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Abstract 25 

Multiple factors modulate microbial community assembly in the gut, but the magnitude of 26 

each can vary substantially across studies. This may be in part due to a heavy reliance on 27 

captive animals, which can have very different gut microbiomes versus their wild counterparts. 28 

In order to better resolve the influence of evolution and diet on gut microbiome diversity, we 29 

generated a large and highly diverse animal distal gut 16S rRNA microbiome dataset, which 30 

comprises 80 % wild animals and includes members of Mammalia, Aves, Reptilia, Amphibia, 31 

and Actinopterygii. We decoupled the effects of host evolutionary history and diet on gut 32 

microbiome diversity and show that each factor explains different aspects of diversity. Moreover, 33 

we resolved particular microbial taxa associated with host phylogeny or diet, and we show that 34 

Mammalia have a stronger signal of cophylogeny versus non-mammalian hosts. Additionally, 35 

our results from ecophylogenetics and co-occurrence analyses suggest that environmental 36 

filtering and microbe-microbe interactions differ among host clades. These findings provide a 37 

robust assessment of the processes driving microbial community assembly in the vertebrate 38 

intestine. 39 

 40 

Introduction 41 

Our understanding of the animal intestinal microbiome has now extended far beyond its 42 

importance for digestion and energy acquisition, with many recent studies showing that the 43 

microbiome contributes to detoxification, immune system development, behavior, 44 

postembryonic development, and a number of other factors influencing host physiology, 45 

ecology, and evolution1,2. Clearly, the adaptive capacity of an animal species is not determined 46 

solely by the host genome, but must also include the vast genetic repertoire of the microbiome3. 47 

Concretely understanding how environmental perturbations, host-microbe co-evolution, and 48 

other factors dictate the microbial diversity in the animal intestine holds importance for the 49 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 3, 2018. ; https://doi.org/10.1101/484006doi: bioRxiv preprint 

https://doi.org/10.1101/484006
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

conservation and management of animal populations along with determining their adaptive 50 

potential to environmental change4. However, we are still far from this understanding, especially 51 

regarding non-mammalian species and non-captive species in their natural environment. 52 

 A number of factors have been either correlated or experimentally shown to modulate 53 

microbiome diversity in the animal intestine5,6. While biogeography, sex, reproductive status, 54 

and social structure have all been associated with animal gut microbiome diversity in certain 55 

animal clades, the consistently dominant drivers appear to be host evolutionary history and 56 

diet7–9. For instance, diet can rapidly and reproducibly alter the microbiome in humans and 57 

mice10,11. Still, each individual seems to possess a unique microbiome, and studies on humans 58 

and animals have identified microbes whose abundances are determined by host genetics (ie., 59 

heritable microbes)12,13. Among animal microbiome studies, the magnitude these two drivers 60 

can differ substantially among studies. For example, diet was the dominant predictor of 61 

microbiome diversity in recent studies of great apes14, mice15, and myrmecophagous 62 

mammals16. Other research points to a strong signal of host-microbiome co-evolution (ie, 63 

phylosymbiosis) across many animal clades17–19, and yet other studies have found very little or 64 

no effect of host phylogeny15,20,21.  65 

A current challenge is determining whether these inter-study discrepancies are the result 66 

of technical artifacts inherent to differing experimental designs or whether the modulating effects 67 

of host diet and evolution on the gut microbiome do truly differ among host clades and/or 68 

microbial lineages. Resolving this question has been hampered by multiple factors. First, most 69 

studies have focused on narrow sections of the animal phylogeny (eg., primates), with a 70 

predominant focus on mammals9. In fact, the meta-analysis of Colston and Jackson revealed 71 

that <10 % of studies investigating the gut microbial communities of vertebrates were conducted 72 

on non-mammalian species6. Although meta-analyses can greatly expand the diversity of hosts 73 

analyzed, the heterogeneous sample collection and processing methods employed among 74 

individual studies can lead to large batch effects and obscure true biological effects9,22. Second, 75 
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due to the challenge of sample collection and metadata gathering from wild animals, many 76 

studies have utilized captive animals. However, the gut microbiome of wild and captive animals 77 

can differ substantially6,23,24, which has led to calls for more studies that assess the microbiomes 78 

of wild animals9,25. Third, studies vary in how the effects of evolutionary history are assessed. 79 

Host phylogenies are inferred from differing molecular data or sometimes only host taxonomy 80 

used as a course proxy for evolutionary history6,19,21,26. Finally, host intra-species variation is 81 

often removed (ie., just one randomly selected sample used per species), or alternatively it is 82 

retained but the potential biases and treatment group imbalances are ignored in hypothesis 83 

testing8,19. 84 

To address this challenge, we generated a very large and highly diverse vertebrate distal 85 

gut microbiome 16S rRNA dataset, comprising 80 % wild animals that include members of 86 

Mammalia, Aves, Reptilia, Amphibia, and Actinopterygii (which diverged from a last common 87 

ancestor ~435 MYA). Unlike meta-analyses, this dataset was generated with the same 88 

collection methods and molecular techniques performed in the same facility, which reduces 89 

batch effects that plague meta-analyses. We utilized a robust analytical framework to resolve 90 

the relative importance of host diet and evolutionary history (along with other host 91 

characteristics) on gut microbiome diversity. Moreover, we identified particular microbial 92 

operational taxonomic units (OTUs) that associate with diet or host phylogeny after controlling 93 

for the effect of the other factor. Finally, we utilized ecophylogenetic and co-occurrence 94 

analyses to investigate the effects of environmental filtering and microbe-microbe interactions 95 

on microbial community assembly in the vertebrate intestine. 96 

 97 
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Methods 98 

Sample collection 99 

Fecal sampling was conducted between February 2009 and March 2014. Only fresh 100 

samples with confirmed origin from a known host species were collected, most of them by 101 

wildlife biologists conducting long-term research on the respective species in its habitat. This 102 

also ensured that sampling guidelines and restrictions were adhered to, where these were 103 

applicable. Human DNA samples were taken from a previous study27. Samples originate 104 

predominantly from Central Europe (Austria and neighboring countries). However, in order to 105 

cover as much of vertebrate diversity as possible, many samples were also taken from other 106 

countries around the world (19 countries on 6 continents; see Supplementary Fig. 1). Detailed 107 

metadata on the sampled animal species (eg., diet and habitat), the sampling location and 108 

conditions were collected alongside the fecal samples (Supplementary Table 1).  109 

All fecal samples were collected in sterile sampling vials, transported to a laboratory and 110 

frozen within 8 hours. Samples were stored at -20°C and shipped on dry ice to TU Wein in 111 

Vienna, Austria within weeks after collection. In Vienna, DNA extraction was performed within 112 

two months after receiving the samples using the PowerSoil DNA isolation kit (MoBio 113 

Laboratories, Carlsbad, USA) in combination with bead-beating (FastPrep-24, MP Biomedicals, 114 

Santa Ana, USA). DNA concentration in extracts was measured using a NanoDrop ND 1000 UV 115 

spectrophotometer and the Quant-iT PicoGreen dsDNA assay kit  (Thermo Fisher Scientific 116 

Inc., Vienna, Austria). DNA extracts were stored at -80°C until further analysis.  117 

16S rRNA gene sequencing 118 

PCR amplicons for the V4 region of the 16S rRNA gene were generated with primers 119 

515F-806R28 and were sequenced with the Illumina MiSeq 2x250 v2 kit at the Cornell University 120 

Institute for Biotechnology. DADA229 was used to call 100 % sequence identity OTUs (ie., 121 
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sequence variants). Taxonomy was assigned to OTUs with the QIIME2 q2-feature-classifier30 122 

using the SILVA database (v119)31. The phyloseq32 R package was used to rarefy total OTU 123 

counts to 5000 per sample due to the multiple orders of magnitude difference in raw counts 124 

among samples. A phylogeny was inferred for all OTU sequences with fasttree33 based on a 125 

multiple sequence alignment generated by mafft34. All samples lacking metadata used in the 126 

study were filtered from the dataset. In cases where an individual host was sampled multiple 127 

times, we randomly selected one sample. 128 

Host phylogeny 129 

A dated host phylogeny was obtained from TimeTree.org35. To create a phylogeny for all 130 

samples (Supplementary Fig. 2), sample-level tips were grafted onto the species-level tips with 131 

a negligible branch length. 132 

Intra-species sensitivity analysis 133 

The dataset contained a variable number of samples per host species, and species were 134 

asymmetrically represented among clades (Fig. 1). Moreover, the host phylogeny did not 135 

include within-species relatedness information, which would cause zero-inflation in our analyses 136 

of coevolution. Therefore, we used a sensitivity analysis approach (inspired by the sensiphy36 R 137 

package) that assessed the sensitivity of all analyses in this study (unless noted otherwise) to 138 

intra-species heterogeneity in microbiome diversity and host metadata. This method consisted 139 

of generating 100 subsamples of the dataset, each with just one randomly selected sample per 140 

host species. For each hypothesis tested in the study, the test was applied to each dataset 141 

subset, and the overall hypothesis test was considered significant if ≥95 % of the subsets were 142 

each considered significant after correcting for multiple hypothesis testing with the Benjamini-143 

Hochberg procedure. 144 
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Data analysis 145 

General manipulation and basic analyses of the dataset were performed in R37 with the 146 

phyloseq, dplyr, tidyr, and ggplot2 R packages32. High-throughput compute cluster job 147 

submission was performed with the batchtools38 R package. Phylogenies were manipulated with 148 

the ape39 and caper40 R packages and visualized with iTOL41. Networks were manipulated and 149 

visualized with the tidygraph42 and ggraph43 R packages, respectively.  150 

Similarity of OTUs to cultured representatives in the SILVA All Species Living Tree 151 

database31 was conducted by BLASTn44 of OTU representative sequences versus the 16S 152 

sequence database. We filtered out all BLASTn hits with an alignment length of <95 % the 153 

query sequence length. Similarity of OTUs to any representatives in SILVA was conducted in 154 

the same manner, but the BLAST database was SILVA release 132, de-replicated at 99 % 155 

sequence identity.  156 

Multiple regression on matrices (MRM) was performed with the Ecodist45 R package, 157 

with rank-based correlations. We converted all regression variables to distance matrices 158 

through various means. The host phylogeny was represented by the patristic distance (branch 159 

lengths). We calculated the Gower distance for the detailed diet data, detailed habitat data, and 160 

sample type data (wild/captive animal + gut/feces sample origin; see Fig. 1). Geographic 161 

distance was represented as great-circle distance based on latitude and longitude. Alpha-162 

diversity was converted to a distance matrix by taking the Euclidean distance among all pairwise 163 

sample comparisons.  164 

Procrustean Approach to Cophylogeny (PACo)46 and Parafit39 were performed on the 165 

host phylogeny and microbial 16S rRNA phylogeny, along with a matrix of OTU 166 

presence/absence among hosts. The “Cailliez” correction for negative eigenvalues was applied 167 

for both PACo and Parafit. For PACo, we used the quasiswap null model, which does not 168 

assume that the symbiont is tracking the evolution of the host or vice versa (a conservative 169 
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approach). For each method, 1000 permutations were used. Phylogenetic signal of OTUs was 170 

tested with the Phylosignal47 R package. Binomial regression on OTU presence/absence was 171 

used to regress out the effects of diet, and the residuals were used for tests of phylogenetic 172 

signal. 173 

The Local Indicator of Phylogenetic Association (local Moran's I; “LIPA”) was calculated 174 

with 9999 permutations. Phylogenetic general least squares models (PGLS) conducted with 175 

caper40 R package. A Brownian motion model of evolution was used. For beta-diversity, the first 176 

5 PCoA eigenvectors were used. Co-occurrence analyses were conducted with the cooccur48 R 177 

package. The walktrap algorithm49 for defining sub-networks in the co-occurrence network. For 178 

OTU-specific tests (LIPA, PGLS, and co-occurrence), only OTUs present in >5 % of samples 179 

were included.  180 

Jupyter notebooks describing the entire data analysis process are available on GitHub at 181 

https://github.com/leylabmpi/animal_gut_16S-uni. 182 

Data availability 183 

The raw sequence data are available from the European Nucleotide Archive under the 184 

study accession number PRJEB29403. Metadata associated with each sample are provided in 185 

Supplementary Table 1.  186 

 187 

Results 188 

Concept of sampling  189 

In order to have a comprehensive representation of vertebrate intestinal microbiota, we 190 

collected fresh fecal/gut samples of animals from five host classes: Mammalia, Aves, Reptilia, 191 

Amphibia, and Actinopterygii. Sampling was mostly restricted to animals living in the wild, with 192 
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some additional samples originating from domesticated livestock and pets (see Supplementary 193 

Table 1). We generally refrained from collecting samples from animals living in zoos (20 of the 194 

39 samples from captive animals) because artificial habitat, diet, and medication may have 195 

strong confounding effects on the natural intestinal communities. No samples were collected 196 

from aquariums. The majority of the samples were collected in Central Europe and 197 

supplemented with samples from other regions to cover phylogenetic groups lacking extant 198 

members in this region (eg., Afrotheria, Marsupialia, Primates or Cetacea). Samples were 199 

obtained by specialized wildlife biologists working with the host species in the field in order to be 200 

certain of the sample origin. In total, the dataset includes 213 samples from 128 species, each 201 

with detailed diet, habitat, and additional metadata (Fig. 1). 202 
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 203 

Fig. 1. Phylum-level grouping of microbiome diversity by host phylogeny and host metadata. The dated 204 

host phylogeny was obtained from TimeTree.org, with branches colored by host class (purple = 205 

Actinopterygii; orange = Amphibia; green = Reptilia; red = Aves; blue = Mammalia). The tree scale is 206 

MYA. From inner to outer, the data mapped onto the tree is host diet (general), host diet (detailed 207 

breakdown), host habitat, host captive/wild status, the microbiome sample type, and the relative 208 

abundances of microbial phyla in each host. Relative abundances are an estimated average generated 209 

via subsampling OTUs from all samples for each host species. 210 

 211 
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Low prevalence and limited representation of cultured isolates 212 

We sequenced the 16S rRNA V4 region from feces or gut contents of all 213 samples 213 

and generated OTUs (resolved at 100 % sequence identity) with the DADA229 pipeline, which 214 

produced a total of 30,290 OTUs. Most OTUs were only detected in ≤5 % of samples 215 

(Supplementary Fig. 3), which may be due to the high taxonomic and ecological diversity of the 216 

hosts. Therefore, we utilized presence-absence for all subsequent OTU-based analyses unless 217 

noted otherwise (eg., for abundance-based beta-diversity metrics). At the phylum level, 2 clades 218 

were found in at least one individual per species: Firmicutes (mainly Clostridia) and 219 

Proteobacteria (mainly Beta- and Gammaproteobacteria). The next-most prevalent phyla were 220 

Actinobacteria and Bacteroidetes, which were found in ~87 and ~86 % of host species, 221 

respectively (Supplementary Fig. 3). 222 

Mapping phylum-level relative abundances onto the host phylogeny revealed some 223 

clustering of microbiome composition by host clade and diet (Fig. 1). Notably, hosts from the 224 

same species generally showed similar phylum-level abundances (Supplementary Fig. 2). We 225 

quantified this clustering of microbiome composition on the host tree by calculating beta-226 

dispersion (beta-diversity variance within a group) at each host taxonomic level (host class 227 

down to species), and indeed we found beta-diversity to be constrained (more clustered) at finer 228 

taxonomic resolutions regardless of the beta-diversity metric (Supplementary Fig. 4). 229 

Many of the phylum-level distributions resembled observations from other studies. For 230 

instance, Actinopterygii (ie., ray-finned fishes) samples were mostly dominated by 231 

Proteobacteria (Fig. 1), which is consistent with a meta-analysis of fish gut microbiomes50. 232 

Fusobacteria abundance ranged from 6-35 % among the Crocodylus species, which is reflective 233 

of high Fusobacteria abundance previously observed in alligators51. Spirochaetae showed high 234 

clade specificity for Perissodactyla, Artiodactyla, and Primates, which matches previous 235 

observations52–54. The CKC4 phylum, which lacks cultured representatives, was markedly 236 
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abundant in many Actinopterygii samples, reflecting its previous observation in marine 237 

species55,56. 238 

Given the potential for observing novel cultured and uncultured microbes among the 239 

phylogenetically diverse and mostly wild hosts, we assessed how many OTUs in the dataset 240 

were closely related to cultured and uncultured representatives in the SILVA database. We 241 

found that the vast majority (~67 %) lacked a BLASTn hit to a cultured representative at a 97 % 242 

sequence identity cutoff (Supplementary Fig. 5A). Even at a 90 % cutoff,  ~27 % of OTUs 243 

lacked a representative. Most OTUs lacking a representative were Bacteroidetes or Firmicutes 244 

(46 and 12 %, respectively; Supplementary Fig. 5B). Mammalia hosts possessed the majority of 245 

OTUs lacking closely related cultured representatives, but still hundreds of OTUs, mainly 246 

belonging to Actinobacteria, Proteobacteria, and Verrucomicrobia phyla were associated with 247 

non-mammalian hosts (Supplementary Fig. 5C). In regards to completely novel diversity, ~22 % 248 

of the OTUs lacked any representative sequence in the entire SILVA r132 database at a 97 % 249 

sequence ID cutoff. These novel OTUs showed a similar taxonomic composition and distribution 250 

among host classes as those OTUs lacking cultured representatives (Supplementary Fig. 5C). 251 

Host phylogeny and diet explain microbiome diversity 252 

We utilized multiple regression on matrices (MRM) to test how well gut microbiome 253 

diversity could be explained by host phylogeny, diet, habitat, geographic location, and technical 254 

variation. We chose MRM because host phylogeny and geographic location can be directly 255 

represented as distance matrices (patristic distance and great-circle distance, respectively) and 256 

measuring host phylogenetic similarity as a continuous variable (patristic distance) versus a 257 

discrete variable (taxonomic groupings) alleviates imbalances in representation for specific host 258 

taxonomic groups (eg., Mammalia was highly represented). Host metadata that could not 259 

inherently be described as a distance matrix (eg., the diet components of each species) were 260 

converted to distance matrices by various means (see Methods). We had no data on the genetic 261 
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similarity of individuals within host species, and thus we conducted our analysis at the species 262 

level. To estimate the effects of intra-species variation in host microbiome and metadata on our 263 

MRM analysis, we performed the analysis on 100 subsampled datasets, each comprising one 264 

randomly selected sample per species. Unless noted otherwise, we used this sensitivity 265 

analysis approach for all hypothesis testing in this study (see Methods). 266 

Each of our four MRM models (one per diversity metric) had a significant overall fit (P < 267 

0.005 for all models). Host diet and phylogeny were the only significant explanatory variables 268 

(Fig. 2). Diet explained a substantial amount of alpha- and beta-diversity variation (~20-30 %) 269 

and was significant for all diversity metrics tested (ie., Shannon index, Faith’s PD, unweighted 270 

Unifrac, and weighted Unifrac). However, host phylogeny was only significant for unweighted 271 

Unifrac and explained approximately 15 % of the variance, suggesting that host phylogeny 272 

mainly dictates community composition, but not OTU abundances. These findings were 273 

supported by principal component analysis (PCoA) ordinations of weighted and unweighted 274 

Unifrac values, which displayed clustering by host taxonomy and diet (Supplementary Fig. 6). 275 

Neither host habitat nor geographic location were significant; however, we must note 276 

that the experimental design was not directly designed to test this hypothesis (Supplementary 277 

Fig. 1). Importantly, the “Technical” covariate, which comprised sample type (feces versus gut 278 

contents) and captivity status (wild versus captive) also lacked significance for all models, 279 

suggesting no substantial effect of technical variation in our dataset. Also, we did not detect any 280 

major outlier samples in our dataset that may be skewing our results (Supplementary Fig. 7). 281 

Lastly, we obtained similar results to our initial MRM analysis when we randomly selected one 282 

sample per family instead of per species (Supplementary Fig. 8), which reduced the 283 

Mammalia:non-Mammalia bias from 64 % of samples being mammalian to 42 %. However, 284 

phylogeny was not quite significant (P = 0.12), likely due to the reduced sample size. 285 
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 286 

Fig. 2. Host phylogeny and diet significantly explain aspects of microbiome diversity. The plots show the 287 

BH-adjusted p-values (“Adj. P-value”) and partial regression coefficients (“Coef.”) for multiple regression 288 

on matrices (MRM) tests used to determine how much alpha- or beta-diversity variance was explained by 289 

host diet, geographic location, habitat, phylogeny, and technical parameters (see Methods). The boxplots 290 

show the distribution of values obtained when running MRM on each of 100 random dataset subsets, with 291 

each subsample comprising just one sample per species. The boxplots show the MRM rho coefficient and 292 

coefficient p-value for each subsample. See Methods for a description of how each distance matrix for the 293 

MRM models was generated.  “*” signifies significance (Adj. p-value <0.05 for ≥95 % of dataset subsets; 294 

see Methods).  295 
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Further resolving the effects of host phylogeny and diet 296 

Our MRM analyses suggest that host phylogeny and diet explain gut microbiome 297 

diversity, but this is only one line of evidence, and it does not finely resolve which particular 298 

aspects of diversity (eg., particular OTUs) correspond with host diet and phylogeny. Therefore, 299 

we employed complementary tests to our MRM analyses to support and further investigate our 300 

findings. While animal host phylogeny is somewhat correlated with diet, our dataset comprised a 301 

highly taxonomically diverse set of species with substantially varying diets, which often did not 302 

correspond to phylogenetic relatedness (Fig. 1). We exploited this lack of complete 303 

correspondence between host phylogeny and diet to decouple the effects of each variable on 304 

microbial community diversity. 305 

We used phylogenetic generalized least squares (PGLS) to quantify the association of 306 

diet with microbial diversity while accounting for host phylogeny. In support of our MRM results, 307 

both alpha- and beta-diversity were significantly explained by host diet (Fig. 3A, B). We also 308 

conducted the analysis on individual OTUs, and found only 2 OTUs to be significant (Fig. 3C). 309 

These OTUs belonged to the Ruminococcaceae and Bacteroidaceae families, respectively. 310 

Mapping the distribution of these 2 OTUs onto the host phylogeny revealed that the 311 

Ruminococcaceae OTU was associated with many hosts in the herbivorous Artiodactyl clade 312 

and also in the southern white-cheeked gibbon (Nomascus siki), which is a herbivore in the 313 

distantly related primate clade (Supplementary Fig. 9). In contrast, the Bacteroidaceae OTU 314 

was predominantly present among multiple distantly related herbivorous clades. The ability of 315 

diet to explain overall community alpha- and beta-diversity but only two OTUs support a 316 

hypothesis where diet predominantly selects for functional guilds of microbes (eg., cellulolytic 317 

consortia) rather than specific OTUs.  318 
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 319 

Fig. 3. After accounting for host phylogeny, diet significantly explained alpha- and beta-diversity 320 

components but could only explain the prevalence of two OTUs. The boxplots are distributions of PGLS 321 

R^2 and Adj. P-values for 100 random subsamples of the datasets (1 per species for each subsample). 322 

A) Both alpha-diversity measures were found to be significant. B) Some PCoA PCs were significantly 323 

explained by diet (“*” denotes Adj. P-value <0.05). The percent variance explained for each unweighted 324 

Unifrac PC is 18.1, 6.9, 4.2, 3.6 and 2.1 and each weighted Unifrac PC is 27.2, 10.6, 9.6, 6.4, 6.0, and 325 

5.5.  C) Only two OTUs were found to be significant. 326 

 327 
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To assess the effects of host phylogeny while controlling for diet, we utilized tests for 328 

phylogenetic signal after regressing out diet. More specifically, we utilized the Local Indicator of 329 

Phylogenetic Association (LIPA) to assess whether OTU prevalence (ie., % of samples where 330 

present) was similar among closely related hosts. In contrast to the PGLS analysis, we found 331 

very little phylogenetic signal of alpha-diversity (Supplementary Fig. 10). This finding is 332 

consistent with the MRM analysis results. Also in contrast to the PGLS analysis, we identified 333 

121 OTUs with significant local phylogenetic signal in the host tree (Fig. 4A). These “LIPA-334 

OTUs” differed greatly in which host clades they were associated with. More specifically, the 335 

number of LIPA-OTUs per host species ranged from 1 to 34, with only 21 hosts possessing at 336 

least 1 LIPA-OTU. OTU-specific phylogenetic signal was only associated with Mammalia 337 

species, suggesting weak or no effects of evolutionary history for non-mammalian hosts. 338 

Herbivorous species possessed the majority of LIPA-OTUs, but a minority of these OTUs were 339 

associated with some omnivorous and carnivorous species (Fig. 4A). LIPA-OTU composition 340 

varied among host clades, regardless of whether they shared the same diet (Fig. 4B), which 341 

indicates that the phylogenetic signal is indeed a result of host evolutionary history and not 342 

contemporary diet. LIPA-OTUs were most predominant among Artiodactyla species, with 343 

Primates and Perissodactyla ranked a distant second and third (Fig. 4B). This finding suggests 344 

that the effects of host evolutionary history within Mammalia are most pronounced for 345 

Artiodactyla. Interestingly, there was no OTU-specific phylogenetic signal for any macropods, 346 

even though they are foregut fermenters similar to the Artiodactyla. The same is true of 347 

Carnivora species, except for 2 members of the Felidae clade (Felis catus and Panthera 348 

pardus). Altogether, these findings support the hypothesis that mammalian evolutionary history 349 

dictates the prevalence of certain OTUs. 350 

The LIPA-OTUs belonged to 7 bacterial phyla and 1 archaeal phylum (Fig. 4C; 351 

Supplementary Fig. 11). Firmicutes was dramatically more represented than other phyla, with 352 

Bacteroides the second-most common. Members of Bovidae consistently had the highest 353 
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numbers of these two phyla. This finding is supported by Sasson and colleagues13, who only 354 

identified Bacteroides and Firmicutes to be heritable in cattle. The majority of the Firmicutes 355 

OTUs were members of the Ruminococcaceae, and while most of Ruminococcaceae OTUs 356 

were associated with Artiodactyla hosts, some were also observed in certain members of the 357 

Primates, Rodentia, and Perissodactyla. Other OTU clades with significant phylogenetic signal 358 

included Christensenellaceae, Blautia, and Methanobrevibacter, which were all found to be 359 

consistently heritable among multiple human cohort studies12,57. Interestingly, while humans are 360 

represented in this dataset, and a few OTUs were associated with some of the primate species, 361 

no OTUs showed a phylogenetic signal with humans (Fig. 4A). Among some very closely 362 

related OTUs, we observed that host clade specificity differed, suggesting that these taxa have 363 

diversified via adaptive specialization for particular hosts (Supplementary Table 2; 364 

Supplementary Fig. 11). 365 
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Fig. 4. Many OTUs display a local phylogenetic signal in specific host clades after accounting for diet. A) 367 

The phylogeny is the same as shown in Fig. 1. The heatmap depicts Local Indicator of Phylogenetic 368 

Association (LIPA) values for each OTU-host association, with stronger values indicating a stronger 369 

phylogenetic signal of OTU presence (with diet regressed-out). White boxes in the heat map indicate non-370 

significant LIPA indices. The dendrogram on the top of the heatmap is a cladogram based on the SILVA-371 

derived taxonomy for each OTU (see Supplementary Fig. 11 for the full taxonomy). The dendrogram is 372 

colored by phylum. The bar plots in B) and C) show the number of OTUs with a significant LIPA index per 373 

host (OTUs are colored by Phylum; the number of OTUs per host ranges from 0 to 34). B) The bar plots 374 

summarize the number of significant OTUs per host order and diet. The bar plots in C) are the same as B) 375 

except the data is grouped by OTU phylum.  376 

A stronger pattern of cophylogeny in Mammalia versus non-mammals 377 

Our finding that only Mammalia possessed OTUs with local phylogenetic signal suggests 378 

that the effects of evolutionary history on intestinal microbiome diversity may be stronger for 379 

Mammalia versus non-mammalian species. We investigated this finding by performing 380 

cophylogeny analyses, which determines whether the phylogenies of the host and symbiont 381 

(microbe) correspond in their branching patterns. While a positive correlation can be the result 382 

of other processes besides co-cladogenesis58, the pattern is consistent with model of host-383 

symbiont coevolution. We first utilized Procrustean Approach to Cophylogeny (PACo), which 384 

performs Procrustes superimposition to infer the best fit between host and symbiont 385 

phylogenies based on symbiont occurrences in the hosts. This permutation-based approach 386 

does not rely on distribution assumptions. Moreover, the analysis generates residuals of the 387 

Procrustean fit, which describes the contribution of each individual host-symbiont association to 388 

the global fit (smaller residuals means a better fit). 389 

The PACo analysis showed a significant global fit, regardless of intra-species 390 

heterogeneity (P < 0.002 for all dataset subsets). Host-microbiome residuals decreased in the 391 

order of Actinopterygii > Amphibia > Reptilia ≥ Aves > Mammalia, with the most dramatic 392 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 3, 2018. ; https://doi.org/10.1101/484006doi: bioRxiv preprint 

https://doi.org/10.1101/484006
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

decrease between Aves and Mammalia (Fig. 5), indicating that Mammalia show the strongest 393 

signal of cophylogeny. The residuals significantly differed by both host class and diet (ANOVA, 394 

P = 1e-16 for both), but the effect size was much larger for class versus diet (F-value of 972.3 395 

vs 536.3). Thus, while diet may somewhat confound the signal of cophylogeny, it is likely not the 396 

main driver. Conducting PACo and just mammalian species still showed a significant global fit 397 

(P < 0.002), and we found that Artiodactyla have the smallest distribution of residuals 398 

(Supplementary Fig. 12A). Excluding all Artiodactyla samples did not substantially change the 399 

results (global fit: P < 0.003); neither did subsampling just one sample per family in order to 400 

decrease the imbalance of host species per clade (global fit: P < 0.003; Supplementary Fig. 401 

12B, C). 402 

 We additionally evaluated patterns of cophylogeny with the Parafit analysis, which is 403 

also a permutation-based method but assesses similarity of principal coordinates derived from 404 

the host and symbiont phylogenies. As with PACo, the global Parafit test was significant (P < 405 

0.001), and Mammalia showed the strongest signal of cophylogeny (Fig. 5). Altogether, these 406 

data support a model of host-microbe coevolution, with Mammalia displaying the strongest 407 

cophylogeny signal. 408 
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 409 

Fig. 5. PACo and Parafit show a stronger cophylogeny signal for Mammalia versus non-mammals. A) 410 

Boxplots of PACo residuals between hosts and OTUs (smaller residuals means a stronger cophylogeny 411 

signal), with residuals grouped by host class and diet. B) Boxplots of significant host-symbiont links as 412 

determined by Parafit analysis, with links group by host class and diet. For both PACo and Parafit, 1000 413 

permutations were performed on each of the 100 dataset subsets.  414 

 415 
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The roles of environment filtering and microbe-microbe interactions in community 416 

assembly 417 

 Our findings that diet and host evolutionary history significantly explain microbiome 418 

diversity indicate that environmental filtering plays a substantial role in microbial community 419 

assembly. In order to further test this notion and to assess how environmental filtering may differ 420 

among host clades, we utilized two ecophylogenetics analyses: Mean Phylogenetic Distance 421 

(MPD) and Mean Nearest Taxon Distance (MNTD). These tests assess the degree of 422 

phylogenetic clustering within each sample (host) relative to a permuted null model. Assuming 423 

phylogenetic niche conservatism (ie., closely related taxa overlap along niche axes), then host 424 

diet or gut physiology may select for phylogenetically clustered taxa with overlapping niches. 425 

While in the absence of such strong selection, competition via niche conservatism would lead to 426 

phylogenetic overdispersion59. Phylogenetic overdispersion may also result from facilitation (ie., 427 

beneficial microbe-microbe interactions), such as when distantly related taxa form consortia to 428 

break down complex plant polymers59. MPD is more sensitive to overall patterns of phylogenetic 429 

clustering and evenness, while MNTD is more sensitive to patterns at the tree tips60. 430 

We found that the majority of host species showed significant clustering for MNTD, with 431 

close to half for MPD (Fig. 6). Very few species showed phylogenetic evenness. Of those that 432 

did, all belonged to the Artiodactyla, except for the long-eared owl (Asio otus; Fig. 6). In support 433 

of these findings, Gaulke and colleagues also found lower signals of phylogenetic clustering in 434 

the Artiodactyla relative to other mammalian clades61. These findings suggest that community 435 

assembly differs between Artiodactyla and non-Artiodactyla mammals, with microbe-microbe 436 

competition and/or facilitation surpassing gut environmental filtering among Artiodactyla 437 

species. 438 
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 439 

Fig. 6. Microbial communities are generally phylogenetically clustered versus evenly distributed. A) The 440 
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phylogeny is the same as shown in Fig. 1. From inner to outer, the data mapped onto the tree is host diet, 441 

mean standardized effect sizes for MPD and MNTD, and samples with significant phylogenetic clustering 442 

or evenness based on MPD or MNTD. The animal species possessing microbial communities that were 443 

phylogenetically evenly distributed were the long-eared owl (Asio otus), fallow deer (Dama dama), red 444 

deer (Cervus elaphus), cattle (Bos taurus), and sheep (Ovis aries). B) The bar charts depict the fraction of 445 

host species for each host class/diet where microbial taxa are more phylogenetically clustered 446 

(“clustered”) or evenly distributed (“even”) than expected from the null model, or those that did not deviate 447 

from the null model (“NA”). 448 

 449 

We next tested how microbes co-occur among hosts, which can be influenced by 450 

selective pressures or microbe-microbe interactions. Specifically, we conducted a co-451 

occurrence analysis to determine which OTUs significantly positively or negatively co-occurred 452 

relative to a permuted null model. Our analysis revealed that almost all significant co-453 

occurrences were positive (Fig. 7A; Supplementary Fig. 13A). The co-occurrence network 454 

consisted of 4 sub-networks, each with differing taxonomic compositions and existence of “hub” 455 

OTUs (Fig. 7A, D). Sub-networks 1 and 2 were dominated by Ruminococcaceae and 456 

Peptostreptococcaceae, with Ruminococcaceae OTUs acting as central hubs in both 457 

(Supplementary Fig. 14). Sub-network 3 contained an Enterobacteriaceae (Proteobacteria) OTU 458 

hub and also possessed more members of Clostridiaceae, Lachnospiraceae and 459 

Enterobacteriaceae. Sub-network 4 did not have a strong hub OTU and contained the most 460 

taxonomic diversity (Fig. 7A, D). Interestingly, Methanobrevibacter OTUs were only found in 461 

Sub-network 1 and significantly co-occurred with Christensenellaceae OTUs as previously seen 462 

in a large human cohort study57. The presence of OTUs from each sub-network differed 463 

substantially among host clades (Fig. 7B). Sub-networks 3 and 4 were generally most prevalent 464 

in many host orders, with only 1 of the 2 networks being highly prevalent. Sub-network 1 was 465 

only prevalent in the Artiodactyla, suggesting strong host specificity of this microbial consortium. 466 
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In support of this finding, the network contained a substantially higher proportion of OTUs with 467 

local phylogenetic signal among hosts relative to the other sub-networks (Fig. 7D). Sub-network 468 

2 was only prevalent in 4 mammalian orders: Artiodactyla, Diprotodontia, Pilosa, and Primates. 469 

The sub-networks showed distributional shifts among diets, with sub-networks 1 and 2 being 470 

most prevalent among herbivores, Sub-network 4 dominating in omnivores, and sub-networks 3 471 

and 4 showing equal prevalence among carnivores (Fig. 7C). 472 

 473 

 474 

Fig. 7 Co-occurrence analysis revealed 4 sub-networks of co-occurring OTUs that differ in taxonomic 475 

composition, network structure, and distribution across host taxonomic orders. A) The network is a 476 

presence-absence co-occurrence network, with only significant edges shown (see Methods). Sub-477 

networks are represented by differing node shapes and labels next to each sub-network. “Centrality 478 
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betweenness” is a measure of how often the shortest path between two nodes transverses through the 479 

focal node. B) The distribution of community presence among samples from each species (% of samples 480 

per species) shown for each host taxonomic order, with points representing the mean and line ranges 481 

representing +/- the standard error of the mean. The plots are faceted by host taxonomic class (‘Act’ = 482 

Actinopterygii; ‘Amp’ = Amphibia; ‘Ave’ = Aves; ‘Mam’ = Mammalia; ‘Rep’ = Reptilia). C) Similar to B) but 483 

grouped by host diet. D) A table of sub-network statistics, with “Graph density” defined as “number of 484 

edges / total possible edges”, “Max centrality” defined as the max number of shortest paths between any 485 

two nodes that cross the focal node, and “% LIPA OTUs” defined as the percent of OTUs with significant 486 

local phylogenetic signal (see Fig. 4). 487 

 488 

Discussion 489 

 While various studies have shown that host diet and phylogeny modulate the animal 490 

intestinal microbiome5,6, we have expanded on this previous work by performing a robust 491 

assessment of each factor’s effect on a homogeneously generated dataset of highly diverse and 492 

predominantly wild animals. Because our dataset consisted of animals from diverse lineages 493 

that consume a range of dietary components, we were able to decouple of the effects of host 494 

phylogeny and diet on both aggregate diversity metrics and at the individual OTU level. We 495 

employed multiple analytical methods to support our findings, and we also directly assessed the 496 

sensitivity of our analyses to intra-species microbiome and metadata heterogeneity, which has 497 

been found to be non-trivial7,14,62,63. We must acknowledge that we did not have inter-individual 498 

replicates for some host species in our dataset, which limited our ability to determine the impact 499 

of this factor for certain host clades. Still, our findings suggest that host diet and evolution are 500 

strong modulators despite the intra-species variability that we measured. We did not find that 501 

habitat or geographic distance explained microbiome diversity, which is consistent with some 502 

animal microbiome studies6,26, but clashes with others6,22,64. Possibly, these factors may only 503 
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modulate the microbiome of certain host clades, or our dataset is underpowered in regards to 504 

testing these potential modulators. 505 

Sparsely distributed and sparsely cultured microbial taxa 506 

 Only a couple of very coarsely-resolved taxonomic groups were present in (nearly) all 507 

host species (Supplementary Fig. 3). This finding suggests that most microbial clades, 508 

especially finely resolved clades, are somewhat constrained to certain host clades. Indeed, we 509 

did find beta-diversity to be more constrained at finer host taxonomic levels (Supplementary Fig. 510 

4). The largest exception to this trend was the Clostridiales order, which was found in ~98 % of 511 

host species (Supplementary Fig. 3). Many members of Clostridiales generate resistant spores, 512 

which may allow for high inter-species or environment-host migration. This process could 513 

generate source-sink dynamics, where Clostridiales only transiently pass through specific gut 514 

environments, but high migration rates from source hosts, soil, water, etc. continually replenish 515 

these ephemeral sink populations. In contrast, our data support true specialization of certain 516 

Clostridiales for specific host clades. Specifically, we found that the majority of OTUs displaying 517 

a local phylogenetic signal belonged to Clostridiales (Fig. 4). Importantly, these Clostridiales 518 

OTUs showed specificity for differing host clades, which have different exposures to potential 519 

source communities, and thus the signal of host specificity is unlikely to have resulted from 520 

transient populations maintained by high migrations rates. While only two OTUs were 521 

significantly modulated by host diet after controlling for phylogeny, one belonged to Clostridiales 522 

(Fig. 3), suggesting that specialization to specific host clades (and in some instances, diet) 523 

contributed to adaptive speciation in this lineage. 524 

 New culturomics techniques are greatly reducing the number of uncultured microbes in 525 

the human gut65; however, our analysis suggests that microbes from other animals are far less 526 

represented (Supplementary Fig. 5). This even applies to Mammalia, which have received the 527 

lion’s share of focus for gut microbiome studies6. Our limited knowledge of gut-inhabiting 528 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 3, 2018. ; https://doi.org/10.1101/484006doi: bioRxiv preprint 

https://doi.org/10.1101/484006
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

microbes of many animals is typified by the CKC4 phylum, which we found to be a relatively 529 

abundant phylum in a number of samples (Fig. 1), but the clade has no cultured representatives 530 

and is thus poorly characterized66. So as with other calls for more studies of wild animal 531 

microbiomes9,25, our findings also advocate for more research utilizing both culture-dependent 532 

and independent methods to characterize the physiology, ecology, and evolution of vertebrate 533 

gut-inhabiting microbes. 534 

Host diet and phylogeny modulate different aspects of gut microbial diversity 535 

While we found both host diet and evolutionary history to significantly explain 536 

microbiome diversity, each factor explained differing aspects of that diversity. Diet was a 537 

relatively strong predictor of both alpha- and beta-diversity, but the association was strongest 538 

with alpha-diversity (Fig. 2; Fig. 3; Supplementary Fig. 10). However, at the single OTU level, 539 

the distribution of only 2 OTUs was significantly explained by diet (Fig. 3). In contrast, host 540 

phylogeny was only a significant predictor of differences in microbiome composition (Fig. 2B; 541 

unweighted Unifrac). While at the OTU level, 121 OTUs displayed a significant phylogenetic 542 

signal after first accounting for diet (Fig. 4). 543 

Taken together, these results support a scenario in which diet mediates community 544 

assembly through environmental filtering predominantly at the level of functional guilds (eg., 545 

cellulolytic consortia), while host evolutionary history mainly dictates the prevalence of specific 546 

OTUs (ie., heritable microbial taxa). By modulating the distribution of functional guilds, host diet 547 

would expand or contract alpha-diversity depending on the diversity of guilds selected for. If 548 

these guilds are somewhat labile in their taxonomic composition due to functional redundancy, 549 

then the diversity of the functional guild would be dictated by diet, but taxonomic composition 550 

could vary among hosts that have the same specific diets. To illustrate, consider that a 551 

consortium degrading cellulose or other recalcitrant plant polymers in a herbivorous diet would 552 

likely require a larger assemblage of primary and secondary degraders versus a less 553 
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recalcitrant meat-based diet. While microbial function can only be indirectly inferred by 16S 554 

rRNA sequencing, metagenomics studies support this concept that diet is strongly selective of 555 

microbial function, at least in the mammalian gut26,67. 556 

Interestingly, the recent meta-analysis on mammal gut microbiomes by Nishida and 557 

Ochman showed that phylogenetic signal is strongest at finer taxonomic levels, which coincides 558 

with our observations that host phylogeny mainly dictates that distribution of specific OTUs22. 559 

Our findings also correspond with studies of microbial heritability in humans, in which the 560 

abundances of only certain specific taxonomic groups have been consistently found to be 561 

dictated by host genetics across multiple independent studies12. Moreover, we observed 562 

significant phylogenetic signal for OTUs belonging to all three clades identified by Goodrich and 563 

colleagues to be consistently heritable in humans: Methanobrevibacter, Christensenellaceae, 564 

and Blautia. No OTUs in our study showed significant phylogenetic signal for humans, and only 565 

a few OTUs were associated with any of the 10 primate species in our study. These finding 566 

indicate that the effects of host evolutionary history are stronger outside of this clade. This 567 

finding could help to explain why relatively large cohorts are necessary to identify heritable 568 

microbial taxa in humans12. Alternatively, intra-species diversity is greater in large human cohort 569 

studies compared to what we measured in this work, and this higher intra-species variance may 570 

obscure signals of coevolution. 571 

Both tests of phylogenetic signal at the OTU-level and tests of co-speciation support the 572 

hypothesis that host evolutionary history more strongly determines microbial diversity among 573 

mammals versus non-mammals (Fig. 4; Fig. 5; Supplementary Fig. 12). Multiple non-exclusive 574 

mechanisms could explain these findings. First, the gut microbiomes of non-mammal species 575 

may contain more transient microbes from environmental sources. This may be especially true 576 

of the Actinopterygii, given that the surrounding environment is thought to be one of the primary 577 

mechanisms of microbiota acquisition for fish68. Second, when considering the evolution of 578 

digestive physiology, mammals have developed highly complex digestive systems in relation to 579 
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most non-mammalian species in our study69. This is especially true for ruminants, which have 580 

developed complex multi-chambered forestomachs and a system of regurgitation and 581 

mastication in order to efficiently degrade complex plant polymers via enhanced microbial 582 

fermentation. We observed the strongest cophylogeny signal for ruminants, especially among 583 

cattle (Bovidae), which have arguably the most complicated digestive physiology70. Interestingly, 584 

Nishida and Ochman found that rates of microbiome divergence have accelerated in 585 

Cetartiodactyla22, which may be the result of evolving the complex forestomach and other 586 

digestive traits specific to this clade. Indeed, an increased microbial yield and fiber digestion are 587 

thought to represent important selective advantages in foregut fermenters70. Third, vertical 588 

transmission for microbial taxa from parent to offspring may also differ between mammals and 589 

non-mammals. Mammalian microbiome acquisition occurs during the birthing process and is 590 

further developed through nursing, maternal contact, and social group affiliation71. Much less is 591 

known about how non-mammals acquire their gut microbiomes, but at least for some species, 592 

coprophagy, eating soil in the nest, and eating regurgitated food are important modes of vertical 593 

transmission6. Still, mixed-mode transmission (vertical transmission and transmission from 594 

unrelated hosts or the environment) is considered to be more prevalent among non-mammals72.  595 

The role of microbe-microbe interactions in community assembly 596 

 Our ecophylogenetic and co-occurrence tests further resolved differences in microbial 597 

community assembly among host species. The majority of microbial communities showed 598 

significant phylogenetic clustering (Fig. 6), which supports our hypothesis that diet and host 599 

phylogeny impose environmental filtering on specific functional guilds and/or certain taxa. 600 

Interestingly, members of Artiodactyla showed little signal of phylogenetic clustering, and in 601 

some cases, we observed significant phylogenetic evenness (Fig. 6). This is consistent with a 602 

hypothesis that the effects of environmental filtering are limited among Artiodactyla compared to 603 

processes selecting for unrelated taxa. Similar observations were recently reported by Gaulke 604 
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and colleagues, who found less signal of phylogenetic clustering among Artiodactyla relative to 605 

other mammalian clades61. The high water content of ruminant feces may help to explain this 606 

lack of phylogenetic clustering73, given that high water content in soil has been shown to reduce 607 

phylogenetic clustering relative to dry soils74,75. Another non-exclusive explanatory factor may 608 

be that the refractory composition of the ruminant diet requires functional guilds composed of 609 

distantly related taxa, resulting in phylogenetic evenness. In support of this hypothesis, Sub-610 

network 1 in our co-occurrence analysis showed high specificity to Artiodactyla relative to the 611 

other sub-networks (Fig. 7), and it is the only one to contain OTUs from all 4 phyla present 612 

among the sub-networks (Supplementary Fig. 14). 613 

 The “hub” OTUs present in 3 of the 4 sub-networks suggests that keystone species 614 

(OTUs) contribute to community assembly (Fig. 7). Interestingly, the maximum betweenness 615 

score in each sub-network directly corresponded with the prevalence of the sub-networks in 616 

herbivores, while the sub-network with the lowest centrality scores (Sub-network 4) was the 617 

most prevalent among omnivores and carnivores (Fig. 7). Therefore, it appears that the 618 

herbivorous diet selects for co-occurring consortia containing keystone species. These keystone 619 

species may form the foundation in which functional guilds are based. The other members of 620 

each sub-network would thus represent the taxonomically stable portion of the functional guild, 621 

while functionally redundant taxa in the guild would not show a stable co-occurrence pattern. In 622 

support of this concept, the hub OTUs of sub-networks 1 and 2 both belong to the 623 

Ruminococcaceae (Supplementary Fig. 14), and this clade contains members that can play a 624 

major role in plant cell wall breakdown into substrates utilized by other members of the 625 

consortium76. Indeed, Ruminococcaceae taxa have previously been identified as keystone 626 

species in human and ruminant gut communities76. The gain or loss of these putative keystone 627 

species in hosts may cause relatively large, diet-dependent health and fitness effects on the 628 

host. 629 

 630 
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Conclusions 631 

 Our findings help to resolve the major modulators of intestinal microbiome diversity, 632 

which have not been well-studied in wild animals, especially non-mammalian species. We posit 633 

that diet primarily selects for functional guilds while host evolutionary history mainly determines 634 

the prevalence of specific microbial OTUs. A metagenomics-based analysis on this dataset will 635 

help to resolve how diet and host phylogeny modulate microbial function versus taxonomy. The 636 

modulating effect of host evolutionary history was most pronounced in mammals, especially for 637 

Artiodactyla. In general, our findings suggest that microbial community assembly in the 638 

Artiodactyla clade differs substantially from other mammalian clades, which may be the result of 639 

the complex digestive physiology that has evolved in ruminants. The putative keystone species 640 

identified in our co-occurrence analysis may be of special interest for future work determining 641 

how dietary changes can modulate the animal gut microbiome, such as in the context of 642 

captivity or climate change. 643 
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