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 2 

Abstract 35 

Understanding the relationship between localized anatomical damage, reorganization, and 36 

functional deficits is a major challenge in stroke research. Previous work has shown that 37 

localized lesions cause widespread functional connectivity alterations in structurally intact 38 

areas, thereby affecting a whole network of interconnected regions. Recent advances suggest 39 

an alternative to discrete functional networks by describing a connectivity space based on a 40 

low-dimensional embedding of the full connectivity matrix. The dimensions of this space, 41 

described as connectivity gradients, capture the similarity of areas’ connections along a 42 

continuous space. Here, we defined a three-dimensional connectivity space template based on 43 

functional connectivity data from healthy controls. By projecting lesion locations into this 44 

space, we demonstrate that ischemic strokes resulted in dimension-specific alterations in 45 

functional connectivity over the first week after symptoms onset. Specifically, changes in 46 

functional connectivity were captured along connectivity Gradients 1 and 3. The degree of 47 

change in functional connectivity was determined by the distance from the lesion along these 48 

connectivity gradients regardless of the anatomical distance from the lesion. Together, these 49 

results provide a novel framework to study reorganization after stroke and suggest that, rather 50 

than only impacting on anatomically proximate areas, the indirect effects of ischemic strokes 51 

spread along the brain relative to the space defined by its connectivity.  52 
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1.1 Introduction 53 

 54 

Stroke is defined as a sudden neurological deficit caused by a localized injury to the central 55 

nervous system due to vascular pathology (Sacco et al., 2013). Outside of the localized 56 

structural damage, areas connected to the lesion undergo functional alterations that are 57 

implicated in symptomology and the recovery from neurological deficits. This phenomenon is 58 

known as diaschisis (Andrews, 1991; Carrera and Tononi, 2014) and provides a theoretical and 59 

empirical motivation to study brain connectivity following stroke.  60 

 61 

Functional connectivity based on the temporal correlation of ongoing blood-oxygen-level-62 

dependent (BOLD) fluctuations (resting-state functional magnetic resonance imaging; rs-63 

fMRI) has been successfully used to study alterations associated with reorganization within 64 

functional networks. Previous studies found a reduction in functional connectivity after stroke 65 

in structurally intact areas connected to the lesion (i.e., the affected network). Reduction in 66 

functional connectivity was associated with the severity of the clinical deficit and recovery of 67 

symptoms (Baldassarre et al., 2014; Carter et al., 2010; He et al., 2007; Ovadia-Caro et al., 68 

2013; Siegel et al., 2016; Wang et al., 2010; Warren et al., 2009). Importantly, normalization 69 

of connectivity patterns was found following both spontaneous recovery (He et al., 2007; Park 70 

et al., 2011; Ramsey et al., 2016; van Meer et al., 2010) and interventions using non-invasive 71 

brain stimulation (Volz et al., 2016). Taken together, these findings support the phenomenon 72 

of diaschisis and the view of stroke as a network disruption rather than a mere localized 73 

phenomenon (Corbetta, 2010; Ovadia-Caro et al., 2014; Ward, 2005).  74 

 75 

While previous studies demonstrate the role of the affected network in stroke pathology, the 76 

impact of a lesion is not necessarily limited by network definitions. Graph models of brain 77 

connectivity have demonstrated that the local disruption of a single node is likely to extend 78 

beyond the affected network and impact, to varying degrees, the whole graph (Aerts et al., 2016; 79 

Bassett and Bullmore, 2006; van den Heuvel and Sporns, 2013). Using predefined functional 80 

networks assumes sharp boundaries between different functional domains. In addition, it 81 

assumes that the effects of stroke are uniformly distributed within a given network. Contrary to 82 

these assumptions, recent studies report that connectivity may be better captured by dimensions 83 

representing the continuous space of the connectome (Atasoy et al., 2016; Cerliani et al., 2012; 84 

Haak et al., 2018). With the shift in our understanding of cognitive brain functions as emerging 85 

from global states (Bertolero et al., 2018; Cole et al., 2014; Sporns et al., 2005), so too our 86 
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models of brain dysfunction should attempt to characterize alterations at the whole-brain level, 87 

taking the full connectome into account (see Figure 1). 88 

 89 

 90 
Figure 1. Two complementary views on brain organization and the corresponding 91 
representation of distal effects of focal lesions. (A) Representing a focal lesion (yellow node) 92 
on the brain anatomical surface. (B) A schematic description of discrete networks parcellation 93 
superimposed on a functional connectivity graph-space with nodes and edges. Using this 94 
approach to study the effects of focal lesions (yellow node) restricts us to singular networks. 95 
Additionally, distal effects of the lesion are assumed to be equally disruptive for all nodes in 96 
the affected network (red nodes). (C) Representing functional connectivity in a continuous 97 
manner without sharply defined borders using connectivity gradients. The lesioned node affects 98 
all other nodes in the system as a function of the distance from the lesion in graph space (dark 99 
red to light red). Using this approach does not assume sharp boundaries between functional 100 
networks and provides a more realistic model of distant effects of localized lesions.   101 
 102 

 103 

Recently, non-linear decomposition approaches have been introduced to represent whole-brain 104 

rs-fMRI connectivity data in a continuous, low-dimensional space. This data-driven analysis 105 

results in connectivity gradients that provide a low-dimensional description of the connectome 106 

(Langs et al., 2016, 2014; Margulies et al., 2016). Each voxel is located along a connectivity 107 

gradient according to its similarity of connections. Voxels that share a similar pattern of 108 

functional connectivity are situated close to one another along a given connectivity gradient 109 

(Huntenburg et al., 2018). Different functional modules are therefore clustered along a 110 

continuum of a given connectivity gradient (Krienen and Sherwood, 2017) without the need of 111 

a priori defined network parcellation.  112 

 113 

Here, we studied the impact of localized lesions on continuous connectivity gradients. 114 

Longitudinal rs-fMRI data were collected from patients following ischemic stroke. Data were 115 

collected within 24 hours, as well as one and five days after the onset of stroke symptoms. 116 

Changes in functional connectivity over the week were quantified using spatial concordance 117 

(Lohmann et al., 2012). Data from healthy subjects were used to create a template of three 118 

connectivity gradients representing all possible connections in a continuous manner.  119 

 120 
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Based on previous findings in discrete networks (Baldassarre et al., 2014; Carter et al., 2010; 121 

He et al., 2007; Nomura et al., 2010; Ovadia-Caro et al., 2013; Siegel et al., 2016; Wang et al., 122 

2010; Warren et al., 2009) and computational models (Alstott et al., 2009; Honey and Sporns, 123 

2008; van Dellen et al., 2013; Young et al., 2000), we hypothesized that a lesion along a 124 

connectivity gradient would induce a gradual impact on the whole connectome. Functional 125 

connectivity alterations would be most pronounced in areas that share a similar connectivity 126 

pattern with the lesion.  127 

 128 

2.1 Materials and methods 	129 

	130 

2.2 Participants 	131 

	132 

Fifty-four stroke patients (20 females, age: 63.78 ± 12.03 years, mean ±	SD) and 31 healthy 133 

controls (13 females, age: 64.90 ± 8.49 years) were initially recruited for the study. Inclusion 134 

criteria for patients were: patients older than 18 years, first ever ischemic stroke – small cortical 135 

(≤1.5 cm) or subcortical, which was evident in imaging. A Wahlund score ≤ 10 (Wahlund et 136 

al., 2001) to limit the extent of white matter lesions. Exclusion criteria included: clinical 137 

evidence for antecedent lesions (n=3), fewer than 3 resting-state scans post-stroke (n=10), 138 

lesions located solely within white matter (n=3 patients), corrupted MRI raw data or distorted 139 

images (n=1 control, n=4 patients), high degree of head motion (n=1 control, n=6 patients), and 140 

poor registration quality (n=1 control). For further details on quality assessment see 141 

Supplementary Material M1.  142 

 143 

Following the exclusion procedure, 28 stroke patients (11 females, age: 65.04 ± 13.27 years, 144 

mean ±	SD), and 28 healthy controls (13 females, age: 65.21 ± 8.84 years) were included in 145 

the analysis. The groups were matched for age and sex (age: Welch’s t-test, P=0.95; sex: 146 

Kruskal-Wallis H-test, P=0.59). For further details on patients’ information see Supplementary 147 

Table 1. The study was approved by the ethics committee of the Charité - Universitätsmedizin 148 

Berlin, Germany (EA 1/200/13). Written informed consent was obtained from all participants.  149 

	150 

2.3 Neuroimaging data 	151 

	152 

The MRI protocol included T1-weighted structural scans and T2*-weighted resting-state fMRI 153 

scans (continuous fMRI scan with no overt task) for all participants. In addition, diffusion 154 
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weighted images (DWI; TR=8.2 s, TE=0.1 s, 50 volumes, voxel size: 2×2×2.5 mm, flip angle 155 

90°) and fluid attenuated inversion recovery images (FLAIR; TR=8.0 s, TE=0.1 s, 54 volumes, 156 

voxel size: 0.5×0.5×5 mm) were acquired from the stroke patients as part of a standard MRI 157 

protocol (Hotter et al., 2009). All MRI data were acquired on a Siemens Tim Trio 3T scanner. 158 

Healthy control participants were scanned at a single time point, whereas stroke patients were 159 

scanned at three consecutive time points relative to stroke symptoms onset: day 0 (within 24 160 

hours), day 1 (24 - 48 hours), and day 5 (range: day 4 – 6, mean 4.93 ± 0.38 SD). Structural 161 

scans were acquired using a three-dimensional magnetization prepared rapid gradient-echo 162 

(MPRAGE) sequence (TR=1.9 s, TE=2.52 s, TI=0.9 s, 192 slices, voxel size: 1×1×1 mm, flip 163 

angle 9°). Resting-state functional scans for each participant and session were acquired using 164 

blood-oxygenation-level-dependent (BOLD) contrast with an EPI sequence (TR=2.3 s, 165 

TE=0.03 s, 34 slices, 150 volumes, voxel size: 3×3×3 mm, flip angle 90°, total duration=5.75 166 

min). 	167 

	168 

2.4 Data preprocessing 169 

 170 

T1-weighted structural images were preprocessed using FreeSurfer’s recon-all pipeline (v6.0.0, 171 

(Dale et al., 1999)). The pipeline generated segmentations for grey matter, white matter and 172 

cerebrospinal fluid. Individual grey matter masks were registered to standard MNI space (3 173 

mm3).  174 

	175 

Preprocessing of functional images included: i) removal of the first 5 EPI volumes to avoid 176 

signal saturation, ii) slice timing and motion correction (Nipype v0.14.0, (Gorgolewski et al., 177 

2011; Roche, 2011)), iii) CompCor denoising approach for time series at the voxel level 178 

(Nilearn v0.4.0, (Behzadi et al., 2007)), iv) temporal normalization, v) band-pass filtering in the 179 

range of 0.01 - 0.1 Hz, and vi) spatial smoothing (applied after registration) with a 6 mm full-180 

width-half maximum Gaussian kernel using FSL (v5.0.9, (Woolrich et al., 2009)). Confounds 181 

removed from the time series at the denoising step were defined as i) six head motion 182 

parameters, including 1st and 2nd order derivatives, ii) motion and intensity outliers (Nipype’s 183 

rapidart algorithm; thresholds: > 1mm framewise head displacement, and signal intensity > 3 184 

SD of global brain signal accordingly) and iii) signal from white matter and cerebrospinal fluid.  185 

	186 

The transformation of functional images to MNI152 (3 mm3) space included a linear 187 

transformation from EPI to the high-resolution T1-weighted image using FreeSurfer’s 188 
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boundary-based register tool with 6 degrees of freedom (Greve and Fischl, 2009) and a 189 

nonlinear transformation using ANTs (v2.1.0, (Avants et al., 2011)). The transformation 190 

matrices obtained from both steps were concatenated and applied to the functional image using 191 

a single interpolation.  192 

	193 

2.5 Lesion delineation	194 

	195 

Lesions were manually delineated by identifying areas of localized hyperintensity on day 0 196 

DWI images using the ITK-SNAP software (v3.4.0, (Yushkevich et al., 2006)). Delineations 197 

were guided by expert radiology reports and were approved by a radiology resident. All lesion 198 

masks were normalized to MNI152 (3 mm3) space (ANTs, nearest-neighbor interpolation). 199 

Individual lesion masks were smoothed in the atlas space using FSL’s dilation tool with 3×3×3 200 

kernel, extending the mask by one voxel-size (v5.0.9, (Jenkinson et al., 2012)). 201 

	202 

2.6 Computing connectivity gradients by applying nonlinear decomposition to functional 203 

connectivity data from healthy controls  204 

 205 

To create a mutual grey matter template to be used for decomposition analysis, individual grey 206 

matter masks and resting-state functional masks were averaged for all healthy controls to create 207 

a group mask. Averaged group maps were multiplied to create a mutual mask such that only 208 

grey matter voxels with fMRI signal would be included. The resulting template (33,327 voxels) 209 

was used to generate functional connectivity matrices from individual healthy controls.  210 

 211 

Functional connectivity matrices (33,327×33,327 voxels) were computed using Pearson’s 212 

correlation coefficient and were normalized using Fisher’s z-transformation. An average 213 

functional connectivity matrix was computed across healthy controls and the averaged z-scores 214 

were transformed back to r-scores. Each row of the group-level functional connectivity matrix 215 

was thresholded at 90% of its r-scores. This yielded an asymmetric, sparse matrix. The pairwise 216 

cosine similarities of all rows were computed. By doing this, we obtained a non-negative and 217 

symmetric similarity matrix, L (values in [0, 1] range).  218 

	219 

We implemented the diffusion embedding approach on the similarity matrix to obtain a low-220 

dimensional representation of the whole-brain functional connectivity matrix (Coifman and 221 

Lafon, 2006; Langs et al., 2016),	as done in Margulies et al., 2016. This approach resulted in 222 
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gradients of functional connectivity. Voxels along each gradient are assigned unitless 223 

embedding values. Along each gradient, voxels that share similar connectivity pattern have 224 

similar embedding values.  225 

	226 

2.7 Mapping individual stroke lesions onto connectivity gradients from healthy controls	227 

	228 

Individual lesion masks were projected onto the individual gradients obtained in healthy 229 

controls. Lesioned voxels were marked according to their location along a specific gradient. 230 

The lesion site along each gradient was defined as the minimum embedding value of all lesioned 231 

voxels.  232 

 233 

To quantify the functional similarity of non-lesioned voxels to the lesion site, distance-to-lesion 234 

maps were computed for each non-lesioned voxel (Figure 2B). Distance values reflect the 235 

mutual difference between embedding values of non-lesioned and lesioned voxels. Low 236 

distance values reflect voxels that share similar functional connectivity pattern with the lesion 237 

site. 238 

 239 

 240 
Figure 2. A schematic description of the analysis steps. (A) Individual lesions were 241 
delineated for each patient. Here, an example of a lesion located in the left occipital lobe 242 
(green). (B) Distance-to-lesion maps were computed for each of the three connectivity 243 
gradients. Distance values reflect the mutual difference between embedding values of non-244 
lesioned and lesioned voxels. Low distances (dark-copper) represent voxels that share a similar 245 
functional connectivity pattern with the lesion site. This example shows the distance-to-lesion 246 
map for the first gradient. (C) A voxel-wise spatial concordance map was computed for each 247 
patient across the three resting-state scans after stroke. Concordance correlation coefficient 248 
(CCC) values reflect the degree of change in the connectivity pattern over time for each voxel. 249 
Low CCC values (dark-purple) represent voxels that underwent a larger change in their 250 
functional connectivity pattern over time. (D) Spearman’s rank correlation coefficient (𝑟%) was 251 
used to test the relationship between distance-to-lesion and degree of functional connectivity 252 
alteration across all voxels. A positive correlation depicts a larger change in functional 253 
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connectivity for voxels that were closer to the lesion site along the corresponding connectivity 254 
gradient.  255 
	256 

2.8 Quantifying longitudinal alterations in functional connectivity matrices for stroke 257 

patients	258 

	259 

For each patient, a functional mask was obtained from each of the three consecutive functional 260 

scans. These masks were multiplied with the grey matter template of the healthy cohort. The 261 

dilated lesion segmentations were then excluded from the patient-specific grey matter template. 262 

This approach ensured that functional images of patients included only identical grey matter 263 

voxels as healthy controls, except for the lesion site. The patient-specific grey matter templates 264 

varied slightly in number of voxels included (ranging from 32,659 to 33,212 voxels). 	265 

	266 

To control for the slight variation in the number of voxels in patient-specific grey matter 267 

templates, a control analysis was applied such that the grey matter template used for the analysis 268 

contained 30,314 voxels in all patients prior to lesion removal. Using this more restricted mask 269 

had no influence on our main results (see Supplementary Material M2 and Supplementary 270 

Figure S1).  271 

	272 

Functional connectivity matrices were computed using Pearson’s correlation coefficient at each 273 

of the three time points for individual patients. The voxel-wise spatial concordance map was 274 

computed using the concordance correlation coefficient (CCC) (Lin, 2016) at the single-voxel 275 

level across the three time points (Lohmann et al., 2012). CCC-values range between -1 and 1, 276 

such that the lower concordance reflects larger alterations in the functional connectivity pattern 277 

over time (Figure 2C).  278 

	279 

2.9 The relationship between lesion location along connectivity gradients and alterations 280 

in functional connectivity after stroke	281 

 282 

Concordance correlation coefficient (CCC) values were correlated with distance-to-lesion 283 

values using Spearman’s rank-order correlation coefficient (Figure 2D). This analysis was 284 

repeated for each connectivity gradient separately. Positive correlations suggest that changes in 285 

functional connectivity are more pronounced in voxels that are close to the infarct region in the 286 

corresponding gradient.  287 

For a detailed description of the analysis steps see Supplementary Figure S2. 288 
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2.10 The relationship between changes in functional connectivity over time and 289 

anatomical lesion location	290 

	291 

Euclidean distances from each voxel to the infarct area in MNI152 (3 mm3) space using three-292 

dimensional voxel coordinates were computed for each patient. The resulting anatomical 293 

distance values were correlated with concordance values (using Pearson’s correlation 294 

coefficient). A regression analysis was applied to remove the contribution of this factor from 295 

CCC-values. Residuals were correlated with gradient-based distance-to-lesion values (using 296 

Spearman’s rank-order correlation coefficient).  297 

	298 

2.11 The relationship between changes in functional connectivity along connectivity 299 

gradients and changes in clinical scores 300 

 301 

Individual gradients were divided into uniform parcels (bins). We varied the number of bins 302 

used for the parcellation from 5 to 3000 in order to consider the continuous nature of 303 

connectivity gradients while allowing us to classify parts of the gradients as affected by the 304 

lesion. At each bin number and for each stroke patient, bins that overlapped with lesioned-305 

voxels were identified as “lesion-affected”, whereas the remaining bins were defined as “lesion-306 

unaffected”. An overall delta-concordance measure, ∆𝐶𝐶𝐶, was computed as the difference 307 

between average concordances in lesion-unaffected and lesion-affected bins, such that ∆𝐶𝐶𝐶 =308 

µ*+,--./0.1 − µ,--./0.1 . A positive ∆𝐶𝐶𝐶	score reflects a higher functional connectivity 309 

alteration over time in affected bins. Of note is that lesioned voxels were removed from this 310 

computation, thereby the difference in concordance reflects the degree of preferential change 311 

in functional connectivity in affected yet structurally intact areas.  312 

	313 

To explore the link between changes in clinical scores and the overall delta-concordance 314 

measure detected along gradients, the National Institute of Health Stroke Scale (NIHSS) was 315 

used. The NIHSS values were assessed at the day of admission (day 0) and discharge (day 5). 316 

Twenty-seven patients out of 28 completed the NIHSS assessment at both time points. Patients 317 

were divided into two groups; those who changed in clinical score from day 0 to day 5 (“clinical 318 

change”, n = 16), and those who did not change (“no clinical change”, n = 11).  319 

 320 

Permutation test (with 10,000 iterations) was used to examine the significance of the difference 321 

in mean ∆𝐶𝐶𝐶 values for the two groups of patients (“clinical change” versus “no clinical 322 
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change”). The test was repeated for each variation of bin numbers as well as for each of the 323 

three connectivity gradients. Positive values reflect that a preferential change in concordance 324 

over affected bins is more pronounced in patients who changed their clinical score from day 0 325 

to day 5. To control for the multiple comparison problem resulting from varying the number of 326 

bins (N= 2996 tests), the False Discovery Rate (FDR) correction (Benjamini and Hochberg, 327 

1995) was applied with a threshold of 0.1.   328 

 329 

3.1 Results  	330 

	331 

3.2 Mapping stroke lesions onto connectivity gradients	332 

	333 

To map heterogeneous lesions across our sample of patients, individualized lesion masks were 334 

delineated and projected onto a standard MNI brain (Figure 3A), as well as onto the first three 335 

connectivity gradients (Figure 3B). Lesions were heterogeneous in both location and size (mean 336 

volume=4.11 cm3, SD=2.80 cm3), and distributed in subcortical (n=13), cortical (n=14), and 337 

brainstem (n=1) regions. For further details on individual lesion location and affected vascular 338 

territories, see Supplementary Table 1. 339 

 340 

Projecting lesion locations onto the connectivity gradients enabled us to assess which portions 341 

of connectivity space were affected by the stroke. The template connectivity space was based 342 

on a decomposition of voxelwise functional connectivity data from healthy controls. Voxels 343 

that share functional connectivity patterns are situated closer to one another along a given 344 

connectivity gradient. For example, voxels that are part of the default-mode network are 345 

clustered at the high end of Gradient 1, and those that are part of primary sensory areas at the 346 

low end (Margulies et al., 2016). Here, we used the first three gradients that account for a total 347 

variance of 50.84% in the healthy control connectivity data (see Supplementary Figure S3).  348 

 349 

Figure 3B demonstrates the distribution of lesioned voxels within the three-dimensional 350 

connectivity space. We found that although the anatomical location of lesions was 351 

heterogeneous (Figure 3A), within the connectivity space lesions were predominantly clustered 352 

at the extremes of each gradient, especially those of Gradients 1 and 3 (Figure 3B).  353 

 354 
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 355 
 356 
Figure 3. Lesion location across patients shown in anatomical space and along 357 
connectivity gradients (A) Anatomical lesion distribution in individual stroke patients (n=28) 358 
projected onto an MNI brain. The red-to-yellow color bar indicates the percentage of patients 359 
with lesions in that voxel. (B) Location of lesions projected onto the first three connectivity 360 
gradients. The three connectivity gradients represent a low-dimensional description of the 361 
whole-brain connectivity matrix obtained using healthy controls’ data (n=28). Corresponding 362 
spatial maps of each connectivity gradient are projected on brain surface mesh near respective 363 
axes. Colors represent positive (sienna) and negative (dark blue) embedding values, in 364 
accordance with values along the axes. Along each gradient, voxels that share similar 365 
connectivity patterns are situated close to one another and have similar embedding values. Grey 366 
scatter plots depict a two-dimensional connectivity space created as a combination of any two 367 
given gradients. Lesion location along each gradient is projected onto the two-dimensional 368 
space as an alternative approach to anatomical lesion mapping. The red-to-yellow color bars 369 
indicates the percentage of patients with lesions in that voxel. Lesioned voxels are mostly 370 
clustered around the edges of the connectivity gradients such that they affect sensorimotor areas 371 
and ventral and dorsal areas associated with attention.  372 
 373 
 374 

3.3 The impact of lesion location along specific connectivity gradients on reorganization  375 

 376 

To determine if the location of lesions along specific gradients is associated with changes in 377 

functional connectivity after stroke, we computed for each voxel: 1) spatial concordance, which 378 

reflected the degree of change in the functional connectivity pattern over time. Spatial 379 

concordance values range between -1 and 1 such that lower values reflect a larger change in 380 

functional connectivity pattern over time; and, 2) distance-to-lesion along each connectivity 381 

gradient. Distance values represent the similarity of functional connectivity patterns for any 382 
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given voxel with the lesioned area. Low distance values reflect voxels that share similar 383 

functional connectivity pattern with the lesion site. Importantly, the lesioned voxels were 384 

excluded from both these analyses such that only the indirect effects of the lesion (i.e., 385 

diaschisis) were assessed. Spatial concordance and distance-to-lesion were correlated for 386 

individual patients, and individual connectivity gradients.  387 

 388 

We found a significant relationship between the degree of functional connectivity alterations 389 

over time and proximity of non-lesioned voxels to lesion locations along Gradient 1 and 390 

Gradient 3. No significant relationship was found for Gradient 2 (Figure 4A, Table 1).  391 

 392 

Figure 4B demonstrates the correspondence between the connectivity space described by 393 

Gradients 1 and 3, and a canonical set of seven resting-state networks (Yeo et al, 2011). 394 

Gradient 1 captures the dissociation between the default-mode network (DMN) and the 395 

sensorimotor/visual networks, while Gradient 3 captures the dissociation between dorsal 396 

attention/fronto-parietal networks and sensorimotor/visual/DMN networks. For a descriptive 397 

analysis of the relationship between connectivity gradients and cognitive functions see 398 

Supplementary Material M3 and Supplementary Figure S4. 399 

 400 

 401 
Figure 4. The relationship between lesion location along connectivity gradients and the 402 
degree of changes in functional connectivity in non-lesioned voxels over time. (A) 403 
Correlation values between distance-to-lesion and spatial concordance (y-axis) are shown for 404 
individual patients and the three connectivity gradients (x-axis). The spatial map of each 405 
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connectivity gradient is shown below the respective location on the x-axis. Correlations were 406 
significantly positive for Gradient 1 (P=0.0027, W=71.0, one-tailed Wilcoxon signed-rank test) 407 
and Gradient 3 (P=0.0001, W=35.0), but not for Gradient 2 (P=0.76, W=189.0). The closer a 408 
voxel is to the lesioned site mapped on connectivity gradients 1 and 3, the more pronounced its 409 
functional connectivity changes over time. (B) Continuous connectivity gradients and 410 
corresponding seven canonical resting-state networks (Thomas Yeo et al., 2011). Voxels are 411 
situated based on their embedding values along Gradient 1 (x-axis) and 3 (y-axis) and colored 412 
according to their network assignment. Gradient 1 captures the dissociation between the 413 
default-mode network (DMN) and the sensorimotor networks on its two edges, while Gradient 414 
3 captures the dissociation between dorsal attention/fronto-parietal networks and 415 
sensorimotor/DMN networks on its two edges. Lesion distributions along connectivity 416 
gradients are overlaid on the individual gradient axes. Lesions overlap most frequently with the 417 
lowest ends of Gradients 1 and 3.  418 
 419 
 Gradient 1 Gradient 2 Gradient 3 

r-values [-0.22, 0.34] [-0.30, 0.39] [-0.23, 0.32] 
median 0.11 -0.01 0.16 

W 71.00 189.00 35.00 
p-values 0.0027* 0.76 0.0001* 

 420 
Table 1: summary of statistical results  421 
W; Wilcoxon signed-rank test.  422 
 423 

Given the expected partial correlation between distance from the lesion in connectivity space 424 

and anatomical distance, we further assessed whether anatomical location contributed to the 425 

relationship with connectivity space. We found a significant relationship between distance from 426 

the lesion in anatomical space and changes in functional connectivity over time (P = 0.0042, 427 

one-tailed Wilcoxon signed-rank test). However, using anatomical distance as a regressor of no 428 

interest did not alter the significance of our main result (see Supplementary Figure S5). 429 

Functional connectivity therefore preferentially changes after stroke in voxels that are proximal 430 

to the lesion location along Gradients 1 and 3. This relationship cannot be solely explained by 431 

the anatomical distance from the lesion.  432 

	433 

3.4 Clinical relevance of functional connectivity alterations detected along connectivity 434 

gradients	435 

 436 

Previous studies have linked alterations in functional connectivity with clinical trajectory (He 437 

et al., 2007; Ovadia-Caro et al., 2013; Park et al., 2011; Ramsey et al., 2016; van Meer et al., 438 

2010), thereby supporting the functional significance of connectivity changes after stroke. We 439 

thus explored the relationship between functional connectivity changes and patients’ clinical 440 

trajectory for each connectivity gradient.   441 

 442 
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We tested for a group difference in spatial concordance in affected yet structurally intact areas 443 

between patients who demonstrated a change in clinical scores from day 0 to day 5 and those 444 

who did not. A positive difference in the mean of the two groups reflects an association between 445 

preferential changes in functional connectivity in affected areas and a change in clinical scores 446 

over the first week after stroke. To maintain the continuous nature of connectivity gradients, 447 

we varied the number of bins used to divide the gradients into parcels of equal size (bin numbers 448 

ranged from 5 to 3000). We found no significant difference between patients who changed in 449 

clinical scores and those who did not for any of the connectivity gradients, across different bin 450 

numbers. The averaged difference in mean for the two groups was 0.0014 (range: -0.004 to 451 

0.015) for Gradient 1, 0.0095 (range: 0.003 to 0.015) for Gradient 2, and 0.011 (range: 0.0012 452 

– 0.019) for Gradient 3. The range of corresponding p-values was 0.15 to 0.61 for Gradient 1, 453 

0.12 to 0.4 for Gradient 2, and 0.03 to 0.46 for Gradient 3 (see Supplementary Figure S6).  454 

 455 

4.1 Discussion:  456 

 457 

We found that stroke induces a gradual change in functional connectivity along specific 458 

connectivity gradients. Beginning with data acquired on the day of symptom onset, we showed 459 

that the degree of reorganization over the first week is influenced by the lesion location along 460 

connectivity Gradients 1 and 3. Voxels that are close to the lesion within this connectivity space 461 

demonstrate a preferential change in functional connectivity over time, regardless of their 462 

anatomical distance from the lesion.  463 

 464 

We have implemented a decomposition approach that overcomes the necessity to parcellate the 465 

brain into discrete networks, retains information from single voxels and provides a data-driven 466 

template for studying reorganization at the connectome-level. We therefore show that strokes 467 

result in widespread connectivity changes that progress gradually along the connectome.    468 

 469 

Our results are in line with previous studies that have used a priori defined networks. Functional 470 

connectivity alterations after stroke have been reported for sensorimotor, language and attention 471 

networks (Baldassarre et al., 2014; Carter et al., 2010; He et al., 2007; Ovadia-Caro et al., 2013; 472 

Siegel et al., 2016; Wang et al., 2010; Warren et al., 2009). These previous studies support the 473 

notion that localized lesions induce widespread effects in structurally intact areas connected to 474 

the lesion, creating a diaschisis effect (Andrews, 1991; Carrera and Tononi, 2014). Stroke is 475 

therefore not a strictly localized pathology (Corbetta, 2010; Ovadia-Caro et al., 2014; Ward, 476 
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2005). Remote, structurally intact areas undergo functional changes as part of the 477 

reorganization process.  478 

 479 

Here, we extend these findings to the continuous representation of the connectome. We 480 

demonstrate that reorganization, as reflected in functional connectivity alterations, changes as 481 

a function of the distance along specific connectivity gradients. However, it is not exclusively 482 

restricted to the affected network. Thus, while most pronounced changes take place in 483 

connected areas, the effects of stroke gradually spread along the connectome.  484 

 485 

We found that connectivity Gradients 1 and 3 better predicted the impact of a lesion on 486 

functional connectivity than Gradient 2. The three connectivity gradients capture distinct 487 

connectivity axes, with different functional domains on their extremes. One crucial difference 488 

between these gradients is that Gradient 2, in contrast to the others, represents a spectrum of 489 

relatively local patterns of connectivity (Felleman and Van Essen, n.d.; Markov et al., 2014), 490 

spanning sensory and motor systems. Regions emphasized in Gradient 2 are less likely to 491 

demonstrate changes following localized lesions, as there is little redundancy owing to long-492 

distance connectivity. However, it remains to be investigated if changes in functional 493 

connectivity can be captured along Gradient 2 using a more homogenous lesion sample 494 

impacting only the far extremes of this gradient. 495 

 496 

Our study demonstrates the importance of the lesion location within connectivity space for 497 

understanding the reorganization of functional connectivity. However, distance from the lesion 498 

in connectivity space is partially related to the anatomical distance, as areas close to one another 499 

often have similar connectivity patterns. In addition, local physiological changes in areas 500 

directly surrounding the lesion (Dirnagl et al., 1999) can also contribute to changes in functional 501 

connectivity (Khalil et al., 2017; Siegel et al., 2016). We therefore calculated in a control 502 

analysis the Euclidian distances from each voxel to the infarct area using a three-dimensional 503 

anatomical space. We found a significant relationship between distance based on anatomy and 504 

changes in functional connectivity as measured by spatial concordance. However, when 505 

regressing out the contribution of this factor from our main analysis, the results did not change 506 

(see Supplementary Figure S5). Consequently, changes in functional connectivity detected 507 

along connectivity gradients could not be solely explained by lesion topography or 508 

physiological processes occurring in the vicinity of the lesion site. In addition, this analysis 509 
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emphasizes the significant contribution of functional connectivity changes in distant areas to 510 

the global process of reorganization.   511 

 512 

The link between changes in functional connectivity after stroke, clinical deficits and clinical 513 

recovery has been previously shown (He et al., 2007; Ovadia-Caro et al., 2013; Park et al., 514 

2011; Ramsey et al., 2016; van Meer et al., 2010). Here, we applied an exploratory analysis of 515 

the relationship between lesion location along connectivity gradients, changes in functional 516 

connectivity, and changes in clinical scores (NIHSS) over the first week. We divided the 517 

patients into two groups according to whether or not a clinical change took place over the first 518 

week.  519 

 520 

Given previous findings, we expected a significant difference between the groups in the degree 521 

of change in functional connectivity patterns, however, we found no such difference for any of 522 

the connectivity gradients. Of interest nevertheless is that for Gradient 2 and Gradient 3, group 523 

differences were not randomly distributed and were positive in values (see Supplementary 524 

Figure S6).   525 

 526 

The lack of a relationship between changes in functional connectivity and changes in clinical 527 

scores could be explained by the usage of NIHSS. NIHSS is the most commonly used 528 

assessment scale in routine acute stroke management. However, this score is fairly coarse and 529 

is not designed to accurately detect individual neurological deficits. It is instead intended to 530 

provide a standardized and reproducible overall assessment of how stroke affects a patient’s 531 

neurological status (Lyden, 2017). The relationship between functional connectivity changes 532 

along specific connectivity gradients and stroke symptomology assessed using a more detailed 533 

clinical assessment (which would better fit the voxelwise information retained in the gradients, 534 

particularly for parcellations that contain a small number of voxels) remains to be investigated 535 

in a larger sample of patients. 536 

 537 

The conceptual shift from mapping brain regions to networks has provided a substantial 538 

improvement in how we understand the organization of functional systems. Here we aimed to 539 

translate the recent descriptions of a low-dimensional connectivity space to the clinical question 540 

of stroke-induced damage. While future studies will be necessary to better understand the utility 541 

of this framework for stroke prognosis, the current findings provide support for conceptualizing 542 

brain connectivity within a continuous connectivity-defined space. Brain networks describe 543 
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interconnected regions, but similar to the problem of lesion delineation, they also require the 544 

delineation of discrete boundaries. Connectivity space offers an advance by representing the 545 

continuous nature of brain networks, but also by capturing their relative similarity. Further work 546 

is necessary to develop a mode of describing this space in a cognitive and clinical neuroscience 547 

context. Nevertheless, the current findings demonstrate its utility for capturing the impact of 548 

localized damage to the space.  549 

 550 

5.1 Conclusions  551 

 552 

Studying changes in functional connectivity after stroke in a longitudinal manner provides 553 

insight into the process of reorganization during the recovery of function. Connectivity 554 

gradients represent a methodological advancement in how we depict functionally meaningful 555 

information in the connectome. Using this fine-grained template that considers all connections 556 

has the potential of informing more targeted stroke therapies that have yet to translate to clinical 557 

usage, mostly due to oversimplified models of brain reorganization (Di Pino et al., 2014).  558 

 559 
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