and phenotyping makes it challenging to apply fine 80 

mapping to all QTLs.  81 

Alternative approaches to refine the candidate list of causal genes include meta-analysis, joint 82 

linkage-association analysis, and other computational methods including machine-learning algorithms. The 83 

first two approaches require either the availability of many QTL studies on similar traits or an additional 84 

association mapping experiment (Buckler et al. 2009; Motte et al. 2014; Yin et al. 2017). Computational 85 

methods including machine-learning algorithms have been developed to prioritize disease associated genes 86 

and genetic variants in human (Hormozdiari et al. 2015; Kircher et al. 2014; Perez-Iratxeta et al. 2002; 87 

Ritchie et al. 2014). To distinguish disease-associated from non-associated variants, a variety of 88 

information has been used, including the effect of polymorphism (Gelfman et al. 2017; Kircher et al. 2014; 89 

Ng and Henikoff 2003), sequence conservation (Huang et al. 2017; Pollard et al. 2010), regulatory 90 

information (Deo et al. 2014), expression profile (Deo et al. 2014; Mordelet and Vert 2011), Gene 91 

Ontology (GO) (Mordelet and Vert 2011), KEGG pathway (Mordelet and Vert 2011), and publications 92 

(Perez-Iratxeta et al. 2002). In contrast, only two causal gene prioritization approaches are available for 93 

plants. One method was developed for GWAS in maize based on co-expression networks (Schaefer et al. 94 

2018). Another method was developed for linkage mapping based on biological process GOs (Bargsten et 95 

al. 2014). To date, no machine-learning approaches using multiple data types have been developed to 96 

address this problem. 97 

Here, we built a supervised learning algorithm to prioritize QTL causal genes using known causal 98 

genes in Arabidopsis thaliana (Arabidopsis) and Oryza sativa (rice) and a suite of publicly available 99 

genetic and genomic data. For each species, we trained a predictive model using features based on 100 

polymorphism data, function annotation, co-function network, and paralog copy number. By testing the 101 

models on an independent set of known causal genes, we demonstrated its efficiency in prioritizing causal 102 

genes.  103 

Materials and methods 104 
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Data sources and features used in QTG-Finder 105 

Twenty-eight features were extracted from published genome-scale data, which included 106 

polymorphism features, functional annotation features and other genomic and functional genomic features.  107 

Arabidopsis polymorphism data of 1,135 accessions was downloaded from 1001 Genomes Project 108 

(https://1001genomes.org) (Consortium 2016) and rice polymorphism data of 3,010 cultivars was 109 

downloaded from Rice SNP-Seek Database (http://snp-seek.irri.org) (Mansueto et al. 2017). We used 110 

SIFT4G (v 2.4) (Ng and Henikoff 2003) and SnpEff (v 4.3r) (Cingolani et al. 2012) to annotate the raw 111 

polymorphism data. The number of non-synonymous SNP as annotated by SIFT4G was normalized to 112 

protein length and used as a numeric feature (normalized_nonsyn_SNP). Non-synonymous SNPs at 113 

conserved protein sequences were predicted to cause deleterious amino acid changes by SIFT4G. The 114 

presence of deleterious non-synonymous SNPs in a gene was used as a binary feature 115 

(is_nonsyn_deleterious). If a gene contained any deleterious non-synonymous SNPs, the 116 

“is_nonsyn_deleterious” feature was set to 1, otherwise it was set to 0. Other binary polymorphism features 117 

such as “is_start_lost” (start codon lost) and “is_start_gained” (start codon gained) were extracted from 118 

SnpEff annotations in the same way. For “is_SNP_cis”, the Position Weight Matrices of cis-elements were 119 

downloaded from CIS-BP database (Build 1.02) (Weirauch et al. 2014) and mapped to 1kb upstream of all 120 

genes in the genome using FIMO (v 4.12.0) (Grant et al. 2011). The cis-elements with a matching score 121 

above 55 were imported into SnpEff library to annotate the SNPs. This matching score cutoff was 122 

determined by a cross-validation as described later. 123 

Functional annotation features were binary features based on GO (Gotz et al. 2008; Jones et al. 2014) 124 

and Plant Metabolic Network (PMN) (Schlapfer et al. 2017). Arabidopsis and rice genes were annotated by 125 

Blast2GO (BLAST+ 2.2.29) and InterProScan (v 5.3-46.0). The molecular function GOs were then 126 

converted to high-level functional groups such as transcription factor, receptor, kinase, transporter, and 127 

enzyme to mitigate the effect of some inaccurate annotations (Jones et al. 2007). Genes annotated as 128 

enzymes were further classified into 13 PMN metabolic domains such as carbohydrate metabolism and 129 

nucleotide metabolism (Schlapfer et al. 2017). Unclassified genes in PMN were classified as 130 

“is_other_metabolism”. Genes annotated as enzymes by GO but not present in PMN databases are enzymes 131 

involved in macromolecule metabolic process or enzymes that don’t have a specific function assigned. 132 

Since a majority of them is involved in macromolecule metabolic process, we named this group as 133 

“is_macromolecule_metabolism”.  134 

Co-functional networks of Arabidopsis and rice were retrieved from AraNet and RiceNet (Lee et al. 135 

2010; Lee et al. 2011). The sum of all the edge weights of a gene was used as the “network_weight” 136 

feature.  137 

Paralog copy number (paralog_copy_number) and essential gene prediction (is_essential_gene) were 138 

taken from a previous publication (Lloyd et al. 2015).  139 

Arabidopsis and rice causal genes used for training and independent validation 140 

For model training and cross-validation, curated causal genes from Martin and Orgogozo were used as 141 
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positives for algorithm training (Martin and Orgogozo 2013). In total, 60 Arabidopsis and 45 rice causal 142 

genes were used as the initial training set. For literature validation, we performed a further literature 143 

curation and found eleven Arabidopsis and ten rice causal genes, which were not included in the Martin 144 

and Orgogozo list (Supplementary Methods).  145 

Algorithm training and parameter optimization  146 

The QTG-Finder algorithm was developed in Python (v 3.6) with the ‘sklearn’ package (v 0.19.0) 147 

(Pedregosa et al. 2011). We developed an extended 5-fold cross-validation framework (Fig. 1a) to evaluate 148 

training performance and optimize model parameters.   149 

For the 5-fold cross validation, curated causal genes were used as positives and the other genes from 150 

the genome were used as negatives. The positives were randomly split into training and testing positives in 151 

a 4:1 ratio. Training and testing positives were combined with different sets of negative genes that were 152 

randomly selected from the rest of the genome. To increase the combination of positives and negatives, we 153 

re-split the positives 50 times randomly and selected negatives 50 times. This number of iterations ensured 154 

greater than 99% probability that every positive sample co-occurred with every negative at least once in the 155 

training or testing set during the cross-validation process. The probability of co-occurrence was calculated 156 

as Equation 1. Pco is the probability of co-occurrence of a positive and a negative in a testing or training set. 157 

N is the total number of negative samples. n is the number of negative samples selected as testing or 158 

training samples. R is the number of iterations used to re-split the positive set. C is the number of cross-159 

validation folds that contains a positive sample. C was set to 4 for the training set and set to 1 for the testing 160 

test. S is the number of iterations to randomly select the negative set.  161 
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                   (1) 162 

We tested different classifiers and parameters and optimized the model based on Area Under the Curve 163 

of the Receiver Operating Characteristic (AUC-ROC). The average AUC-ROC from all iterations was used 164 

to evaluate training performance. The three classifiers we tested were Random Forest, naïve Bayes, and 165 

Support Vector Machines (Cortes and Vapnik 1995; Tin Kam 1998; Zhang 2004)(Supplementary Fig. S1). 166 

For Random Forest, we tuned the number of trees and the maximum number of features for each tree based 167 

on AUC-ROC (Supplementary Fig. S2). We used 100 trees and a max_feature of 9 for Random Forest. For 168 

Support Vector Machines, RBF kernel was used and the C parameter was tuned. Random Forest was 169 

chosen for further analysis since its performance was slightly better than the other two classifiers. The ratio 170 

of positives and negatives in training data was also tuned to maximize cross-validation AUC-ROC 171 

(Supplementary Fig. S3). The best performing positives:negatives ratio was 1:20 for Arabidopsis and 1:5 172 

for rice. For testing, a positives:negatives ratio of 1:200 was used since it is close to the average ratio of 173 

causal and non-causal genes in real QTLs.  174 

The source code for cross-validation and any other analyses below are available at 175 

https://github.com/carnegie/QTG_Finder 176 
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Feature importance analysis 177 

We implemented a leave-one-out analysis to evaluate feature importance.  This method was based on the 178 

change of AUC-ROC (ΔAUC-ROC) when leaving out one feature from the models. The same cross-179 

validation framework was used for this analysis. For each iteration, we calculated AUC-ROC on the 180 

original and the leave-one-out models developed with the same training and testing datasets. The ΔAUC-181 

ROC was calculated by subtracting the leave-one-out AUC-ROC from the original AUC-ROC. With the 182 

results from all iterations, we calculated the average ΔAUC-ROC for each feature.   183 

Independent literature validation  184 

For validation, we applied the models to an independent set of causal genes that were curated from 185 

recent literature and not used for cross-validation. The models were trained by known causal genes from 186 

the initial list and negatives were randomly selected from the rest of the genome. Model training was 187 

repeated 5,000 times by resampling training negatives from the genome. With 5,000 iterations, there was 188 

>99% probability that each gene in the genome was selected at least once based on simulation. We applied 189 

the models to each of the independent causal gene and all other genes located within the QTL. All genes 190 

within the QTL were ranked based on the frequency of being predicted as a causal gene. 191 

We calculated the probability of correctly prioritizing at least K causal genes when applying the 192 

models to a total of N QTLs with Equation 2. p is the probability to correctly prioritize a causal gene of a 193 

single QTL at a certain threshold. x is the number of causal genes being correctly prioritized.  194 

��� � �� �� 	�
�

���1  �����

�
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            (2) 195 

Trait category analysis 196 

The trait category analysis was performed in a similar way as the independent literature validation except 197 

using different training and testing sets. Each curated causal gene was tested once. For each round, one 198 

curated causal gene was removed from the training set. Then the model was trained and applied to rank the 199 

known causal gene and 200 flanking genes.  200 

 201 

Results  202 

QTG-Finder: a machine-learning algorithm to prioritize causal genes 203 

We developed the QTG-Finder algorithm to find causal genes from QTL data and generated two 204 

predictive models in Arabidopsis and rice with the algorithm. These two species were selected for model 205 

training since they have the largest number of QTL causal genes (QTGs) that have been discovered by fine 206 

mapping and map-based cloning in plants (Martin and Orgogozo 2013). For model training, we selected 60 207 

Arabidopsis and 45 rice causal genes as a positive set (Martin and Orgogozo, 2013, Supplementary Tables 208 

S1 and S2). The negative set was a subset of genes randomly selected from the rest of the genome. To train 209 

the models, we used 28 Arabidopsis features and 27 rice features, including polymorphisms, functional 210 

categories of genes, function interference from co-function networks, gene essentiality, and paralog copy 211 

number (Supplementary Tables S3, S4 and S5). These features were generally independent from each other 212 
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(most have a Pearson’s correlation coefficient <0.2) (Supplementary Fig. S4). 213 

We optimized the models with an extended cross-validation framework (Fig. 1a). In addition to a 214 

typical 5-fold cross-validation (Kuhn and Johnson 2013), iterations were applied to randomly select genes 215 

from the negative set and re-split the positive set in order to maximize the combinations of positives and 216 

negatives in the training and testing sets (See method).   217 

With this framework, we evaluated the training performance with Area Under the Curve of Receiver 218 

Operating Characteristic (AUC-ROC) and optimized parameters. To find the optimal parameters, we 219 

compared the AUC-ROC of different machine-learning classifiers, modeling parameters, and the ratio of 220 

positive:negative genes in the training set (Supplementary Fig. S2, S3, and S4). Random Forest was 221 

selected as the classifier since it was less prone to over-fitting and performed better than the other 222 

classifiers tested (Supplementary Fig. S1). After optimization, AUC-ROC for the Arabidopsis and rice 223 

models were 0.86 and 0.73, respectively (Fig. 1b).  224 

Since the positive training set used was relatively small, we also evaluated the relationship between 225 

training performance and size of the training set. The AUC-ROC increased as a larger training set was 226 

used. Interestingly, maximum gain in the AUC-ROC was achieved with 20 causal genes (Supplementary 227 

Fig. S5). 228 

Important features for predicting causal genes 229 

With the optimized models, we wanted to know which features were important for causal gene 230 

prediction. Since Random Forest uses features and their interactions for classification (Touw et al. 2013), 231 

the importance of a feature cannot be measured by simple enrichment or depletion of a single feature in 232 

causal genes. Therefore, we evaluated feature importance based on the change of ROC-AUC (ΔROC-AUC) 233 

when excluding a feature from the model (Lloyd et al. 2015). When an important feature is excluded from 234 

the model, the ROC-AUC should decrease.  235 

Here, we highlighted the six most important features out of a total of 28 features. The six most 236 

important features for Arabidopsis were paralog copy number, transporter, the number of non-synonymous 237 

SNPs normalized to protein length (normalized_nonsyn_SNP), receptor, transcription factor, and SNPs 238 

causing premature stop codon (is_stop_gained) (Fig. 2a). The six most important features for rice were 239 

paralog copy number, macromolecule metabolism, network weight sum, transcription factor, transporter, 240 

and SNPs causing premature stop codon. Four out of the six most important features were consistent 241 

between Arabidopsis and rice models, which were paralog copy number, transporter, transcription factor, 242 

and SNPs causing premature stop codon.  243 

For the six most important features in Arabidopsis and rice, we examined their ratio in known causal 244 

genes versus randomly selected genes in the genome (Fig. 2b). Compared to other genes in the genome, the 245 

causal genes tended to have more paralogs, higher frequency of being a transporter or a transcription factor, 246 

and higher frequency of containing SNPs that cause premature stop codons in both species.  247 

The rest of the features contributed less to, but did not impair, model performance to a large degree 248 

(ΔROC-AUC< 0.02). Since there was no strong evidence that they impair prediction, we did not remove 249 
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them from the models for further analysis. 250 

Validating QTG-Finder by ranking an independent set of QTL genes  251 

To assess the predictability of QTG-Finder models, we searched the literature for a separate set of 252 

known causal genes from the initial training set. We found eleven Arabidopsis and ten rice genes that are 253 

likely causal genes underlying QTLs when interpreting linkage mapping with additional evidence such as 254 

functional complementation, fine mapping, joint linkage-association analysis or genetic analyses 255 

(Supplementary Table S6). These causal genes were not used for model training or cross-validation.  256 

To examine model performance, we applied the QTG-Finder models to this new set of causal genes. 257 

For each known causal gene, we ranked all genes in the QTL region based on the frequency of being 258 

predicted as a causal gene from 5,000 iterations. Since the number of genes in a QTL region varies, we 259 

used a gene’s rank percentile for evaluation. The rank percentile of a gene indicates the percentage of QTL 260 

genes that had higher ranks than the gene of interest.  261 

Based on the rank of these known causal genes, we evaluated model performance at different cutoffs. 262 

We calculated the percentage of known causal genes included in the top 5%, 10%, and 20% of the 263 

prioritized genes within a QTL (Fig. 3a). The top 20% of the ranked genes included seven Arabidopsis 264 

(~64%) and six rice (~60%) causal genes. With a more stringent cutoff of 5%, four Arabidopsis (~27%) 265 

and three rice (~30%) causal genes were prioritized.  266 

Most linkage mapping studies identify multiple QTLs. We therefore calculated a theoretical model 267 

performance on identifying causal genes from multiple QTLs simultaneously, which we defined as the 268 

probability of identifying at least X% of all causal genes when applying the model to all QTLs of a trait 269 

(Fig. 3b and c). For example, assuming there were five QTLs of a trait identified by a linkage mapping 270 

study and each QTL contained one causal gene. For the Arabidopsis model, the probability of identifying at 271 

least one causal gene would be 99% when the top 20% genes of all QTLs were tested experimentally. The 272 

probability of identifying all five causal genes would be 10% when the top 20% cutoff was used. We 273 

further compared the performance of all three cutoffs, top 20%, top 10%, and top 5%. The probability of 274 

identifying at least one out of five causal genes would be no less than 80% for all three cutoffs. The 275 

probability to correctly prioritize at least four out of five causal genes would be 40% (for top 20%), 14% 276 

(for top 10%), and 2% (for top 5%). Therefore, a less stringent cutoff (top 20%) performs much better than 277 

a more stringent cutoff if one is interested in finding most of the causal genes or causal genes of a particular 278 

QTL. However, if the goal is to identify any causal gene, then screening the top 5% of all QTLs may be a 279 

more strategic approach since fewer candidate genes need to be tested experimentally. 280 

Trait type preference of QTG-Finder models 281 

Since the training set included genes for different types of traits at an imbalanced ratio, we wanted to 282 

know how QTG-Finder models would work for each type of traits (Fig. 4a). The independent validation 283 

described above was based on causal genes related to plant development and disease resistance 284 

(Supplementary Table S6). However, this validation set was not large enough for a systematic analysis and 285 

did not have any abiotic-stress-related causal genes. Therefore, we performed a rank analysis for different 286 
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trait categories using the known causal genes from the initial training set (60 for Arabidopsis and 45 for 287 

rice). For this rank analysis, each causal gene was taken out from the training set once and used for a rank 288 

test. The single causal gene and its 200 neighboring genes in the genome were used as a testing set. We 289 

applied the models to each testing set to obtain the rank for each causal gene. Then we calculated the 290 

average rank for the causal genes in the four trait categories: development, abiotic stress, biotic stress and 291 

“other”. The “other” category included traits in seed hull color, oil composition, necrosis, etc. 292 

Performance of the models was not the same for different trait categories. Both abiotic and biotic stress 293 

traits had better performance than developmental traits (Fig. 4b). In addition, the Arabidopsis model 294 

performed slightly better than the rice model for all trait categories. This trait category analysis can guide 295 

users to determine rank cutoffs when applying models to different types of traits. 296 

 297 

Discussion 298 

Linkage mapping is a useful tool to identify the genomic regions responsible for many agriculturally and 299 

medically important traits. However, it is not straightforward to identify the genes that cause the trait 300 

variation from these genome regions. The discovery of causal genes still requires time-consuming and 301 

labor-intensive fine mapping. In this study, we developed a machine-learning algorithm to reduce the 302 

number of candidates to be tested experimentally in order to accelerate the discovery of causal genes. 303 

A machine-learning algorithm to prioritize QTL causal genes 304 

Several causal variant or gene prioritization methods have been developed for human data but not many 305 

in plants (Bargsten et al. 2014; Jagadeesh et al. 2016; Kircher et al. 2014; Schaefer et al. 2018). Most 306 

prioritization methods have been developed for GWAS mapping in human, an organism where linkage 307 

mapping cannot be performed. However, linkage mapping can capture rare alleles and has been broadly 308 

used to study quantitative traits of livestock, crops, and model organisms. A causal gene prioritization is 309 

especially helpful for large QTLs identified by linkage mapping, which can constitute tens to hundreds of 310 

genes. One method has been developed in rice to prioritize causal genes for linkage mapping (Bargsten et 311 

al. 2014). This method is based on the hypothesis that causal genes from multiple QTLs of the same trait 312 

are more likely to have the same biological process GO terms, and therefore genes with overrepresented 313 

biological process GOs were prioritized as causal genes. However, this method gives no predictions for 314 

~15% of traits and lack an unbiased performance evaluation since the same set of causal genes was used to 315 

determine cutoff and evaluate performance.   316 

In this study, we built a supervised learning algorithm using multiple features and validated its efficacy 317 

with an independent dataset from the literature. The models could accelerate the discovery of causal genes 318 

by ranking all the genes in a QTL region and prioritizing the top 5%, 10%, or 20% genes, which are most 319 

likely to contain the causal gene, for experimental testing. Based on an assessment using independent data 320 

in the literature, we calculated the performance when applying the models to all QTLs of a trait and 321 

compared three cutoffs (top 5%, 10%, and 20%). The less stringent cutoff (top 20%) had a higher chance to 322 

find more causal genes (Fig. 3b and c) but yielded more candidates that needed to be tested by experiments. 323 
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The more stringent cutoff (top 5%) had a lower chance to find all causal genes but yielded a smaller set of 324 

candidates to test. The probability for the models to find at least one causal gene is high for all three 325 

cutoffs. If the goal were to find one or more causal genes for functional studies and the particular QTL 326 

regions did not matter, the 5% cutoff would be more efficient. If the goal were to discover all causal genes 327 

and understand the genetic architecture of a trait, the 20% cutoff would be better. Similarly, if a particular 328 

QTL were of interest for discovering the underlying causal gene, the 20% cutoff would be better. 329 

There are several conceptual and practical advantages of QTG-Finder algorithm. First, this algorithm 330 

combines multiple types of publically available data including polymorphisms, function annotations, co-331 

function network and other genomic data, which have not been applied to prioritize causal genes from 332 

linkage mapping studies. Second, models were trained on causal genes from various traits and can be 333 

applied to several types of traditional traits, though the prioritization efficiency was not equivalent. Third, 334 

validation from the literature provides guidance on what proportion of genes to prioritize in practice rather 335 

than arbitrarily selecting a threshold. Fourth, the models treat each QTL independently and have the 336 

flexibility to prioritize a specific QTL of interest.   337 

Two limitations of this study are the small number of known causal genes in plants and the impurity of 338 

negative set used for model training. We used 60 Arabidopsis and 45 rice causal genes that have been 339 

verified by map-based-cloning as a positive dataset. Even though they are of high quality, this positive 340 

dataset may not be large enough to represent all the features of causal genes. There could still be other 341 

important features of causal genes that we were not able to capture with this small dataset. The negative set 342 

was composed of genes randomly selected from the rest of the genome. Though we excluded known causal 343 

genes, there could still be some uncharacterized causal genes. As a result of these limitations, 20% cutoff 344 

will still yield ~100 candidates for large QTLs, which is challenging for genetic characterization unless at 345 

least a medium-throughput phenotyping method is available. Fortunately, plant science is entering an era of 346 

high-throughput phenotyping with advances in automation, computation and sensor technology (Araus et 347 

al. 2018; Fahlgren et al. 2015). Our study establishes an extendable framework that can be easily updated 348 

with new training datasets and features. As more causal genes are uncovered, the new data can be easily 349 

incorporated to improve the models.  350 

Important features for predicting QTL causal genes 351 

Many causal genes were repeatedly found to cause phenotypic variation of similar traits, which is also 352 

known as genetic hotspots of phenotypic variation or gene reuse (Martin and Orgogozo 2013). By 353 

examining 1,008 causative alleles in animals, plants, and yeasts, Martin and Orgogozo found de novo 354 

mutations to occur repeatedly at certain genes or orthologous loci and causing similar phenotypic variations 355 

either among lineages or within a single lineage. The prevalence of gene reuse suggests that causal genes 356 

are likely to have some genetic and genomic characteristics that allow them to be repeatedly used for 357 

phenotypic variation. The mechanism for gene reuse is not clear but it may be influenced by factors such as 358 

the availability of standing genetic variation, mutation rate, pleiotropic constraint, and epistatic interactions 359 

of a gene (Conte et al. 2015; Conte et al. 2012).  360 
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While many QTL causal genes have been cloned, their features have not been systematically examined 361 

before. Instead of evaluating each feature individually, we trained Random Forest models and evaluated 362 

feature importance for all features by adopting the leave-one-out strategy. Several of the most important 363 

features were consistent between Arabidopsis and rice models: containing SNPs that cause a premature 364 

stop codon, paralog copy number, being a transporter, and being a transcription factor. 365 

We extracted polymorphism features from re-sequencing data, which provide more information about 366 

the existence of standing genetic variation in the species than the polymorphism data used for linkage 367 

mapping, which typically comes from two parental lines. DNA polymorphisms such as nonsense SNPs, 368 

deleterious non-synonymous SNPs, SNPs at cis-regulatory elements, and SNPs at splice junctions have 369 

been used as features to classify causal and non-causal variants of human diseases (Jagadeesh et al. 2016; 370 

Kircher et al. 2014). These SNPs can directly affect the function or expression of a gene and therefore are 371 

more likely to be causal than the rest of the SNPs. Our results indicate Arabidopsis and rice causal genes 372 

were more likely to carry a SNP that causes premature stop codon (nonsense SNP) than an average gene in 373 

the genome. We also found Arabidopsis causal genes were more likely to have more non-synonymous 374 

SNPs than an average gene in the genome. Besides the high impact SNPs in coding regions, we also 375 

examined polymorphisms in non-coding regions since about 90% of human trait/disease-associated SNPs 376 

are located outside of coding regions (Hindorff et al. 2009). The SNPs at cis-regulatory elements did not 377 

show a high feature importance in our algorithm, although this might be due to limited exploration of non-378 

coding sequences in plants. The CIS-BP database contains cis-elements of 44% of the transcription factors 379 

in Arabidopsis (Weirauch et al. 2014). Developing a more accurate and complete map of functional non-380 

coding regions based on conserved noncoding sequences (Van de Velde et al. 2014) will potentially make 381 

non-coding polymorphism features more useful for prioritizing causal genes.  382 

Paralogs contribute to the evolution of plant traits by providing functional divergence that gives plants 383 

the potential to adapt to complex environments (Panchy et al. 2016). Through evolution, genes involved in 384 

signal transduction and stress response have retained more paralogs while essential genes like DNA gyrase 385 

A have retained fewer paralogs (Lloyd et al. 2015; Panchy et al. 2016). By acquiring new functions or sub-386 

functions, paralogs allow plants to sense and handle different environmental conditions in a more 387 

comprehensive and adjustable way. For example, the eight paralogous heavy metal ATPases (HMAs) in 388 

Arabidopsis are all involved in heavy metal transport but have different substrate preference, tissue 389 

expression patterns, and subcellular compartment locations (Takahashi et al. 2012). Three of them, HMA3, 390 

HMA4, HMA5, are known causal genes of QTLs identified by linkage mapping. The known causal genes 391 

we analyzed have more paralog copies than other genes in the genome. This may suggest that many plant 392 

causal genes are playing a role in providing more phenotypic tuning parameters to allow plants to adapt to 393 

complex environments.  394 

Plant transporters are involved in nutrient uptake, response to abiotic stresses, pathogen resistance, and 395 

other plant-environment interactions (Conde et al. 2011; Doidy et al. 2012). Polymorphisms in transporters 396 

play an important role in local adaptation since many transporters are directly involved in environment 397 
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responses (Baxter et al. 2010; Turner et al. 2010). For example, in Arabidopsis lyrata, the polymorphisms 398 

most strongly associated with soil type are enriched in metal transporters (Turner et al. 2010). We observed 399 

a higher frequency of causal genes being transporters than the average gene in the genome. Causal 400 

transporters that contribute to trait variation may have a more important role in local adaptation than other 401 

transporters. 402 

Transcription factors were enriched in causal genes not only in plants but also in other organisms 403 

(Martin and Orgogozo 2013). This enrichment may be due to an ascertainment bias since linkage mapping 404 

tends to identify genes with large effects (Martin and Orgogozo 2013). Since QTG-Finder focuses on 405 

prioritizing the causal genes identified by linkage mapping, this feature is useful in distinguishing them 406 

from other causal genes such as the medium-effect genes that can be detected by GWAS but not by linkage 407 

mapping.  408 

Overall, QTG-Finder is a novel machine-learning pipeline to prioritize causal genes for QTLs 409 

identified by linkage mapping. We trained QTG-Finder models for Arabidopsis and rice based on known 410 

causal genes from each species, respectively. By utilizing information like polymorphisms, function 411 

annotations, co-function networks, and paralog copy numbers, the models can rank QTL genes to prioritize 412 

causal genes. Our independent literature validation demonstrates that the models can correctly prioritize 413 

about 65% of causal genes for Arabidopsis and 60% for rice when the top 20% of ranked QTL genes were 414 

considered. The algorithm is applicable to any traditional quantitative traits but the performance was 415 

different for each trait type. Since QTG-Finder is a machine-learning based pipeline, extending the training 416 

set and adding features can easily expand and improve the models. We envision that frameworks like QTG-417 

Finder can accelerate the discovery of novel quantitative trait genes by reducing the number of candidate 418 

genes and efforts of experimental testing.  419 
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 598 

Figure Captions 599 

Fig. 1 Model training and optimization based on cross-validation. (a) model training and cross-validation 600 

framework. We randomly selected negatives from the genome and iterated to maximize the combinations 601 

of training and testing data. (b) The ROC curve of Arabidopsis and rice models after parameter 602 

optimization. True and false positive rates were based on the average of all iterations. The grey diagonal 603 

line indicates the expected performance based on random guessing. The number in parentheses indicates 604 

Area Under the ROC Curve (AUC-ROC) 605 

Fig. 2 Important features of causal genes and their enrichment or depletion relative to the genome 606 

background (a) Feature importance as indicated by the change of AUC-ROC (ΔAUC-ROC) when 607 

excluding each feature. The ΔAUC-ROC indicates the average value of all iterations. Error bars indicate 608 

standard deviation. The features with a name that starts with “is_” are binary variables. (b) The enrichment 609 

or depletion of the top 6 features in Arabidopsis and rice models. The enrichment/depletion were indicated 610 

by the ratio of causal genes to genome background. ns, not shown because the feature is not one of the top 611 

6 features in that species 612 

Fig. 3 Model performance at different thresholds (a) Percentage of correctly prioritized causal genes of a 613 

single QTL at different rank thresholds. Dashed lines indicate the background of random selections. (b-c) 614 

The probability of correctly prioritizing at least X% of causal genes when analyzing multiple QTLs 615 

simultaneously 616 

Fig. 4 (a) Trait categories of known causal genes from the training set. (b) The rank percentile of causal 617 

genes of different trait categories. Each causal gene and 200 neighboring genes were used as testing set 618 

once. All other known causal genes were used as training set. Each dot indicates a known causal gene. The 619 

grey dashed line indicates 20% rank percentile. The trait categories of causal genes are defined in Tables 620 

S1 and S2 621 

 622 
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Fig.	1	Model	training	and	op@miza@on	based	on	cross-valida@on.	(a)	model	training	and	cross-
valida@on	framework.	We	randomly	selected	nega@ves	from	the	genome	and	iterated	to	
maximize	the	combina@ons	of	training	and	tes@ng	data.	(b)	The	ROC	curve	of	Arabidopsis	and	
rice	models	aOer	parameter	op@miza@on.	True	and	false	posi@ve	rates	were	based	on	the	
average	of	all	itera@ons.	The	grey	diagonal	line	indicates	the	expected	performance	based	on	
random	guessing.	The	number	in	parentheses	indicates	Area	Under	the	ROC	Curve	(AUC-ROC)	
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Fig.	2	Important	features	of	causal	genes	and	their	enrichment	or	
deple?on	rela?ve	to	the	genome	background	(a)	Feature	
importance	as	indicated	by	the	change	of	AUC-ROC	(ΔAUC-ROC)	
when	excluding	each	feature.	The	ΔAUC-ROC	indicates	the	average	
value	of	all	itera?ons.	Error	bars	indicate	standard	devia?on.	The	
features	with	a	name	that	starts	with	“is_”	are	binary	variables.	(b)	
The	enrichment	or	deple?on	of	the	top	6	features	in	Arabidopsis	
and	rice	models.	The	enrichment/deple?on	were	indicated	by	the	
ra?o	of	causal	genes	to	genome	background.	ns,	not	shown	
because	the	feature	is	not	one	of	the	top	6	features	in	that	species	
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Fig.	3	Model	performance	at	different	thresholds	(a)	Percentage	of	correctly	prioriBzed	causal	
genes	of	a	single	QTL	at	different	rank	thresholds.	Dashed	lines	indicate	the	background	of	
random	selecBons.	(b-c)	The	probability	of	correctly	prioriBzing	at	least	X%	of	causal	genes	when	
analyzing	mulBple	QTLs	simultaneously	
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Fig.	4	(a)	Trait	categories	of	known	causal	genes	
from	the	training	set.	(b)	The	rank	percenGle	of	
causal	genes	of	different	trait	categories.	Each	
causal	gene	and	200	neighboring	genes	were	
used	as	tesGng	set	once.	All	other	known	causal	
genes	were	used	as	training	set.	Each	dot	
indicates	a	known	causal	gene.	The	grey	dashed	
line	indicates	20%	rank	percenGle.	The	trait	
categories	of	causal	genes	are	defined	in	Tables	
S1	and	S2	


