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  10 

Abstract 11 

The trajectory of a single protein in the cytosol of a living cell contains information about 12 

its molecular interactions in its native environment. However, it has remained challenging to 13 

accurately resolve and characterize the diffusive states that can manifest in the cytosol using 14 

analytical approaches based on simplifying assumptions. Here, we show that multiple intracellular 15 

diffusive states can be successfully resolved if sufficient single-molecule trajectory information is 16 

available to generate well-sampled distributions of experimental measurements and if 17 

experimental biases are taken into account during data analysis. To address the inherent 18 

experimental biases in camera-based and MINFLUX-based single-molecule tracking, we use an 19 

empirical data analysis framework based on Monte Carlo simulations of confined Brownian 20 

motion. This framework is general and adaptable to arbitrary cell geometries and data acquisition 21 

parameters employed in 2D or 3D single-molecule tracking. We show that, in addition to 22 

determining the diffusion coefficients and populations of prevalent diffusive states, the timescales 23 

of diffusive state switching can be determined by stepwise increasing the time window of 24 

averaging over subsequent single-molecule displacements. Time-averaged diffusion (TAD) 25 

analysis of single-molecule tracking data may thus provide quantitative insights into binding and 26 

unbinding reactions among rapidly diffusing molecules that are integral for cellular functions.     27 

 28 

  29 
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Introduction 30 

The ability to probe the positions and motions of single molecules in living cells has made 31 

single-molecule localization and tracking microscopy a powerful experimental tool to study the 32 

molecular basis of cellular functions (1-3). Single-molecule trajectories, if sampled in sufficient 33 

numbers, provide the distribution of molecular motion behavior in cells, and statistical analyses of 34 

localization and trajectory data has been used to resolve the prevalent diffusive states as well as 35 

their population fractions. A key benefit of tracking single molecules is that individual trajectories 36 

can be sorted according to predefined (quality) metrics, for example, to include only non-blinking 37 

molecules (4), or molecules localized in specific subcellular regions of interest (5). These 38 

advantages are not shared by ensemble-averaged measurements such as fluorescence recovery 39 

after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS) (6).     40 

Bacteria are ideally suited specimens for single-molecule localization and tracking 41 

microscopy. Unlike eukaryotic cells, the small size of bacteria (~1 µm in diameter) guarantees that 42 

all molecules remain in focus during imaging (7), particularly when the microscope uses an 43 

engineered 3D point-spread-function (PSF), such as an astigmatic (8) or a double-helix PSF 44 

(DHPSF) (9, 10). Early applications of single-molecule localization microscopy in bacteria 45 

focused on differentiating stationary vs. freely diffusing molecules and quantifying the relative 46 

population fractions and lifetimes of these diffusive states. For example, DNA bound lac repressors 47 

in search of their promoter region appear stationary at 10 ms frame rates and can thus be clearly 48 

distinguished from unbound lac repressors which explore the entire E. coli cell volume on the same 49 

timescale (11). Similarly, the E. coli chromosome-partitioning protein MukB forms stationary 50 

clusters only when incorporated into the quasi-static DNA-bound structural maintenance of 51 

chromosomes (SMC) complex (12). In both of these cases, the stationary, DNA-bound states 52 
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represent the biologically active form of the protein while the unbound diffusive state represents 53 

the inactive protein. However, other proteins, in particular those involved in delocalized regulatory 54 

and signaling networks, may not exhibit such stationary states. These proteins may instead form 55 

oligomeric complexes that diffuse at measurably different rates (13-17). A major objective for 56 

single-molecule tracking microscopy is therefore to resolve the different diffusive states that 57 

manifest in the cytosol of living cells.  58 

Assigning a single molecule to a specific diffusive state is challenging, especially for fast 59 

diffusing cytosolic species. The molecular displacements measured in single-molecule tracking 60 

can be used to compute apparent diffusion coefficients for each detected single molecule, but these 61 

estimates are prone to large errors, particularly when the trajectories are short and the number of 62 

available molecular displacements are low (15, 18). Short trajectories (<20 displacements) are the 63 

norm in live-cell single-molecule tracking with genetically encodable fluorescent protein labels. 64 

However, genetically encoded fluorescent proteins offer unmatched labeling specificity and 65 

efficiency and therefore remain preferable when off-target labeling with chemical dyes may lead 66 

to artifacts (19). For slowly diffusing molecules in bacteria, it is possible to resolve multiple 67 

diffusive states by fitting the experimentally measured distributions of molecular displacements, 68 

r, or apparent diffusion coefficients, D*, using analytical equations describing Brownian, i.e. 69 

normal, diffusion (15, 18, 20-22). Such analytical approaches produce acceptable results only if 70 

biomolecular motion is slow enough that confinement effects can be ignored. However, a typical 71 

cytosolic protein undergoing Brownian diffusion at a rate D = 10 µm2/s can traverse the entire 72 

width of a rod-shaped bacterial cell in as little as 10-25 milliseconds. As a result, observed motion 73 

of cytosolic proteins in bacteria is strongly confined by the cell boundaries and molecular 74 

displacements will, on average, be smaller than those expected for unconfined diffusion. 75 
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Approaches assuming unconfined Brownian motion are therefore not suitable when tracking fast 76 

diffusing molecules in the cytosol of bacterial cells.   77 

Several approaches have been developed in recent years to extract the diffusion rates and 78 

population fractions of different diffusive states that manifest for unbound molecules in confined 79 

cellular environments. These approaches account for confinement effects by the cell boundaries 80 

either (semi-)analytically (23-26) or numerically through Monte Carlo simulation of Brownian 81 

diffusion trajectories (7, 13, 17, 27, 28). Here, we test and experimentally validate a numerical 82 

analysis framework based on Monte Carlo simulations for both 2D and 3D single-molecule 83 

tracking in bacterial cells (Fig. 1). By explicitly accounting for confinement as well as ‘motion-84 

blur’ of diffusing molecules inside small bacterial cells, we extract the unconfined diffusion 85 

coefficients for two genetically encoded fluorescence proteins, eYFP and mEos3.2, in living Y. 86 

enterocolitica cells. Using simulated 2D or 3D single-molecule tracking data of known diffusive 87 

state composition, we quantify to what extent two or more simultaneously present diffusive states 88 

can be resolved by numerical fitting of the displacement or apparent diffusion coefficient 89 

distributions. Finally, we consider the influence of dynamic transitions between different diffusive 90 

states that may manifest upon association and dissociation of freely diffusing molecules. We 91 

propose a new approach, based on time-averaged diffusion (TAD) analysis, to determine the 92 

timescales of such association and dissociation dynamics. We conclude that quantitative numerical 93 

analysis of 2D and 3D single-molecule trajectories can provide accurate estimations of diffusion 94 

rates, population fractions, and interconversion rates of prevalent intracellular diffusive states. 95 

Such information is crucial for investigating the dynamic molecular-level events that regulate the 96 

functional outputs of signaling and control networks in living cells.  97 

 98 
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 99 

Figure 1. Diagram of numerical diffusion fitting analysis workflow. Experimental and simulated 100 
data are analyzed using the same data processing routines so that experimentally determined 101 
apparent diffusion coefficient (or displacement) distributions can be analyzed using linear 102 
combinations of simulated distributions. 103 

  104 

Materials and Methods 105 
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Super-resolution Fluorescence Imaging Setup  106 

Experiments were performed on a custom-built dual-color inverted fluorescence 107 

microscope based on the RM21 platform (Mad City Labs, Inc, Madison, Wisconsin). Immersion 108 

oil was placed between the objective lens (UPLSAPO 100X 1.4 NA) and the glass cover slip 109 

(VWR, Radnor, Pennsylvania, #1.5, 22mmx22mm). A 514 nm laser (Coherent, Santa Clara, 110 

California, Genesis MX514 MTM) was used for excitation of eYFP (~350 W/cm2) and 561 nm 111 

laser (Coherent Genesis MX561 MTM) was used for excitation of mEos3.2 (~350 W/cm2). A 112 

405 nm laser (Coherent OBIS 405nm LX) was used to activate mEos3.2 (~20 W/cm2) 113 

simultaneously with 561nm excitation. Single-molecule images were obtained by utilizing eYFP 114 

photoblinking (29) and mEos3.2 photo-switching. Zero-order quarter-wave plates (Thorlabs, 115 

Newton, New Jersey, WPQ05M-405, WPQ05M-514, WPQ05M-561) were used to circularly 116 

polarize all excitation lasers. The spectral profile of the 514nm laser was filtered using a bandpass 117 

filter (Chroma, Bellows Falls, Vermont, ET510/10bp). Fluorescence emission was passed through 118 

a shared filter set (Semrock, Rochester, New York, LP02-514RU-25, Semrock NF03-561E-25, 119 

and Chroma ET700SP-2P8). A dichroic beam splitter (Chroma T560lpxr-uf3) was then used to 120 

split the emission pathway into ‘green’ and ‘red’ channels to image eYFP and mEos3.2, 121 

respectively. An additional 561nm notch filter (Chroma ZET561NF) was inserted into the ‘red’ 122 

channel to block scattered laser light. Each emission path contains a wavelength-specific dielectric 123 

phase mask (Double Helix, LLC, Boulder, Colorado) that is placed in the Fourier plane of the 124 

microscope to generate a DHPSF (10, 30). The fluorescence signals in both channels are detected 125 

on two separate sCMOS cameras (Hamamatsu, Bridgewater, New Jersey, ORCA-Flash 4.0 V2). 126 

Up to 20,000 frames are collected per field-of-view with an exposure time of 25ms. Exposure 127 

times of 25ms were used for all experiments to maximize fluorescent signal to background ratio 128 
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(31). A flip-mirror in the emission pathway enables toggling the microscope between fluorescence 129 

imaging and phase contrast imaging modes without having to change the objective lens of the 130 

microscope. 131 

 132 

Raw Data Processing 133 

Raw single-molecule PSF images were processed and analyzed using MATLAB (The 134 

MathWorks, Inc, Natick, Massachusetts). Standard PSF images were analyzed using centroid 135 

estimation (32). DHPSF images were analyzed using a modified version of the easyDHPSF code 136 

(33). Specifically, maximum likelihood estimation based on a double-Gaussian PSF model was 137 

used to extract the 3D localizations of single-molecule emitters (34). For experimental data, the 138 

background was estimated using a median filter with a time window of 10 frames (35). 139 

To assign localizations to individual cells,  cell outlines were generated based on the phase 140 

contrast images using the open-source software OUFTI (36). The cell outlines were transformed 141 

to overlay on the fluorescence data by a two-step 2D affine transformation using the ‘cp2tform’ 142 

function in MATLAB. First, five control point pairs were manually selected by estimating the 143 

position of the cell poles of the same five cells in both the single-molecule localization data and 144 

cell outlines. A rough transformation was generated, and cell outlines containing less than 10 145 

localizations within their boundaries were removed. In addition, cells positioned partly outside the 146 

field-of-view were manually removed so they do not skew the final transformation. The center of 147 

mass for all remaining cell outlines and single-molecule localizations within them then served as 148 

a larger set of control point pairs to compute the final transformation function. Only localizations 149 

that lie within the cell outlines after transformation were considered for further analysis. 150 

  151 
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Single Molecule Tracking Analysis  152 

Molecular displacements were computed as the Euclidean distance between subsequent 153 

localizations of the same molecule using a distance threshold of 2.5 µm. Displacements were 154 

linked into a trajectories and considered for further analysis only if at least 3 subsequent (i.e. 155 

localizations in adjacent frames) displacements were available. In addition, if two or more 156 

localizations were present in the cell simultaneously during the length of the trajectory, the 157 

trajectory was discarded. These steps minimized miss-assignment of two or more molecules to the 158 

same trajectory (37).  159 

To obtain apparent diffusion coefficients for a given trajectory, its Mean Squared 160 

Displacement (MSD) was calculated using  161 

 𝑀𝑆𝐷𝑁 =
1

𝑁−1
∑ (𝑥𝑛 −𝑥𝑛− 1)2𝑁

𝑛=2  (1) 162 

where N is the total number of localizations in the trajectory and xn is the position of the molecule 163 

at time point n. The apparent diffusion coefficient, D* was then computed by  164 

 𝐷∗ =  
𝑀𝑆𝐷

2∙𝑚∙∆𝑡
 (2) 165 

where m = 2 or 3 is the dimensionality  and Δt =25 ms is the camera exposure time used in all our 166 

experiments and simulations. We note that the so-estimated single-step apparent diffusion 167 

coefficients and displacements do not directly take into account static and dynamic localization 168 

errors (18), or the effect of confinement within the bacterial cells. We instead account for these 169 

effects through explicit simulation of experimental data, as described in the following section.   170 

 171 

  172 
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Monte Carlo Simulations for Camera-Based Tracking 173 

Calculation of the apparent diffusion coefficients for a large number of tracked molecules 174 

will result in a distribution of values even if molecular diffusion is governed by a single diffusive 175 

state. In addition, for confined diffusion within small bacterial cell volumes, the movement of 176 

molecules is restricted in space. Such confinement results in an overall left shift of the apparent 177 

diffusion coefficient distributions for a given diffusive state (Fig 2a, dashed lines). The shape of 178 

the confined distribution is dependent on the size and shape of the confining volume.  179 

 180 

 181 

Figure 2. Monte-Carlo simulations of expected experimental distribution. (a) Probability density 182 
functions showing the effect of spatial confinement. The apparent diffusion coefficients are 183 
computed based on the time-integrated (25 ms) center-of-mass coordinates of simulated particles 184 
undergoing Brownian diffusion in a cylindrical volume (radius = 0.4 µm, length = 5 µm). The 185 
confined distributions are left-shifted (dashed lines) compared to the unconfined distributions.  (b) 186 
Fraction of successfully localized single-molecules. Time-integrated (25 ms) single-molecule 187 
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fluorescence signals produce images that resemble PSFs that are blurred to different extents 188 

(insets). Faster moving molecules are localized less efficiently due to motion blurring. (c) Expected 189 
distributions of apparent diffusion coefficients when confinement and motion blur is taken into 190 
account. The similarity of the distributions increase for faster diffusion coefficients. Figure panels 191 
a and c are adapted from Ref. (4). 192 
 193 

  194 

To generate libraries of simulated distributions for arbitrary diffusion coefficients, we 195 

performed Monte Carlo simulations of confined Brownian motion inside the volume of a cylinder 196 

using a set of 64 diffusion coefficients ranging from 0.05–20 µm2/s as input parameters. The size 197 

of the confining cylinder was chosen to match the average size of a typical rod-shaped bacterial 198 

cell (radius = 0.4 µm, length = 5 µm). The starting position of the trajectory was randomly set 199 

within the volume of the cylinder and Brownian motion was simulated using short time intervals 200 

of 100 ns. If a molecule was displaced outside of the volume of the cylinder within a time step, it 201 

was redirected back towards the inside of the cylinder at a random angle. Choosing a short time 202 

step ensured that the entire volume of the cylinder, including the interfacial region near the cell 203 

boundary, could be sampled by the diffusing molecule.  204 

To simulate the raw experimental observable, we generated noisy, motion-blurred single-205 

molecule images. For 2D simulations, we summed 50 standard PSFs (approximated as 2D 206 

Gaussians with FWHM ~ 325 nm) corresponding to 50 periodically sampled positions of a 207 

fluorescent emitter during the camera exposure time (25ms). Similarly, for 3D simulations, we 208 

summed 50 DHPSFs. Because the DHPSF has a larger cross section than the standard PSF, fewer 209 

photons are necessary for localizing emitters in 2D. To match photon counts measured 210 

experimentally, we scaled the photon count of each simulated image to 500 photons per 211 

localization for the standard PSF and 1000 photons per localization for the DHPSF. To normalize 212 

to the total photon budget, we simulated 3D trajectories with 5 displacements (3D) and 2D 213 

trajectories with 11 displacements. To each simulated frame, we added a laser background of ~13 214 
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photons/pixel and introduced Poisson noise based on final photon count in each pixel. A dark offset 215 

(50 photons/pixel on average) with Gaussian read noise (σ ~1.5 photons) was added as well to 216 

produce the final image. The resulting image was then multiplied by the experimentally measured 217 

pixel-dependent gain of our sCMOS camera to obtain an image in units of detector counts.   218 

By explicitly simulating spatially blurred emission profiles with realistic signal to-noise 219 

ratios, we can account for both static and dynamic localization error. Static localization error is the 220 

result of finite numbers of fluorescence signal photons that provide an imprecise measure of the 221 

PSF shape and thus result in single-molecule localizations of limited precision (1). Dynamic 222 

localization errors manifest for moving emitters that generate motion-blurred images on the 223 

detector (Fig 2b inset). When analyzed using common fitting algorithms (which are based on data 224 

fitting to well-defined PSF shapes), motion-blurred images provide 2D or 3D position estimates 225 

with limited accuracy and precision (38). If the motion blur is too severe, then the point-spread-226 

function (PSF) of the molecule may become too distorted to result in a successful fit. Motion blur 227 

therefore limits the detection efficiency of fast diffusing molecules (Fig 2b).  228 

We simulated N = 5000 single-molecule trajectories for each of the 64 input diffusion 229 

coefficients to obtain 5000 apparent diffusion coefficient estimates and 5 x 5000 = 25,000 230 

molecular displacements (3D data) or 11 x 5000 = 55,000 molecular displacements (2D data). The 231 

corresponding probability density functions PDF(D*) and the empirical cumulative distribution 232 

functions CDF(D*), or alternatively PDF(r) and CDF(r), were then smoothed by B-spline 233 

interpolation of order 25 and normalized individually (Fig. 2c and Fig. S1, S2 in the Supporting 234 

Material). The interpolated distributions were then interpolated again along the D-axis (D is the 235 

unconfined (input) diffusion coefficient) using the ‘natural’ interpolation method in the 236 

‘scatteredInterpolant’ MATLAB function. This two-step interpolation provides a continuous 237 
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function that provides the experimentally expected distribution for any species whose Brownian 238 

motion is governed by a diffusion coefficient value in the range of 0.05 and 20 µm2/s. The 239 

simulated distributions account for the effects of molecular confinement due to the cell boundaries, 240 

signal integration over the camera exposure time, and the experimentally calibrated signal-to-noise 241 

levels.  242 

   243 

Data Fitting 244 

To estimate the number of diffusive states, their diffusion coefficients, and their population 245 

fractions, we fit the experimentally measured cumulative distribution functions using linear 246 

combinations of simulated CDF(r) or CDF(D*). Using the CDF for fitting instead of a PDF 247 

histogram eliminates bin-size ambiguities that can bias the fitting results. To determine the number 248 

of diffusive states, we performed a constrained linear least-squares fit (using the ‘lsqlin’ function 249 

in MATLAB) and a periodically sampled array of simulated CDFs. We combined diffusive states 250 

that had diffusion coefficient values within 20% of each other into a single diffusive state by a 251 

weighted average based on their population fractions. The resulting vector of fitting parameters, 252 

consisting of diffusion coefficients of individual diffusive states and their respective population 253 

fractions, was used as a starting point to create arrays of trial fitting parameter vectors with 254 

different numbers of diffusive states, ranging from a single diffusive state to a user-defined 255 

maximum number of states (five in all cases considered here). We generated the trial parameter 256 

vectors as follows: We either combined adjacent diffusive states through weighted averaging or 257 

we split diffusive states into two states with equal population fractions and diffusion coefficient 258 

20% above and below the original value. We considered all state combination and splitting 259 

possibilities. We used each trial vector as a starting point for non-linear least-squares fitting of 5 260 
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separate subsets of the data (using the ‘fmincon’ function in MATLAB). In each case, the quality 261 

of the fit (quantified as the residual sum of squares) was found by comparing the quality of the fit 262 

with respect to the remaining subsets (data cross-validation). The average residual sum of squares 263 

was used to quantify the quality of the fit corresponding to a given trial vector. This method yielded 264 

multiple trial vectors given the number of diffusive states.  265 

For each number of diffusive states, only the trial vector with the best quality of fit was 266 

retained. The optimal number of states was then determined by identifying the last trial vector for 267 

which adding an additional state resulted in at least a 5% improvement in the quality of the fit. 268 

Finally, this trial vector was then used as the starting point to fit the full data set using non-linear 269 

least squares fitting. To estimate error in each of the fitted parameters, we resampled the dataset 270 

100 times by bootstrapping and then fit them individually, initializing the fit with the same starting 271 

parameter vector. To constrain the optimization, the population fractions of diffusive states below 272 

0.5 µm2/s were not refined through non-linear least-squares fitting, but instead assigned to 273 

stationary molecules. This choice was made because even completely stationary molecules exhibit 274 

non-zero apparent diffusion coefficients in single-molecule tracking experiments due to finite 275 

single-molecule localization precision (static localization error). For simplicity, all data and fits 276 

are displayed as PDFs instead of CDFs throughout this manuscript.  277 

 278 

Simulation of MINFLUX Trajectories 279 

To simulate experimental tracking data obtained by MINFLUX microscopy, we first 280 

computed three-dimensional isotropic Brownian motion trajectories, sampled at high time 281 

resolution and confined within a spherocylinder of length l = 5 μm and radius r = 0.4 μm (same as 282 

for camera-based tracking). The short time-step for each displacement was 1 μs and the total 283 
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trajectory length was 20 ms. We assumed exponentially distributed fluorescence blinking on- and 284 

off-times with ton  = 2 ms and toff  = 0.6 ms, in agreement with experimental measurements of the 285 

flurorescent protein mEos2 (39). As before, we simulated 5000 trajectories for 64 diffusion 286 

coefficients in the range of 𝐷 ∈ [0.05,15] μm2/s to create libraries of distributions used for fitting 287 

of simulated experimental data. We then projected the 3D motion trajectories onto the xy-plane 288 

and tracked the blinking emitters using a doughnut intensity profile scanned over the emitter using 289 

a 4-step multiplex cycle, as described previously (39). The doughnut size parameter was set to 290 

fwhm = 800 μm and the field-of-view scanning parameter was set to L = 400 μm. Choosing larger 291 

values for fwhm and L minimizes the probability of fast moving emitters (D > 5 μm2/s) escaping 292 

from the MINFLUX observation region during tracking. The multiplex cycle time was Δt = 200 μs. 293 

To account for motion blurring during a multiplex cycle, we considered the excitation and emission 294 

probabilities from each of the computed emitter positions (sampled at 1 μs time steps). The 295 

detected photon counts were assumed to follow Poisson statistics. Emitter localization was 296 

performed with the previously described modified least mean squared (mLMS) estimator (39), 297 

with 𝑘=2, β0 = 0.96 and β1 = 5.75. The resulting trajectories each had 100 localizations, which 298 

were sampled every 200 μs.  299 

 300 

Modeling State Transition Simulation 301 

 To address the effect of a dynamic equilibrium between two diffusive states, we simulated 302 

trajectories for which one or more state transitions take place during a single-molecule trajectory. 303 

3D state-switching trajectories were simulated with track lengths of 5 displacements. 2D 304 

MINFLUX state-switching trajectories were simulated with track lengths of 99 displacements. We 305 

considered a two-state system in which molecules spend equal amounts of time in each state, 306 
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resulting in a populations fractions of 50% for each state. The average time, T, that a molecule 307 

takes to switch from one state to the other and back again is 308 

 𝑇 = 𝑡1 +  𝑡2 (3), 309 

where t1 and t2 are the average time spent in states 1 and 2, respectively. The state-switching 310 

kinetics were modeled as follows: Each individual molecule trajectory randomly started in one of 311 

the two states. The time t spent in a given state before transitioning to the other was modeled as 312 

the exponential decay 313 

 𝑝(𝑡) = 𝑒
− 

𝑡

𝑡1 (4).  314 

Thus, the time spent in a given state is given by 315 

 t =  − ln(𝑝(𝑡)) ∙ 𝑡1 (5), 316 

where the value of p(t) was a value between 0 and 1 randomly chosen from a uniform distribution.  317 

This process was repeated, allowing the molecule to switch back and forth between the two states, 318 

until the total amount of time reached the total length of the trajectory. State-switching trajectories 319 

were then simulated for camera-based or MINFLUX-based tracking as described above.  320 

 321 

Bacterial Strains and Plasmids  322 

 Plasmids for the inducible exogenous expression of fluorescent and fluorescently-tagged 323 

proteins were derived from IPTG-inducible pAH12 and arabinose-inducible pBAD vectors. The 324 

coding sequences of eYFP were PCR amplified using Q5 DNA polymerase (New England 325 

Biolabs, Ipswich, Maine) from pXYFPN-2 (40). The PCR product was isolated using a gel 326 

purification kit (Invitrogen, Carlsbad, California) and used as a megaprimer for amplification and 327 

introduction into a pAH12-derivative containing a kanamycin resistance cassette, LacI, and a lac 328 

promoter to generate pAH12-eYFP. The pAH12 backbone was a gift from Carrie Wilmot. 329 
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For the pBAD-mEos3.2, the protein coding sequence was amplified from a mEos3.2-N1 330 

plasmid, gifted to us by Michael Davidson (Addgene plasmid # 54525). The PCR products were 331 

gel purified, and both the PCR products and the pBAD-backbone were digested with EcoRI and 332 

XhoI restriction enzymes (New England Biolabs). Digested vector and inserts were ligated using 333 

T4 DNA ligase and transformed into E. coli TOP10 cells. Colonies were PCR screened for 334 

presence of correct insert using GoTaq DNA Polymerase (Fisher Scientific, Hampton, New 335 

Hampshire), and plasmid was isolated from positive clones (Omega Biotek, Norcross, Georgia) 336 

All plasmids were sequenced by GeneWiz (South Plainfield, New Jersey) prior to 337 

electroporation into Y. enterocolitica for analysis. Transformed cells were plated on LB agar [10 338 

g/L peptone, 5 g/L yeast extract, 10 g/L NaCl, 1.5% agar] (Fisher Scientific, Hampton, New 339 

Hampshire) containing kanamycin [50 µg/mL] or ampicillin [200 µg/mL]. For electroporation of 340 

Y. enterocolitica pIML421asd cells, recovery media and plates also contained diaminopimelic acid 341 

(dap). A list of all strains and plasmids can be found in Table S1 in the Supporting Material. 342 

 343 

Cell Culture 344 

Y. enterocolitica cultures were inoculated from a freezer stock in BHI media (Sigma 345 

Aldrich, St. Louis, Missouri) with nalidixic acid (Sigma Aldrich) [35 µg/mL] and 2,6-346 

diaminopimelic acid (Chem Impex International, Wood Dale, Illinois) [80 µg/mL] one day prior 347 

to an experiment and grown at 28°C with shaking. After 24 hours, 300 µL of overnight culture 348 

was diluted in 5 mL fresh BHI, nalidixic acid, and diaminopimelic acid (dap) and grown at 28°C 349 

for another 60-90 minutes. In addition, inoculation media also contained kanamycin or ampicillin 350 

for pAH12- or pBAD-based plasmids, respectively. Cultures of cells containing pAH12- or pBAD-351 

based plasmids were induced with IPTG (Sigma Aldrich) [0.2 mM, final] or arabinose (Chem 352 
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Impex) [0.2%], respectively, for the final 2 hours of incubation. Cells were pelleted by 353 

centrifugation at 5000 g for 3 minutes and washed 3 times with M2G (4.9 mM Na2HPO4, 3.1 mM 354 

KH2PO4, 7.5 mM NH4Cl, 0.5 mM MgSO4, 10 µM FeSO4 (EDTA chelate; Sigma), 0.5 mM CaCl2) 355 

with 0.2% glucose as the sole carbon source). The remaining pellet was then re-suspended in M2G 356 

and dap. Cells were plated on 1.5 – 2% agarose pads in M2G containing dap. 357 

 358 

Results and Discussion 359 

eYFP and mEos3.2 undergo confined Brownian Diffusion in Y. enterocolitica 360 

To experimentally validate the numerical analysis framework based on Monte Carlo 361 

simulations of confined diffusion, we tracked the 3D motion of individual eYFP and mEos3.2 362 

fluorescent proteins in living Y. enterocolitica cells. Previous studies in E. coli (28, 41) and C. 363 

crescentus (42) have established that small cytosolic proteins undergo Brownian motion.  Non-364 

specific interactions due to macromolecular crowding reduce the diffusion coefficient for small 365 

cytosolic proteins, but do not by themselves lead to measurable deviations from normal Brownian 366 

diffusion (43). In contrast, the motion of large macromolecular complexes (>30 nm in diameter) 367 

is best described by anomalous diffusion due to glass-like properties of the bacterial cytoplasm 368 

(44).  369 

The experimentally measured distributions of apparent diffusion coefficients are fit well 370 

using a single diffusive state with D = 11.3 µm2/s (for eYFP, Fig. 3a) and D = 15.0 µm2/s (for 371 

mEos3.2, Fig. 3b).  The close agreement between simulations and experiment confirms that the 372 

assumption of spatially confined Brownian diffusion is valid for both eYFP and mEos3.2 in 373 

Y. enterocolitica under our experimental conditions. These diffusion coefficient values are in 374 

agreement with previously measured values of GFP in bacteria (28, 45-50). The structure and 375 
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molecular weights of eYFP (27 kDa) and mEos3.2 (26 kDa) are very similar. The differences in 376 

their diffusion coefficients may thus be due to differences in non-specific transient interactions 377 

with other cellular components. We also note that there is a small (6% or less) stationary 378 

(<0.5 µm2/s) population for both fluorescence proteins. We find small numbers of stationary 379 

trajectories in all of our single-molecule tracking datasets, which indicates that even freely 380 

diffusing cytosolic proteins may become immobilized. However we did not find that that these 381 

stationary molecules exhibit any subcellular preference. 382 

 383 

 384 

Figure 3. The 3D diffusion of cytosolic fluorescent proteins eYFP and mEos3.2 in 385 
Y. enterocolitica can be explained using a single diffusive state. (a) eYFP diffuses at 11.5 µm2/s 386 
(red). (b) mEos3.2 diffuses at 15.0 µm2/s (red). A small fraction (<6%) of stationary trajectories is 387 

present in both datasets (blue). The total fit is shown as a dashed black line.     388 
 389 

 390 

2D vs 3D Single-Molecule Tracking to Estimate Diffusion Coefficients 391 

Most single-molecule tracking results reported to-date utilize the standard PSF for 2D 392 

single-molecule tracking. Acquiring 3D trajectories requires engineered PSFs, such as astigmatic, 393 

double-helix, or tetra-pod PSFs (10, 51-55). A common feature of engineered PSFs is their 394 

increased footprint on the detector compared to the standard PSF. Due to their increased size, 395 
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engineered PSFs require higher photon counts to achieve lateral localization precisions equivalent 396 

to those obtained with the standard PSF. Given the finite photon-budgets of fluorescent labels, 2D 397 

tracking can thus yield longer single-molecule trajectories that contain roughly twice the number 398 

of displacements than 3D trajectories acquired with engineered PSFs.  399 

To determine whether diffusion coefficients are more accurately estimated by 2D or by 3D 400 

tracking, we repeated the 3D DHPSF simulations using the standard PSF. We generated simulated 401 

distributions of apparent 2D diffusion coefficients in the same way as for the 3D data (Materials 402 

and Methods). However, the simulated 2D trajectories had twice as many displacements as the 3D 403 

trajectories to provide an equivalent total photon count over the course of a trajectory. We found 404 

that the resulting 2D apparent diffusion coefficient distributions are broader and their peaks are 405 

systematically right-shifted compared to their 3D equivalents (Fig. 4a). The increased left-shift of 406 

the 3D distribution is due to the additional confinement of the molecule’s motion in the z-407 

dimension that is not measured in 2D tracking.   408 

We then performed numerical fitting of simulated 2D tracking data to estimate the diffusion 409 

coefficient.  We found that there is a slight increase in accuracy when fitting 2D data compared to 410 

3D data for a single diffusive state, particularly for fast diffusion. (Fig. 4b,c). The improved 411 

accuracy of 2D tracking may be due to the decreased similarity of the 2D distributions for fast 412 

diffusion coefficients (Fig. S1), which enables more accurate parameter estimation.  413 
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 414 

Figure 4. Comparison of 2D and 3D tracking. (a) Comparison of 2D and 3D apparent diffusion 415 

coefficient distributions corresponding to 1 µm2/s and 10 µm2/s. The distributions for 3D 416 
tracking are left-shifted to a larger extent due to the additional confinement in the 3rd dimension. 417 
(b,c) Relative errors in determining the diffusion coefficient of a single diffusive state using 2D 418 
(b) and 3D (c) single-molecule tracking. Shown are the averages and standard deviations of four 419 
independent simulations containing N = 5000 trajectories each resampled 10 times by 420 
bootstrapping. 421 

 422 

 423 

Single-molecule tracking can be used to resolve different diffusive states 424 

 The free fluorescent proteins examined in the previous section each exhibited a single 425 

predominant diffusive state, which means that these two proteins do not exhibit stable interactions 426 

with other cellular components. This property is important for their use as non-perturbative labels 427 

that do not alter the diffusive behaviors of the target proteins beyond an overall reduction in their 428 

native diffusion rate. An overall reduction in diffusion rate is expected due to the increased 429 

molecular weight and hydrodynamic radius of the fusion protein. If the target protein stably 430 

interacts with cognate binding partners to form homo- or heterooligomeric complexes of different 431 

sizes, then single-molecule tracking of non-perturbatively labeled target proteins may be used to 432 

resolve the corresponding diffusive states. Examples of different diffusive states reported in the 433 

recent literature include the cytosolic pre-assembly of the bacterial type 3 secretion system proteins 434 

SctQ and SctL (4), ternary complex formation of the elongation factor Tu (EF-Tu) which can bind 435 
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to aminoacyl-tRNA, GTP, and translating ribosomes(17), the nucleotide excision repair initiation 436 

molecule UvrB (14),  and short-lived ribosome binding of EF-P(13).  437 

To test the resolving capability of single-molecule tracking, we simulated mixed 438 

distributions of 3D displacements or apparent diffusion coefficients that contain two different 439 

diffusive states. We then fit these distributions to obtain the unconfined diffusion coefficients and 440 

relative population fractions of each diffusive state. By systematically varying the diffusion 441 

coefficients, we assessed the error in the optimized fitting parameters for various combinations. 442 

We examined both equal (50:50) and unequal population fractions (80:20). In all cases, the 443 

distributions were based on 5000 trajectories with five displacements each. We found that the 444 

errors in the optimized fitting parameters increased when the diffusion coefficients were similar, 445 

as evidenced by the wedge-shaped diagonal (Fig. 5a). Slight differences in diffusion rate are thus 446 

more readily resolved for slowly diffusing molecules than for faster moving ones. We reason that 447 

the ability to resolve fast diffusive states is further compromised by the confinement effect, which 448 

causes the distributions of apparent diffusion coefficients to become more similar in the high 449 

diffusion coefficient limit (Fig. 2c). 450 
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 451 

Figure 5. Multiple diffusive states can be resolved by numerical fitting of single-molecule tracking 452 
data using 2D and 3D tracking. (a,b) Relative errors for determining the diffusion coefficients and 453 
population fractions of binary mixtures of diffusive states using 3D (a) and 2D (b) tracking. The 454 
relative population fractions in the two state mixtures were either 50%-50% (left) or 20%-80% 455 
(right). The relative error for each fitting parameter (diffusion coefficients D1 and D2, and their 456 

corresponding population fractions f1 and f2) is represented as a matrix for different diffusion 457 
coefficient combinations. Each pixel represents the mean (relative) error of the parameter’s fit 458 

value after analyzing ten datasets (resampled by bootstrapping) each containing 5000 tracks. 459 
 460 

Current detector technologies, in particular large field-of-view sCMOS detectors, have 461 

made it possible to readily acquire single-molecule trajectories in thousands of cells in a single 462 
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imaging session. Thus, 5,000 trajectories can be obtained even for proteins expressed at low levels. 463 

For highly expressed proteins up to 100,000 trajectories can be obtained. We therefore repeated 464 

our analysis using distributions based on 100,000 trajectories. As expected, the errors in the 465 

parameter estimates decreased (~7% on average) when fitting the now more thoroughly-sampled 466 

distributions (Fig. S3 in the Supporting Material). Therefore, the resolving capability improves 467 

when additional measurements are available to sample the shape of experimental distributions. 468 

However, larger errors persist along the diagonal of the error matrices, highlighting the difficulty 469 

in resolving states with similar diffusion coefficients. When the population fractions are split 470 

80:20, larger errors manifest due to the smaller number of proteins in the diffusive state with a 471 

20% population fraction. In those cases, the relative error in the smaller fraction can approach 472 

100%, i.e. the smaller fraction is completely eliminated when the fitting routine converges on a 473 

one-state solution (Materials and Methods).  474 

To test whether the above results may be extrapolated to more complex state distributions, 475 

we simulated a few selected examples of mixed distributions containing three and four diffusive 476 

states, maintaining N = 5000 total trajectories in each case. We found that three states can be 477 

simultaneously resolved as long as their diffusion coefficients are sufficiently different and their 478 

population fractions are similar (Fig. S4a in the Supporting Material). Again, the errors in the 479 

fitting parameters increase for faster (i.e. more similar) diffusion coefficients (Fig. S4b). In the 480 

case of a 4-state population, the distribution is best fit with a 3-state results, even when the values 481 

of the diffusion coefficients are well separated (Fig. S4c). Specifically, the two fastest states are 482 

combined into a single state with a correspondingly larger population fraction. The 3- and 4- state 483 

simulations thus recapitulate the trends observed for binary diffusive state mixtures.    484 
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To test whether 2D tracking is also more discriminating when multiple diffusive states are 485 

present, we constructed simulated 2-state distributions of apparent diffusion coefficients based on 486 

2D data. Again, we observed only a slight increase in the accuracy of the fitting (~3%) for the 2D 487 

fitting compared to 3D for a two state fitting (Fig 5b). We therefore conclude that 2D and 3D 488 

single-molecule tracking are roughly equivalent in their ability to resolve different diffusive states. 489 

We note however that 3D single-molecule localization microscopy has the additional advantage 490 

of providing more detailed spatial information on the subcellular locations of diffusing molecules, 491 

which may provide important additional information in select cases. We also note that the above 492 

analysis only pertains to diffusion of cytosolic proteins. The diffusion of membrane proteins is 493 

subject to different confinement effects that may make it more appropriate to track in 3D (5).  494 

  495 

Transitions between diffusive states  496 

 Thus far, we have only considered diffusive states that do not interconvert on the time-497 

scale of a single-molecule trajectory (~100-300 ms on average). Under physiological conditions, 498 

however, molecules may frequently bind to or dissociate from cognate interaction partners and 499 

thereby transition between different diffusive states. The time-resolution for making single-step 500 

displacement measurements (~25 ms) is shorter than the time resolution for determining apparent 501 

diffusion coefficients (~5 ∙ 25 ms = ~125 ms). We therefore hypothesized that, in the presence of 502 

diffusive state switching, more accurate parameter estimates may be obtained by fitting single-step 503 

displacement distributions. To test this hypothesis, we simulated distributions for two states, D1 = 504 

1 µm2/s and D2 = 10 µm2/s, that can interconvert on timescales comparable to a single-molecule 505 

trajectory. We then gradually decreased the average diffusive state switching time T = (k1)
-1 + (k2)

-506 

1 = t1 + t2 and imposed k1 = k2 to keep the population fractions equal (Materials and Methods). 507 
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To fit the single-step displacement distributions, we generated a library of simulated single-step 508 

displacement distributions as described before for apparent diffusion coefficients (Fig. S2). Both 509 

the apparent diffusion coefficient distributions and single-step displacement distributions were 510 

then fit with their respective library. To quantify the overall accuracy of the fit, we averaged the 511 

relative errors of all fitting parameters (in this case the diffusion coefficients D1 and D2 and the 512 

population fractions f1 and f2 = 1 – f1. We found that, in the limit of infinitely long switching times 513 

(no state transitions), both approaches produce parameter estimates with similar accuracy (Fig. 514 

6a,b and Fig. S5 in the Supporting Material). As the average switching time is decreased, the 515 

mean relative errors start to increase for both methods. Importantly, fitting distributions of apparent 516 

diffusion coefficients produced parameter estimates that deviated sooner from the ground truth (as 517 

a function of decreasing average switching time) than those obtained by fitting single-step 518 

displacement distributions. In the limit of short switching times, fitting of both the apparent 519 

diffusion coefficient and single-step displacement distributions produced large errors, because a 520 

single molecule can sample both diffusive states repeatedly during the timescale of the 521 

measurement. When using 25 ms exposure times, accurate parameter estimates can be made for 522 

this two-state system, if T > 75 ms and T > 500 ms for displacement and apparent diffusion 523 

coefficient fitting, respectively. For accurate extraction of the parameters, the time resolution of 524 

the measurement should be about three times shorter than the average switching time T.   525 
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 526 

Figure 6. Resolving diffusive states in the presence of dynamic state transitions. (a) The mean 527 
relative errors of the fitting parameters for a 2-state mixture (D1 = 1 µm2/s, D2 = 10 µm2/s, 50:50 528 
population fraction) as a function of different switching times between two diffusive states. The 529 
mean % error obtained by fitting the single-step displacement distributions diverges for T < 75 ms, 530 
whereas the mean % error obtained by apparent diffusion coefficient fitting diverges for T < 531 
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500 ms. (b) Individual parameter estimates as a function of state switching time for the same 532 

simulations as in (a). Population fraction f2 = 1 – f1 is not shown for clarity.  (c) The mean relative 533 
errors of the fitting parameters as a function of the number of averaged displacements. The shaded 534 
areas represent 10% error limits for each parameter. (d) Parameter estimates as a function of 535 
averaged displacements for the same simulations as in panel c. Color scheme is the same as the 536 
legend in panel c. Grey lines represent the ground truth. The fitted individual parameter value 537 
produces horizontal curves for both the very short (2 ms) and very long (104 ms) switching times. 538 
For intermediate switching times (50 ms), the fitted values trend away from the true value as the 539 
number of averaged displacements increases. (e) Mean deviation relative to the single 540 
displacement parameter estimates (Ni  = 2) for different switching times.     541 
 542 

The above observations suggest that it should be possible to estimate the timescale of 543 

diffusive state switching by time-averaged diffusion (TAD) analysis, i.e. by varying the number 544 

of averaged displacements. We therefore evaluated the apparent diffusion coefficients for 545 

overlapping sub-trajectories having different numbers of displacements/localizations. Specifically, 546 

within each single-molecule trajectory, we define overlapping sub-trajectories with Ni 547 

localizations and Ni -1 displacements. The number of sub-trajectories for a given Ni is S=N-Ni+1, 548 

where N is the number of localizations in the full-length trajectory. Defining the first localization 549 

in the sub-trajectories as P, we modified Eqn 1 to  550 

 𝑀𝑆𝐷𝑁𝑖,𝑃 =
1

𝑁𝑖−1
∑ (𝑥𝑛 −𝑥𝑛− 1)2𝑁𝑖+𝑃−1

𝑛=𝑃+1  (7), 551 

to obtain mean squared displacement values for different sub-trajectory lengths and starting points, 552 

namely Ni = 2, 3, …, 6 and P=1…S.  553 

Based on these sets of observables, we generated five new apparent diffusion coefficient 554 

libraries corresponding to the five different values of Ni (on average our experimental 3D 555 

trajectories are 5 displacements long). The state-switching trajectories were then re-analyzed using 556 

Eqn 7 and fit with the corresponding library. Again, we used the mean relative error over all fitting 557 

parameters to quantify the overall accuracy of the fit for each value of Ni (Fig. 6c). Consistent with 558 

the results above, the accuracy of the fitting parameters is poor for short switching times and good 559 
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for long switching times. Importantly, the mean relative errors are constant for all Ni in both of 560 

these limiting cases. Thus, if the state switching time is substantially shorter or longer than the 561 

time resolution of the measurement, then the mean error does not change. In contrast, the mean 562 

errors increase for increasing Ni, if switching times are comparable to the timescale of a single-563 

molecules trajectory (0.05-0.5s). The same trends are also observed when plotting the individual 564 

parameter fitting results (Fig. 6d). Based on these results, we conclude that the timescale of 565 

diffusive state switching can be estimated by determining the rate of change of individual fitting 566 

parameters as a function of the number of averaged displacements. For example, based on the 567 

results in Fig. 6cd, observing a consistent increase or decrease of individual fitting parameters as 568 

a function of Ni would indicate a diffusive state switching time between 20 and 500 ms. We note 569 

that the ground truth is unknowable in experimental work. We therefore computed an error relative 570 

to the parameter values obtained when fitting single displacement distributions (i.e. Ni = 2). Single 571 

displacement distributions offer the best time resolution and thus should be least affected by 572 

diffusive state averaging. The parameter deviations relative to the parameter estimates at Ni  = 2 573 

displayed similar trends as those referenced to the ground truth (Fig. 6e).  574 

 It is clear that the dynamic range of TAD analysis improves if trajectories contain a large 575 

number of displacements. However, in camera-based tracking of fluorescent fusion proteins, only 576 

N = 5 or N =12 displacements can be observed on average for 3D and 2D tracking, respectively. 577 

Longer trajectories can be acquired using chemical dyes (24, 56, 57) or multiple fluorophores as 578 

labels (58), but potential of non-specific labeling or the size of multivalent fluorescent tags have 579 

to be weighed against this benefit. An important advantage of camera-based tracking is that the 580 

temporal dynamic range is tunable to access slow switching timescales (>500 ms) by adjusting the 581 

exposure time and/or by acquiring single-molecule trajectories in time-lapse mode (17, 27, 59). 582 
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On the other hand, exposure times shorter than a few milliseconds come at the expense of data 583 

acquisition throughput, because the full chip of current sCMOS cameras cannot be read out faster 584 

than 100 Hz (17). Thus, faster timescales are difficult to assess by camera-based tracking.  585 

A solution to access faster time scales is MINFLUX microscopy (39). The time resolution 586 

of MINFLUX-based single-molecule tracking is two orders of magnitude better than camera-based 587 

tracking (0.2 ms vs 25 ms) and the number of localizations N is larger by one order of magnitude 588 

(N~100 vs. N~10). MINFLUX microscopy may thus be able to provide access to state switching 589 

dynamics on 0.2 ms to 20 ms timescales, whereas camera-based tracking can cover state switching 590 

dynamics on millisecond to minute timescales. To test the capability of MINFLUX microscopy to 591 

quantify fast state switching times, we applied TAD analysis to simulated MINFLUX data. 592 

MINFLUX trajectories were generated in the same way as the camera-based trajectories, i.e. 593 

through Monte Carlo simulations of confined Brownian diffusion, but the MINFLUX localization 594 

algorithm was used instead of PSF fitting (Materials and Methods). We then used libraries of  595 

Ni-fold averaged MINFLUX displacement distributions to fit state-switching trajectories for 596 

different switching times T (D1 = 1 µm2/s, D2 = 10 µm2/s, k1 = k2). We found that the mean % error 597 

vs. Ni curves (Fig. 7a) displayed two key characteristics that correlate linearly with switching time 598 

T or with switching rate 1/T. First, for each switching time T, there exists a threshold value Ni,T, 599 

after which the mean % error increases linearly as a function of Ni. Ni,T and T are linearly correlated 600 

(Fig. 7ab). Second, the slope of the initial linear increase and the switching rate 1/T are linearly 601 

correlated as well (Fig 7ac). Based on these linear relationships, we conclude that the timescale of 602 

state transitions can be determined from the position of Ni,T and from the slope of the following 603 

linear increase. 604 
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 605 

 606 

Figure 7. Resolving diffusive states in the presence of dynamic state transitions for MINFLUX 607 

data. (a) Mean % error in the parameter estimates compared to the ground truth for various 608 

switching times (D1 = 1 µm2/s, D2 = 10 µm2/s, k1 = k2). Initial slope determinations (dashed black 609 

lines) are shown for the T = 10, 20, and 40 ms datasets. The averaging time is the value of Ni 610 

multiplied by the multiplex cycle time Δt = 200 μs. (b) Averaging time at which the mean % error 611 

begins to linearly increase. (c) Slope of the initial linear increase of the mean % error. Switching 612 

times of 0.2 and 2 ms are not included here, because the linear section of their curves in panel are 613 

not sufficiently resolved. (d) Mean % deviation in the parameter estimates relative to the parameter 614 

estimates at Ni = 3. Again, initial slope determinations (dashed black lines) are shown for the T = 615 

10, 20, and 40 ms datasets. (e) Averaging time at which the mean % deviation in panel d begins to 616 

linearly increase. (f) Slope of the initial linear increase of the mean % deviation in panel d. Again, 617 

switching times of 0.2 and 2 ms are not included. 618 

 619 
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Since the ground truth is not accessible by experiment, we repeated the above analysis by 620 

referencing all parameter estimates to the parameters obtained at Ni = 3 (Fig. 7d). Ni = 3 621 

corresponds to a time resolution of 600 µs. The curves obtained by plotting the mean % deviation 622 

from the Ni = 3 parameter estimates vs. Ni displayed the same characteristic linear increases as a 623 

function of Ni. The onset of the linear increase Ni,T and the slope of the linear increase still 624 

correlated linearly with T and 1/T, respectively (Fig. 7def). These results show that the switching 625 

rate between two diffusive states can be reliably determined by TAD analysis of 2D and 3D single-626 

molecule tracking data. 627 

 628 

Conclusions 629 

 In this work, we present and test a robust analysis method for estimating diffusive state 630 

parameters of fluorescently labeled biomolecules in confined bacterial cell volumes based on 631 

single-molecule tracking. We show that it is possible to resolve the unconfined diffusion 632 

coefficients and the population fractions of multiple diffusive states based on a few thousand short 633 

single-molecule trajectories obtained by camera-based tracking. The numerical analysis 634 

framework presented is generally applicable to both 2D and 3D tracking and any confinement 635 

geometry. We show that 2D and 3D single-molecule tracking are roughly equivalent in their ability 636 

to resolve multiple diffusive states. To address the issue of diffusive state switching during the 637 

timescale of measurement, we propose time-averaged diffusion (TAD) analysis. By averaging over 638 

different number of subsequent displacements, the timescale of state switching can be determined, 639 

if that timescale is comparable to the duration of the recorded trajectories. For example, 640 

MINFLUX microscopy can provide access to state switching dynamics occurring on 2-200 ms 641 

timescales using data acquisition parameters relevant for fluorescent protein localization in living 642 
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cells. On the other hand, camera-based tracking can be used to detect state switching dynamics on 643 

20 ms to seconds timescales either by using longer exposure times or by acquiring data in time-644 

lapse mode. TAD analysis of experimental single-molecule trajectories thus provides a general 645 

and robust approach to quantify the diffusive states and diffusive state transitions that manifest in 646 

living cells.  647 
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