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Abstract 18 
NRGN is a schizophrenia risk gene identified in recent genetic studies, encoding a small 19 

neuronal protein, neurogranin (Ng). Individuals carrying a risk variant of NRGN showed 20 
decreased hippocampal activation during contextual fear conditioning. Furthermore, the 21 
expression of Ng was reduced in the post-mortem brains of schizophrenic patients. Using the 22 
mouse model, we found that the translation of Ng in hippocampus is rapidly increased in 23 
response to novel context exposure, and this up-regulation is required for encoding contextual 24 
memory. The extent and degree of the effect that altered Ng expression has on neuronal 25 
cellular functions are largely unknown. Here, we found that Ng bidirectionally regulates synaptic 26 
plasticity in the hippocampus. Elevated Ng levels facilitated long-term potentiation (LTP), 27 
whereas decreased Ng levels impaired LTP. Quantitative phosphoproteomic analysis revealed 28 
that decreasing Ng caused a significant shift in the phosphorylation status of postsynaptic 29 
density proteins, highlighting clusters of schizophrenia- and autism-related genes. In particular, 30 
decreasing Ng led to the hypo-phosphorylation of NMDAR subunit Grin2A at newly identified 31 
sites, resulting in accelerated decay of NMDAR-mediated channel currents. blocking protein 32 
phosphatase PP2B activity rescued the accelerated synaptic NMDAR current decay and the 33 
impairment of LTP caused by decreased Ng levels, suggesting that enhanced synaptic PP2B 34 
activity led to the deficits. Taken together, our work suggests that altered Ng levels under 35 
pathological conditions affect the phosphorylation status of neuronal proteins by tuning PP2B 36 
activity and thus the induction of synaptic plasticity, revealing a novel mechanistic link of a 37 
schizophrenia risk gene to cognitive deficits.  38 
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Introduction 39 
Schizophrenia, affecting about 1% of the population worldwide, is a chronic mental 40 

disorder with psychotic symptoms, such as delusions, hallucinations and disorganized thinking1. 41 
Schizophrenia is one of the top leading causes of disability worldwide2, and affected individuals 42 
suffer from difficulty in social relationships, motor impairment, and cognitive dysfunction, which 43 
severely interferes with the patients’ daily functioning. Individuals with schizophrenia have an 44 
increased risk of premature mortality, and about 5% of the patients die by suicide3. 45 
Antipsychotic medications are commonly used to ease psychotic symptoms. However, available 46 
symptomatic treatments are only partially effective, and lifelong treatment is required. 47 

A combination of physical, genetic, psychological and environmental factors is thought to 48 
contribute to the development of schizophrenia, but the exact pathophysiology is unknown. 49 
However, the highly heritable nature of schizophrenia implies a significant role of inherited 50 
genetic variants in the etiology4, 5. Genome-wide association studies reported more than 100 51 
genetic loci associated with schizophrenia6-14, and the neurogranin (Ng, gene name: NRGN) 52 
gene has been identified as one of schizophrenia risk genes with top associations in different 53 
patients population across the world6, 7, 15-17. rs12807809 is a single-nucleotide polymorphism 54 
located 3,457 bases upstream from the promoter region of NRGN at 11q24.2. In functional 55 
magnetic resonance imaging (fMRI) studies, individuals carrying the risk variant showed 56 
significantly decreased activation in the hippocampus during contextual learning18, and 57 
widespread cortical thinning and thalamic shape abnormalities19. Moreover, a recent 58 
interactome analysis of another schizophrenia risk gene, ZNF804A, identified NRGN as one of 59 
its significant targets20.  60 

Using the mouse model, our group recently reported that the translation of Ng is rapidly 61 
increased in response to neuronal activity, and this up-regulation is required for contextual 62 
memory formation21. Cognitive impairment is a core feature of the pathophysiology of 63 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/481291doi: bioRxiv preprint 

https://doi.org/10.1101/481291


4  

schizophrenia, and reduced Ng immunoreactivity was observed in the prefrontal cortex regions 64 
of post-mortem brain tissues from schizophrenia patients22, suggesting that dysregulated Ng 65 
expression may contribute to the cognitive impairment in schizophrenia. Dysregulation of Ng 66 
expression has also been observed in Alzheimer’s disease23, 24, and the deletion of a 67 
chromosomal region containing the Ng gene causes a rare genetic disorder with symptoms of 68 
mental retardation, known as Jacobsen syndrome25. Ng levels are also dynamically regulated 69 
during development under different environmental and behavioral states26-28. Together, these 70 
evidences suggest that Ng is involved in cognitive impairment associated with 71 
neurodegenerative, neuropsychiatric and neurodevelopmental diseases.  72 

Ng belongs to a family of small neuronal proteins, called calpacitins, which binds to a 73 
calcium-free form of calmodulin (CaM) via the IQ (isoleucine and glutamine-containing) domain. 74 
Among the calpacitins, Ng is uniquely expressed at high levels in the soma, dendrite and the 75 
postsynaptic compartment of the principal neurons in the cerebral cortex, hippocampus26, 27 and 76 
other brain regions important for experience-dependent plasticity including striatum and 77 
amygdala (Allen Brain Atlas)29, 30. CaM is released from Ng upon an increase in intracellular 78 
Ca2+ concentrations, and it is thought that Ng levels titrate the availability of CaM in the 79 
postsynaptic compartment of excitatory synpases in principal neurons31, 32. 80 

CaM is a key signal transducer that detects the increase in cytosolic Ca2+ levels, which 81 
mediates Ca2+/CaM-dependent signaling events. The relative activation of Ca2+/CaM-dependent 82 
protein kinase II (CaMKII) and protein phosphatase 2B (PP2B, also known as calcineurin) at the 83 
postsynaptic compartment is considered to determine the direction of long-term potentiation 84 
(LTP), the cellular basis of learning and memory (Supplementary Fig. 1a)33-41. This view is in 85 
accordance with the push-pull mechanism that has been proposed for controlling the 86 
directionality and efficacy of synaptic plasticity42-44. Although both CaMKII and PP2B enzymes 87 
are activated by Ca2+/CaM complex, PP2B is preferentially activated when the amount of CaM 88 
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is limited due to its much higher binding affinity for the Ca2+/CaM complex. In contrast, CaMKII 89 
is much more abundant than PP2B in the postsynaptic compartment, and thus CaMKII activity 90 
becomes dominant when the amount of Ca2+/CaM complex is sufficient45-47. Therefore, the 91 
expression of synaptic plasticity is highly sensitive to a change in CaM availability, and it was 92 
hypothesized that Ng controls synaptic plasticity by regulating CaM availability and Ca2+/CaM 93 
dynamics at the central excitatory synapses (Fig. 1a)48, 49. Consistent with the hypothesis, 94 
cortical neurons lacking Ng exhibit altered Ca2+ dynamics50, 51. However, previous studies with 95 
independently generated Ng knockout mice showed the contradicting effects in hippocampal 96 
LTP50, 52, 53, and results in young organotypic hippocampal slice cultures showed that elevated 97 
Ng levels occlude LTP under a standard pairing induction protocol, but facilitate LTP under a 98 
weaker pairing protocol54, 55. These data suggest that depending on the age, potentially genetic 99 
background and neural activity, Ng regulates synaptic plasticity differently. It is likely that a 100 
signaling network, rather than a single node in a particular pathway accounts for the 101 
mechanisms of LTP expression56-62, Moreover, recent genetic studies have revealed strong 102 
associations of genes involved in synaptic plasticity with neuropsychiatric and 103 
neurodevelopmental disorders, suggesting an intricate molecular interplay tuning synaptic 104 
plasticity critical for learning and memory6, 63, 64. It is therefore important to control the 105 
manipulation at defined developmental stage to be able to examine the scope and impact of Ng-106 
dependent regulation on Ca2+/CaM-mediated signaling cascades and downstream targets and 107 
gain a comprehensive view of the molecular processes involved in synaptic plasticity.  108 

In this study, we used lentiviral-mediated gene transfer to manipulate Ng levels in CA1 109 
neurons in adult brains, and sought to determine the influence of altered Ng levels on synaptic 110 
plasticity in the hippocampus, and found that Ng bidirectionally regulates spike-timing-111 
dependent LTP at Schaffer collateral (SC) to CA1 synapses. To unbiasedly identify the 112 
underlying molecular mechanism, we applied quantitative phosphoproteomic analysis65-113 
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67(Supplementary Fig. 1b), to reveal the molecular networks underlying the bidirectional control 114 
of LTP.  That reduced Ng levels caused a significant shift in the phosphoproteome of 115 
postsynaptic density proteins, highlighting autism- and schizophrenia-associated gene targets. 116 
With further functional validation, our results suggest that altered Ng expression observed in 117 
neurodegenerative and neuropsychiatric diseases negatively affects the phosphorylation status 118 
of neuronal proteins including the NMDAR subunit Grin2A, by tuning synaptic PP2B activity, 119 
hence the induction and expression of synaptic plasticity, as an underlying cellular 120 
pathomechanism for the cognitive deficits in these diseases. 121 
  122 
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Results 123 
Ng overexpression facilitates spike-timing-dependent LTP via direct interaction with CaM. 124 

To elucidate the role of Ng in synaptic plasticity, we used lentivirus-mediated 125 
manipulation of Ng levels in mouse hippocampal CA1 neurons, which allows post-126 
developmental, postsynaptic neuron-specific manipulation and prevents potential complications 127 
resulting from developmental compensation. For Ng overexpression (Ng OE), a lentiviral 128 
construct to overexpress Ng was created using an ubiquitin promoter to drive the expression of 129 
Ng fused to GFP (Ng OE, Fig. 1b), and the robust expression of Ng-GFP fusion protein was 130 
confirmed by western blot (Fig. 1c). To manipulate the expression levels of Ng in CA1 neurons 131 
in vivo, we injected a concentrated lentivirus into the hippocampal CA1 region of 7-week-old 132 
C57BL/6 male mice by stereotaxic surgery. Acute hippocampal slices were prepared 5-9 days 133 
after the injection for electrophysiology recordings, and the lentiviral infection in the CA1 area 134 
was confirmed by GFP fluorescence (Fig. 1d). To examine the effect of Ng OE on the basal 135 
synaptic transmission, paired-pulse ratio (PPR) and AMPAR/NMDAR excitatory postsynaptic 136 
currents ratio (A/N ratio) at SC-CA1 synapses were recorded from uninfected cells (control) and 137 
infected cells from the same animals. Both PPR and A/N ratios were not significantly different 138 
between uninfected and infected neurons (Fig. 1e, f), indicating that increased levels of Ng in 139 
CA1 neurons do not alter presynaptic release probability and relative basal synaptic 140 
transmission at hippocampal SC-CA1 synapses under the basal condition. 141 

The effect of elevated Ng levels on synaptic plasticity was examined using the spike-142 
timing-dependent plasticity (STDP) protocol for LTP induction68. An individual pairing consisted 143 
of a presynaptic stimulation followed by a train of four action potentials repeated 100 times at 5 144 
Hz (Fig. 1g). The relative timing between pre- and postsynaptic stimulations is a critical factor 145 
controlling plasticity for stimulated synapses69, 70. When the pairing was performed at a 10-ms 146 
interval, both uninfected and infected neurons expressed robust LTP with a similar degree (Fig. 147 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/481291doi: bioRxiv preprint 

https://doi.org/10.1101/481291


8  

1h-k), indicating that increased Ng levels exert no additional effects on the magnitude of LTP 148 
when the induction protocol with the 10-ms pairing interval is used, and endogenous Ng levels 149 
are sufficient to support the expression of STDP-LTP.  150 
 We then examined the effect of Ng OE on STDP-LTP under a weaker induction 151 
condition, and a prolonged pairing interval is known to drive less cooperated activity between 152 
presynaptic release and postsynaptic membrane depolarization. When the pairing interval was 153 
increased to 20 ms, the pairing protocol no longer induced LTP in control cells (Fig 2a, g, h), 154 
whereas neurons with Ng OE showed robust LTP expression (Fig. 2b, g, h). This result 155 
indicates that increased Ng levels allow the expression of STDP-LTP with the prolonged pairing 156 
interval, and Ng facilitates the induction of STDP-LTP by broadening the temporal association 157 
window. 158 
To test whether this facilitative effect is mediated by the direct interaction between Ng and CaM, 159 
a mutant form of Ng was created in which the CaM-binding IQ motif is deleted (Fig. 2c, d, 160 
NgΔIQ). HEK cells were transiently transfected with a construct expressing either wildtype Ng or 161 
NgΔIQ, and the cell lysates were incubated with beads coated with purified CaM to confirm the 162 
specific and Ca2+-dependent interaction between CaM and Ng. In agreement with previous 163 
studies, wildtype Ng was preferentially bound to CaM under the low Ca2+ condition (EGTA), but 164 
NgΔIQ did not interact with CaM regardless of a change in Ca2+ concentrations (Fig. 2e), 165 
confirming that Ng directly interacts with CaM through the IQ motif. As expected, when the 166 
NgΔIQ mutant was overexpressed in CA1 neurons, the induction protocol with a 20-ms interval 167 
was not able to trigger LTP (Fig. 2f-h), suggesting that the interaction with CaM is critical for the 168 
facilitative effect of Ng on the induction of LTP. 169 
Ng knockdown abolishes the induction of STDP-LTP at SC-CA1 synapses. 170 
 We next asked whether the Ng-dependent regulation of STDP-LTP is bidirectional. For 171 
Ng knockdown (Ng KD), a lentiviral vector with dual promoters was constructed, in which the H1 172 
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promoter drives the expression of shRNA targeting endogenous Ng mRNAs and the ubiquitin 173 
promoter drives the simultaneous expression of GFP as an infection marker (Fig. 3a, Ng KD). 174 
The knockdown of Ng was highly effective 7-10 days after viral infection when tested by western 175 
blot in dissociated cortical neuron culture (Fig. 3b, control bands are the same as those in Fig. 176 
1c, as GFP-infected cultures were used as controls for both conditions in one preparation). PPR 177 
and A/N ratio were recorded from both uninfected control cells and infected cells from the same 178 
animals, and Ng KD did not significantly affect PPR and A/N ratio at SC-CA1 synapses (Fig. 3c, 179 
d), indicating that presynaptic release probability and basal synaptic transmission remain intact 180 
at SC-CA1 synapses.  181 

The effect of decreased Ng levels on STDP-LTP was examined using the pairing 182 
protocol with 10-ms pairing interval, and a robust LTP was expressed in non-infected control 183 
neurons (Fig. 3e, g, h). Conversely, the induction of LTP was completely abolished in neurons 184 
infected with Ng KD (Fig. 3f-h), indicating the essential role of Ng for STDP-LTP expression.  185 
Decreased Ng levels cause a significant shift in the postsynaptic phosphoproteome, 186 
including hypo-phosphorylation of NMDAR subunit Grin2A.  187 

Given the role of Ng in regulating CaM availability as well as Ca2+/CaM dynamics, we 188 
hypothesized that Ng KD influences the activation of Ca2+/CaM-dependent kinases and 189 
phosphatases, thereby leading to a global change in protein phosphorylation as well as altered 190 
synaptic plasticity. To examine the overall changes in the phosphoproteome, we enriched 191 
phosphopeptides using immobilized metal affinity chromatography (IMAC) from total cell lysates 192 
prepared from dissociated neuronal cultures infected with either GFP or Ng KD lentiviruses at 193 
DIV 7 and collected at DIV 17. Both total proteome and phosphoproteome were analyzed using 194 
quantitative mass spectrometry with isobaric labeling of peptides as previously described (Fig. 195 
4a)71, 72. The phosphoproteome data were normalized to the total proteome when the proteins 196 
were confidently identified in the total proteome dataset (Supplementary Table 1). Nearly 30,000 197 
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phosphorylation sites (p-sites) comprising of 5,485 proteins identified in the proteome were 198 
analyzed. 4,744 (~16%) of these p-sites derived from 2,413 proteins exhibited a significant 199 
change in their phosphorylation status compared to the control (Fig. 4b, FDR ≤ 0.05). These 200 
data show that decreasing Ng levels in neurons induced a significant shift in the 201 
phosphoproteome landscape.   202 

Using the hypergeometric test, we found that differentially regulated p-sites in the 203 
phosphoproteome dataset were significantly over-represented in the set of known postsynaptic 204 
density (PSD) proteins (p<2x10-11, Supplementary Table 1)73. Specifically, 26% of the proteins 205 
with significantly down-regulated p-sites overlapped with the PSD proteomic dataset (~29% of 206 
all significantly down-regulated p-sites), and 27% of the proteins with significantly up-regulated 207 
p-sites overlapped with the PSD proteomic dataset (~33% of all significantly up-regulated p-208 
sites) (Supplementary Table 1), indicating that decreasing Ng levels significantly shifted the 209 
phosphorylation state of postsynaptic components. To further determine which cellular functions 210 
are most directionally affected under Ng KD, we performed GO enrichment analysis74, 75, 211 
separately on the sets of up- and down-phosphorylated PSD proteins using the clusterProfiler R 212 
package76. Notably, pathways related with protein kinase binding were highlighted in both of the 213 
up- and down-regulated clusters. Also, ion transport and ion channel binding clusters were 214 
highlighted in the set with down-regulated phosphorylation (Fig. 4c).  215 
 Given the association of Ng with mental retardation and schizophrenia, and the 216 
convergence of the glutamatergic synaptic components in schizophrenia and autism spectrum 217 
disorders (ASDs), we questioned whether the changes in Ng levels influence the 218 
phosphorylation states of ASD- and schizophrenia-associated gene targets. In order to answer 219 
this question, we took the human ASD gene list from SFARI 220 
(https://gene.sfari.org/autdb/HG_Home.do) with category scores ≤ 4. Among the 460 genes 221 
included in the list, 427 were converted to mouse genes and compared with the list from our 222 
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proteomics analysis (Fig. 4d, left). 256 (60%) of 427 were identified in the phosphoproteome 223 
data, and 37.9% of the gene targets were identified (97 out of 256) with significant changes in 224 
phosphorylation states with Ng KD. The list of genes with phosphorylation sites are shown in 225 
Supplementary Table 2, clustered using DAVID functional annotation77, 78. Notably, synaptic 226 
components and ion channels were highlighted, indicating the overlap of ASD targets and 227 
phosphoproteome changes induced by Ng KD. 228 
 In addition, we also took the candidate genes from the 108 Loci associated with 229 
schizophrenia6. Among 333 extracted human genes, 241 of them were converted into mouse 230 
genes. 111 (46%) of these were identified in the phosphoproteome, in which 29 (26%) were 231 
identified with significant changes in phosphorylation states with Ng KD (Fig. 4d, right; 232 
Supplementary Table 3). Importantly, among the proteins whose phosphorylation states were 233 
significantly altered by Ng KD, seven targets were associated with both ASD and schizophrenia 234 
(Fig. 4e), highlighting a potential convergence of the pathomechanisms of ASD and 235 
schizophrenia. Out of these identified targets, the NMDAR subunit Grin2A (also known as NR2A, 236 
GluN2A) was of particular interest, given its important role in conducting Ca2+ ions critical for 237 
NMDAR-dependent plasticity79-81. We identified several phosphorylation sites in the C-terminal 238 
region of Grin2A that were significantly affected by Ng KD. In particular, Grin2A S1384, a 239 
previously uncharacterized phosphorylation site, was hypo-phosphorylated by Ng KD. In 240 
addition, the phosphorylation site Grin2A S882/S890 was significantly hyper-phosphorylated. To 241 
further examine the overall change in phosphorylation status of Grin2A in the Ng KD condition, 242 
we used a Phos-Tag SDS-PAGE gel system, which separates a protein based on the degree of 243 
phosphorylation levels82, 83, and revealed that Ng KD shifted the phosphorylation pattern of 244 
Grin2A toward the hypo-phosphorylated state (migrating to the forefront of the Phos-Tag gel; 245 
Fig. 4f). 246 
C-terminal phosphorylation of Grin2A modulates NMDAR-mediated current kinetics 247 
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 To investigate the functional significance of hypo-phosphorylation of Grin2A on NMDAR-248 
mediated currents, we focused on the down-regulated phosphorylation sites of Grin2A identified 249 
from the phosphoproteome data. Specifically, the phosphorylation of Grin2A S1384 (Uniprot ID: 250 
P35436) was significantly decreased with Ng KD. In a separate sample set, the hypo-251 
phosphorylation of Grin2A at S1384 was independently validated, and three additional sites 252 
S1198, S1201, S1204 also showed significant hypo-phosphorylation, implying the tolerance at 253 
certain phosphorylation sites. Given the profound hypo-phosphorylation pattern of Grin2A 254 
observed with a Phos-Tag gel, we generated Grin2A mutants in which the four phosphorylation 255 
sites were mutated to alanine (SA; phospho-deficient), or aspartic acid (SD; phospho-mimetic) 256 
residues to determine the role of the four serine residues in regulating NMDAR functions (Fig. 257 
5a). Given that all four phosphorylation sites are positioned in the C-terminus, a C-terminal 258 
truncated mutant (-Ct) was also created as an additional control for C-terminus-mediated 259 
functions (Fig. 5a). The Grin2A mutants were co-expressed with GFP-fused Grin1 subunit 260 
separated by a self-cleaving P2A peptide in single-copy, isogenic, inducible HEK 293 cells (Fig. 261 
5a, b). Stable cell lines were induced with doxycycline (Dox), and the expression of constructs 262 
was validated by qPCR, western blot, and live cell confocal microscopy (Fig. 5c; see also 263 
Supplementary Fig. 2a, b). Their responses to glutamate pulse were evaluated using high-264 
throughput single-cell planar patch clamp with the SyncroPatch 384PE (Fig. 5d, left)84. Robust 265 
inward currents were elicited upon application of 10 μM glutamate in the presence of 30 μM 266 
glycine (Fig. 5d, right).  267 
 Given that the C-terminal region of the Grin subunits regulates the NMDAR channel 268 
kinetics85-87 and a change in the phosphorylation state of Grin2A subunits influences the kinetics 269 
of synaptic NMDAR currents88-91, we hypothesized that the four serine sites in the C-terminus in 270 
Grin2A regulates NMDAR current kinetics, and compared the decay of NMDAR current from 271 
WT and mutants expressed in HEK 293 cells. SA and SD mutants exhibited significantly faster 272 
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decay of NMDAR-mediated currents compared to WT and the –Ct mutant (Fig. 5e-i). The decay 273 
kinetics was not correlated with the amplitude of peak currents in all four mutants 274 
(Supplementary Fig. 2c, d), indicating that the difference among the mutants is not due to the 275 
amount of Ca2+ influx. This is further supported by the recording in the Ba2+ containing solution, 276 
in which the SA and SD mutants also exhibited significantly faster decay compared to WT and 277 
the –Ct mutant, regardless of the size of the peak currents (Supplementary Fig. 2e-j). Given that 278 
a significant amount of Grin2A subunit existed in the hypo-phosphorylated state in the Ng KD 279 
condition, it is likely that both SA and the SD mutants mimic the dephosphorylated state of 280 
Grin2A at these phosphorylation sites, which has been shown with other proteins92-95. 281 
 We also found that the rise kinetics of NMDAR-mediated currents was accelerated in –282 
Ct, SA, and SD mutants compared to WT when recorded in the presence of Ca2+, and the rise 283 
kinetics was not correlated with the size of the peak current (Supplementary Fig. 3a-f). However, 284 
the difference in rise kinetics was absent in the Ba2+ recording condition (Supplementary Fig. 285 
3g-k), suggesting that a Ca2+-dependent process also regulates channel activation via the 286 
phosphorylation of the Grin2A C-terminus.  287 
 Together, these data suggest that the phosphorylation state of Grin2A C-terminus 288 
regulates the kinetics of NMDAR currents, and the dephosphorylation of the four serine sites 289 
(S1198, 1201, 1204 and 1384) accelerates the current decay.  290 
Decreased Ng levels accelerates the decay of synaptic NMDAR currents by elevating 291 
PP2B activity. 292 
 Given that the induction of STDP-LTP requires Ca2+ influx through NMDARs96, that 293 
phosphorylation of the Grin2A subunit was significantly decreased with Ng KD (Fig. 4), and that 294 
the Grin2A SA and SD mutants exhibited accelerated decay of NMDAR current (Fig. 5), we 295 
examined whether the kinetics of synaptically evoked NMDAR current is altered by reduced Ng 296 
levels in the hippocampus as a potential cause for the STDP-LTP deficit seen in the Ng KD 297 
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condition (Fig. 3). The NMDAR-mediated currents recorded at SC-CA1 synapses were best 298 
fitted with a two-component exponential function97. While the slow component was not 299 
significantly different between the non-infected neurons and the neurons infected with Ng KD 300 
(data not shown), the fast component had a smaller decay time constant in Ng KD (Fig. 6a). The 301 
accelerated decay of synaptically evoked NMDAR-mediated currents observed in Ng KD is 302 
consistent with the case of SA and SD mutants in HEK 293 cells, suggesting that a decrease in 303 
Ng expression makes Ca2+ influx through NMDARs at synapses more transient by the de-304 
phosphorylation of Grin2A.  305 

With decreased Ng levels, more CaM (and thus more Ca2+/CaM complex) become 306 
available for Ca2+ binding under a resting condition, which may lead to elevated activation of 307 
Ca2+/CaM-dependent phosphatase PP2B due to its high affinity toward the Ca2+/CaM complex98. 308 
Therefore, we tested whether suppressing PP2B activity could rescue the accelerated decay of 309 
synaptic NMDAR-mediated currents using FK506, a PP2B antagonist. The application of FK506 310 
had no effect on the decay kinetics of NMDAR currents in the control neurons, but it rescued the 311 
accelerated decay in Ng KD to the control level (Fig. 6a). These results suggest that the basal 312 
synaptic PP2B activity in control neurons, if any, does not affect the kinetics of NMDAR currents. 313 
In Ng KD, however, decreased Ng levels increase synaptic PP2B activity, which in turn 314 
dephosphorylates the Grin2A subunit at synapses and accelerates the decay of NMDAR-315 
mediated currents88, 89. 316 
 PP2B plays an important role in regulating synaptic plasticity and memory formation42, 99, 317 
100, and the elevated PP2B activity could be responsible for the impaired LTP in Ng KD. To test 318 
this idea, the effect of FK506 treatment on the STDP-LTP was examined with a pairing protocol 319 
of a 10-ms interval. Notably, FK506 rescued LTP in Ng KD (Fig. 6c-e) without affecting the 320 
magnitude of LTP in the control cells (Fig. 6b, d, e). Taken together, these results suggest that a 321 
decrease in Ng expression elevates PP2B activity, which dephosphorylates synaptic Grin2A 322 
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subunits and accelerates the decay of synaptic NMDAR currents, thereby leading to the 323 
impairment of LTP. 324 
Ng overexpression and decreased PP2B activity converge on the facilitation of STDP-325 
LTP. 326 
 Given the role of Ng in regulating the availability of CaM, and the effect of Ng KD on 327 
phosphoproteome and synaptic PP2B activity, we examined whether the facilitation of LTP by 328 
Ng OE also involves the modulation of PP2B activity. As opposed to the case of Ng KD in which 329 
more CaM become available to boost basal PP2B activity, Ng OE is expected to suppress the 330 
formation of Ca2+/CaM complexes by sequestering more CaM and thus inhibit basal PP2B 331 
activity. If decreased PP2B activity caused by Ng OE plays a crucial role in the facilitation of 332 
STDP-LTP, then blocking PP2B activity is likely to mimic the facilitative effect on STDP-LTP. 333 
Interestingly, bath application of FK506 enabled control cells to express robust STDP-LTP with 334 
the 20-ms pairing protocol which used to be a sub-threshold protocol in control cells (Fig. 7a, b, 335 
e-g), suggesting that basal PP2B activity inhibits control cells from expressing LTP under the 336 
20-ms pairing protocol. 337 

If Ng OE facilitates the expression of STDP-LTP by inhibiting basal PP2B activity, then 338 
FK506 treatment is expected to occlude the facilitative effect of Ng OE on STDP-LTP. We 339 
tested this hypothesis by comparing STDP-LTP in Ng OE with and without FK506 treatment. 340 
Indeed, the magnitudes of LTP induced by the 20-ms pairing protocol in Ng OE were 341 
comparable in the presence (Fig. 7d, f, g) or the absence of FK506 (Fig. 7c, e, g). These results 342 
show that both FK506 and Ng OE broaden the temporal window of association for STDP-LTP, 343 
and Ng OE facilitates STDP-LTP by suppressing PP2B activity. However, given that FK506 did 344 
not alter the decay kinetics of synaptically evoked NMDAR currents in control cells (Fig. 6a), the 345 
facilitative effect of Ng OE or FK506 on STDP-LTP may not result from the changes in synaptic 346 
NMDAR currents, but from the suppression of PP2B activity on other targets. 347 
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Taken together, our results show that Ng controls the induction of spike-timing-348 
dependent LTP at SC-CA1 synapses in the hippocampus, and that decreased Ng levels induce 349 
a significant shift in the phosphoproteome signature, enriched by various ASD and 350 
schizophrenia targets as well as PSD components. Among the significant targets, we found that 351 
hypo-phosphorylation of the NMDAR subunit Grin2A in the C-terminus caused the accelerated 352 
decay of NMDAR-mediated currents, highlighting a mechanism for Ng-dependent modulation of 353 
synaptic plasticity by regulating PP2B activity. 354 
Discussion 355 
 Translating incoming Ca2+ signal into long-lasting changes in excitatory synaptic strength 356 
through Ca2+/CaM-dependent signaling cascade is essential for information encoding in the 357 
brain. Here we show that the levels of Ng, a CaM-binding protein expressed in the postsynaptic 358 
compartment of excitatory neurons, control the efficacy of this process through regulating PP2B 359 
activity (Supplementary Fig. 4). 360 

In CA1 neurons, the concentrations of Ng and CaM are estimated to be around 20 μM 361 
and 10 μM, respectively49. Given the tight binding affinity between Ng and CaM101, it has been 362 
proposed that a majority of CaM is captured by Ng in the postsynaptic compartment in resting 363 
neurons49. Therefore, endogenous Ng in control cells strictly limits the availability of CaM and its 364 
access to Ca2+. However, when Ng levels are decreased, more CaM are released from Ng and 365 
thus become available for Ca2+ binding102, 103. Spontaneous neuronal activity causes a 366 
fluctuation in the intracellular Ca2+ levels within the dendritic spines104, and decreased Ng levels 367 
in Ng KD promote the formation of a small amount of Ca2+/CaM complex. PP2B is preferentially 368 
activated over CaMKII when the amount of Ca2+/CaM complex is limited because Ca2+/CaM 369 
complex has a much higher affinity for PP2B compared to CaMKII45, 98. Therefore, Ng KD is 370 
likely to enhance basal activity of PP2B, causing the accelerated decay of NMDAR-mediated 371 
current by dephosphorylation as well as the impairment of LTP (Supplementary Fig. 4a). 372 
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On the other hand, increasing Ng levels interfere with the formation of the Ca2+/CaM 373 
complex by capturing CaM, thus suppressing PP2B activity (Supplementary Fig. 4b). Blockade 374 
of PP2B activity by FK506 mimicked and occluded the facilitative effect of Ng OE on STDP-LTP, 375 
indicating that FK506 and Ng OE promote LTP through the same biochemical pathway. It is 376 
noteworthy that Ng OE did not influence the decay kinetics of synaptic NMDAR-mediated 377 
currents (data not shown), similarly to the lack of effect on synaptic NMDAR-mediated currents 378 
by FK506 in control cells (Fig. 6a), which implies the lack of noticeable PP2B activity at 379 
synapses. Therefore, the facilitative effect of Ng OE or FK506 on STDP-LTP presumably 380 
depends on the inhibition of PP2B activity at peri- or extra-synaptic sites. Interestingly, previous 381 
studies demonstrated that Ng is localized at a higher concentration in the dendritic spines29, 105, 382 
and thus the basal PP2B activity is likely to be higher at peri- or extra-synaptic sites compared 383 
to the dendritic spines. Importantly, the activation of CaMKII also depends on the formation of 384 
Ca2+/CaM complexes, but Ng levels may influence the activation of CaMKII to a much lesser 385 
degree compared to the case of PP2B. For activation of CaMKII, a much larger amount of Ca2+ 386 
influx is required due to the weaker binding affinity of Ca2+/CaM toward CaMKII. Considering the 387 
fact that Ng dissociates from CaM in the presence of high amount of Ca2+ (Fig. 2e), when Ca2+ 388 
influx is large enough to sufficiently activate CaMKII, a majority of CaM becomes available for 389 
Ca2+ binding regardless of Ng levels. 390 

Our proteomic analyses revealed that Ng KD has profound effect on the 391 
phosphoproteome landscape, highlighting a significant bias towards postsynaptic density 392 
components. In particular, a decrease in Ng levels leads to changes in phosphorylation patterns 393 
of selective ion channels and neurotransmitter receptors, including Grin2A. This finding is 394 
consistent with our functional analysis, showing that NMDAR-mediated currents were more 395 
transient with Ng KD, which can be rescued by blocking PP2B activity, and that Grin2A mutants 396 
disrupting the four phosphorylation sites identified in the phosphoproteome study with Ng KD 397 
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exhibited fast current decay kinetics compared to the WT. Our data, therefore, provides a 398 
mechanistic insight into why decreasing Ng levels in neurons leads to a deficit in STDP-LTP. 399 
Heightened postsynaptic PP2B activity dephosphorylates NMDAR subunit Grin2A, thereby 400 
accelerates the decay of the NMDAR-mediated synaptic currents, and contributes to the deficit 401 
in LTP caused by Ng KD. Interestingly, Ng KD also leads to significant hyper-phosphorylation of 402 
certain targets, suggesting that the effect of Ng KD on the phosphoproteome landscape is not a 403 
generic consequence of overall increase in phosphatase activities. The functional consequence 404 
of the changes in the phosphoproteome beyond LTP will need further exploration. 405 

Previous studies have shown that a change in the phosphorylation status of Grin2A 406 
subunits influences the kinetics of synaptic NMDAR currents88-90, in addition to other regulatory 407 
mechanisms, such as NMDAR Grin2 subunit composition106-109 and NMDAR Grin1 (also known 408 
as NR1, GluN1) subunit interaction with CaM85, 86. However, little is known about the discrete 409 
phosphorylation sites in regulating NMDAR properties. Here we demonstrate that Grin2A C-410 
terminal serine residues whose phosphorylation was regulated by Ng levels have a significant 411 
impact on the NMDAR current kinetics. Previous work has demonstrated an important role for 412 
the C-terminus of Grin2 in regulating NMDAR gating properties110. Furthermore, a change in the 413 
phosphorylation status of Grin2A subunits influences the kinetics of synaptic NMDAR currents89, 414 
90. However, aside from the demonstration of a few putative phosphorylation sites in the 415 
proximal C-terminal region of Grin2A involved in regulating NMDAR channel kinetics88, 416 
identification and functional characterization of C-terminal phosphorylation sites has been 417 
lacking. Using quantitative phosphoproteomic approach, we identified phosphorylation sites in 418 
the C-terminus of Grin2A. With the high-throughput patch clamping technique, we were able to 419 
resolve the roles of C-terminal phosphorylation on NMDAR current kinetics. The similar effect of 420 
the SA and SD mutants on NMDAR channel properties suggest that the C-terminal region is 421 
stringently regulated by the phosphorylation state to achieve the modulation of channel 422 
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properties. Given that there is no crystal structure yet available for NMDARs that includes the C-423 
terminus of Grin2A, it is difficult to postulate how phosphorylation at the distal end of the C-424 
terminus impacts the charge distribution and gating. Although many questions still remain, our 425 
work clearly demonstrates significant regulatory functions of distal C-terminal phosphorylation of 426 
Grin2A subunit on the channel properties of NMDARs. 427 

Taken together, our studies show that Ng levels in the postsynaptic compartment of 428 
excitatory synapses dictate the induction of LTP by regulating PP2B activity. We identified one 429 
important target, the NMDAR subunit Grin2A downstream from PP2B in the Ng KD condition, 430 
contributing to shifts in STDP-LTP caused by changes in Ng levels. The facilitative role of Ng 431 
OE in inducing LTP suggests that the rapid increase in Ng translation following neuronal activity 432 
will promote the expression of LTP in the population of neurons receiving a similar pattern of 433 
excitatory input repeatedly, thus serving as a positive-feedback regulator for LTP and potentially 434 
improving the fidelity of memory encoding. 435 

Ng expression is dynamically regulated in neurons at both translational and transcription 436 
levels under different behavioral and hormonal states21, 29, 111-113. Therefore, the regulation of 437 
Ca2+-dependent signaling cascade by Ng levels provides a mechanism how the behavioral 438 
states of the animals control the efficacy of the information encoding in the brain. Moreover, 439 
given the association of Ng with schizophrenia, Jacobsen syndrome and Alzheimer’s Disease7, 440 
23-25, 114, and the profound impact of Ng KD on ASD- and schizophrenia-associated gene targets 441 
(Fig. 4), our results highlight that the components in the Ca2+/CaM-dependent signaling cascade, 442 
in particular PP2B and Grin2A, are potential therapeutic targets for cognitive impairment in 443 
these diseases. 444 
  445 
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Methods 446 
Animals. 7-9 weeks old male C57BL/6 mice (Charles River, USA) were used in 447 
electrophysiology experiments. All mice were housed in a pathogen-free, temperature- and 448 
humidity-controlled vivarium on a 12-hour light-dark cycle at the Small Animal Facility at the 449 
Massachusetts Institute of Technology, and were given ad libitum access to food and water. All 450 
procedures related to animal and treatment conformed to the policies of the Committee on 451 
Animal Care (CAC) of the Massachusetts Institute of Technology. 452 
Primary Neuron Cultures. Dissociated cortical neuron culture was prepared from newborn 453 
pups of C57BL/6 mice. After dissecting out the cortical areas, the tissues were mildly digested 454 
with papain for 20 minutes at 37°C and dissociated with gentle trituration. Following the 455 
digestion, cells were plated on poly-D-lysine-coated 12-well plates containing neurobasal media 456 
(Invitrogen) supplemented with B27 (Invitrogen). 5-fluoro-2-deoxyuridine was added in culture 457 
media at DIV4 to inhibit the growth of glial cells. Neurons were infected with respective 458 
lentiviruses at DIV7 and collected at DIV17 for analysis with immunoblot. 459 
Cell Lines. Constructs for expressing NMDAR subunits were co-transfected with FLP 460 
recombinase (pOG44; Thermo) into FlpIn TREx 293 cells (Thermo) and selected for hygromycin 461 
resistance (200 μg/mL) to select for and expand small polyclonal pools of single-copy isogenic 462 
cell lines. Cells were cultured in customized NEAA-free DMEM/F12 media (Thermo) with 10% 463 
FBS, selection antibiotics (200 μg/mL hygromycin and 15 μg/mL blasticidin), and NMDAR 464 
inhibitors (1 μg/mL AP5, DCKA, and MK801). For induction, ~1x106 cells were plated in the 465 
absence of selection antibiotics in a 10-cm dish for 3 days and induced with 1 μg/mL 466 
doxycycline hyclate (Sigma) for 48 hours in the presence of NMDAR inhibitors and grown to 467 
near confluency to improve consistency and reduce variability in recordings (data not shown). 468 
Cells were harvested with Accutase (Sigma), suspended in a 1:1 mix of serum free media and 469 
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pECS-DCF at a concentration of ~500k/mL, held in a teflon reservoir chilled to 10C, and 470 
recorded as soon as possible. 471 
Cloning of Lentiviral Constructs and Lentivirus Production. The lentiviral transfer vector 472 
FUGW and its variant FHUGW were used to create all lentiviral constructs used in this study. 473 
The variant FHUGW contains an H1 promoter that drives the expression of an RNAi cassette. In 474 
the knockdown experiment, the shRNA targeting Ng mRNA is expressed under the H1 475 
promoter, and eGFP was expressed simultaneously to label infected cells. In studies with Ng 476 
overexpression, Ng (Ng-eGFP) or a Ng mutant lacking the CaM-binding IQ motif (Ng∆IQ-eGFP) 477 
fusion protein was expressed under the ubiquitin promoter. 478 
 For the production of these lentiviruses, HEK cells were co-transfected with the lentivirus 479 
transfer vectors above, along with the human immunodeficiency virus packing vectors 480 
pRSV/REV and pMDLg/pRRE, and the envelope glycoprotein vector VSV-G using FUGENE6 481 
transfection reagent (Roche, Basel, Switzerland). Supernatants of culture media were collected 482 
about 60 hours after transfection, and the lentiviral particles were concentrated by centrifuging 483 
at 50,000x g. To infect hippocampal CA1 neurons in vivo, the concentrated lentiviral particles 484 
were infected into the CA1 area of hippocampus bilaterally via stereotaxic surgery. To infect 485 
dissociated cortical neuron cultures, 5 μL of concentrated lentivirus was applied into 1 mL of 486 
culture media for each well in a 12-well plate. 487 
Cloning of NMDAR Subunits. Rat Grin1 (NM_017010.2) was cloned downstream of its 31 488 
amino acid signal peptide and EGFP in frame with a P2A peptide fused to rat Grin2A 489 
(NM_012573.3). This cassette was then cloned into a modified pFRT-TO single-copy inducible 490 
vector (Thermo). Mutations were generated in Grin2A via PCR mutagenesis and subcloned 491 
back into the expression construct. 492 
Validation of Gene Expression by qPCR. ~1x106 cells were collected 48 hours after 493 
doxycycline induction, and total RNA was collected using the RNAeasy Plus kit (Qiagen). 1 μg 494 
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of total RNA was used to generate random hexamer-primed cDNA using the Transcriptor cDNA 495 
synthesis kit (Roche). qPCR was done using SYBR Green (Roche) and custom-designed 496 
primers, and data was analyzed using the ddCt method, plotting fold change relative to non-497 
induced controls  normalized to ACTB. rGrin1-qPCR-F:  gtcatcatcctttctgcaagc; rGrin1-qPCR-R:  498 
ccagagatctcgcgttcc; rGrin2A-qPCR-F:  caaggccagctgctatgg; rGrin2A-qPCR-R:  499 
tgccatcccaagtcacatt; ACTB-qPCR-F:  CCAACCGCGAGAAGATGA; ACTB-qPCR-R:  500 
CCAGAGGCGTACAGGGATAG. 501 
Immunoblot Analysis. For lentivirus characterization, cortical neuron culture infected with 502 
lentivirus was lysed in the Laemmli sample buffer (Bio-Rad) supplemented with 2-503 
mercaptoethanol, PhosSTOP phosphatase inhibitor cocktail (Roche Diagnostics), and the 504 
complete mini EDTA-free protease inhibitor (Roche Diagnostics). After boiling at 95oC for 10 505 
minutes, the protein samples were separated on a 10% SDS-PAGE gel. After transferring at 506 
4°C, the membrane (PVDF, Immobilon-FL) was blocked in 5% milk, 0.2% Tween 20, PBS, and 507 
incubated with anti-Ng antibody (Millipore, AB5620 or 07-425, 1:1000) and anti-Actin antibody 508 
(Sigma, A2228, 1:3000) for one hour at room temperature. The membrane was washed in 5% 509 
milk, 0.2% Tween 20, and PBS four times for 10 minutes each. The membrane was then 510 
subsequently incubated with the secondary antibodies goat anti-mouse 680 (Licor) or goat anti-511 
rabbit 800 (Licor) conjugated with IR dyes at room temperature for one hour. After washing the 512 
membrane, bands were visualized with the Licor Odyssey imaging system. 513 

For the characterization of NMDAR subunits, ~1x106 cells were collected 48 hours after 514 
doxycycline induction and total protein lysate was collected from frozen pellets in lysis buffer (in 515 
mM; 1 sodium orthovanadate, 20 sodium phosphate, 5 EDTA, 5 EGTA, 100 sodium chloride, 10 516 
sodium pyrophosphate, 50 sodium fluoride, 1% Triton X100) rocked at 4°C for 1 hour before 517 
preclearing.  25 μg of non-boiled protein lysate was run under denaturing conditions on NuPage 518 
3-8% TA precast gels (Thermo), transferred to nitrocellulose membranes (TransBlot, HMW 519 
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protocol; BioRad), and blotted overnight with primary antibodies against Grin1 (abcam 520 
ab109182; 1:1000 in 5% milk), Grin2A (C-term: Millipore 05-901R; N-term:  GeneTex 521 
GTX103558; 1:1000 in 5% milk), and ACTB (Sigma A5441; 1:50000 in 5% BSA).  Western blots 522 
were visualized using femto ECL detection (Pierce) with HRP-conjugated secondary antibodies 523 
(NA931V 1:10,000, NA9340V 1:2500 (GE)) and documented with a ChemiDoc (BioRad) using 524 
exposure times under 10 seconds. 525 
Phos-Tag SDS-PAGE Analysis. A separating gel with 5% acrylamide was prepared using Tris-526 
HCl solution (pH 8.8) with 25 μM Phos-Tag acrylamide and 50 μM MnCl2. The gel was further 527 
strengthened by adding 0.6% agarose before the gel polymerization started. A stacking gel with 528 
4% acrylamide was prepared using Tris-HCl solution (pH 6.8) and was strengthened by adding 529 
0.3% agarose. Following the completion of gel running in the Tris-glycine buffer, the gel was 530 
soaked in the transfer buffer containing 5 mM EDTA three times for 10 minutes each to remove 531 
Mn2+ ions from the gel, then washed in a regular transfer buffer without EDTA for 10 minutes. 532 
The proteins were transferred to the PVDF membrane (Immobilon-PSQ), and after the transfer, 533 
the membrane was blocked in 5% BSA, 0.1% Tween 20, and TBS. The membrane was then 534 
incubated in a primary antibody, anti-Grin2A (Millipore, 07-632, 1:500), in 5% BSA, 0.1% Tween 535 
20, and TBS overnight at 4°C, then washed in 5% BSA, 0.1% Tween 20, and TBS four times for 536 
10 minutes each. The membrane was subsequently incubated with a secondary antibody goat 537 
anti-rabbit 800 (Licor) conjugated with IR dyes at room temperature for one hour. After washing 538 
the membrane, bands were visualized with the Licor Odyssey imaging system. 539 
Pull-down of Ng using CaM Beads. HEK cells were transiently transfected with a plasmid 540 
expressing either wildtype Ng (Ng WT) or a mutant form of Ng lacking CaM-binding IQ motif 541 
(Ng∆IQ) using lipofectamine 2000. Following 20 hours of expression, the cells were cooled 542 
down on ice and quickly washed with ice cold PBS. The cells were scraped into cold PBS and 543 
pelleted at 3000x g for five minutes at 4°C. After removing the supernatant, the cell pellet was 544 
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re-suspended and lysed in cold lysis buffer containing 150 mM NaCl, 20 mM Tris (pH 7.5), 1 545 
mM DTT, complete mini EDTA-free protease inhibitor (Roche Diagnostics), 1% Triton X-100 546 
and either 2 mM EGTA or 2 mM Ca2+. After spinning down the lysed samples at 10000x g for 10 547 
minutes at 4°C, insoluble precipitates were removed and 10% of the supernatant was saved as 548 
an input. The remaining 90% of the supernatant was added to the pre-washed CaM beads 549 
(Calmodulin Sepharose 4B, GE Healthcare, 17-0529-01) and incubated overnight with gentle 550 
rotation. The CaM beads were pelleted at 2000x g for one minute, and the supernatant was 551 
saved as a flow-through portion. The beads were then washed with a lysis buffer three times for 552 
10 minutes each at room temperate, and the bound proteins were eluted from the beads by 553 
boiling in 1% SDS for 10 minutes. The amount of Ng in input, flow-through, and CaM bead pull-554 
down fractions were examined using immunoblot analysis. 555 
Live Cell Imaging. Cells were plated on glass bottom 35-mm tissue culture dishes (MatTek) 556 
and induced for 2 days with doxycycline. Cells were maintained in a stage top incubator 557 
(okolabs) at 37°C and 5% CO2 and imaged with a CSU-X1 spinning disc confocal (Andor) using 558 
a Ti-Eclipse microscope and a 60x oil objective (Nikon). 559 
Stereotaxic Surgery and Preparation of Acute Slice. Stereotaxic surgery was used to inject 560 
concentrated lentivirus particles into the CA1 region of the hippocampus in C57BL/6 mice. In 561 
this procedure, 7-week-old mice were anesthetized with a ketamine/xylazine cocktail by 562 
intraperitoneal injection. After confirming anesthesia, lentivirus particles were injected into the 563 
hippocampus based on the antero-posterior and lateral coordinates assigned to the CA1 region. 564 
Following the injection, animals were returned to their cages and allowed to recover. 565 
Electrophysiology. All experiments were performed 5-9 days after stereotaxic injection of 566 
lentiviral particles. Acute hippocampal slices (300-μm thick) were prepared based on a 567 
published protocol115. 568 
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STDP experiments were carried out under current-clamp configuration at 30oC in 569 
artificial cerebrospinal fluid (ACSF) containing 119 mM NaCl, 2.5 mM KCl, 1 mM NaH2PO4, 26 570 
mM NaHCO3, 11 mM D-glucose, 2.5 mM CaCl2, 1.3 mM MgCl2, and 100 μM picrotoxin. ACSF 571 
was saturated with 95% O2 and 5% CO2. The patch pipette (4.5-7 MΩ) solution contained 130 572 
mM K-gluconate, 10 mM KCl, 10 mM HEPES, 0.2 mM EGTA, 4 mM MgATP, 0.5 mM NaGTP, 573 
and 10 mM sodium phosphocreatine. 574 

The Schaeffer collaterals were stimulated at 0.1 Hz to evoke baseline excitatory 575 
postsynaptic potentials (EPSPs) of 3-8 mV. STDP was induced by 100 pairings of presynaptic 576 
and postsynaptic stimulations at 5 Hz. Each pairing was consisted of stimulation at Schaeffer 577 
collaterals followed by four action potentials given at 100 Hz at various positive time intervals. 578 
Each action potential was evoked by injecting a brief depolarizing current pulse (3 ms, 1-2 nA) 579 
through the patch pipette. Induction of LTP was monitored over 30 min following the pairing 580 
stimulation. All recording data were collected using acute slices prepared from lentivirus-injected 581 
animals, either uninfected neurons as a control or infected neurons. Small, hyperpolarizing 582 
voltage steps were given at the beginning and end of each recording to monitor input and series 583 
resistances under the voltage clamp configuration. In the case of all current clamp experiments, 584 
small hyperpolarizing current steps were given for on-line monitoring of input resistance. The 585 
cells in which input resistance changed by more than 30% throughout the recording were 586 
discarded. 587 

Potential changes in presynaptic release probability were accessed by measuring the 588 
PPR. PPR recording was performed under voltage clamp configuration, and targeted neurons 589 
were recorded at a holding potential of -70 mV. Excitatory postsynaptic currents (EPSCs) were 590 
recorded in response to Schaeffer collateral stimulation. Two consecutive EPSCs were evoked 591 
using paired-pulse stimulation with a 50-ms interval, and the recording was repeated 30 times at 592 
0.1 Hz. To measure AMPAR/NMDAR ratio, CA1 neurons were patched under voltage clamp 593 
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configuration and initially held at -70 mV for 5-10 min to ensure the stability of EPSCs. The cells 594 
were subsequently depolarized to +40 mV and EPSCs (mediated by both AMPAR and NMDAR) 595 
were monitored for 5-10 min at 0.1 Hz. At that point, D-APV (100 μM) was applied for 10-20 min 596 
to isolate AMPAR-mediated EPSCs. A dual component EPSC was obtained by averaging 10-20 597 
consecutive responses immediately before application of D-APV. An average AMPAR EPSC 598 
was obtained by averaging 10-20 consecutive responses beginning 7 min after the application 599 
of D-APV. An NMDAR EPSC was calculated by subtracting an average AMPAR EPSC from the 600 
dual component EPSC. To study NMDAR-mediated current kinetics, EPSCs were recorded in 601 
CA1 neurons in a voltage-clamp mode with a -70 mV holding potential. Mg2+ was removed from 602 
ACSF to unblock NMDAR, and 20 μM CNQX was added in the ACSF to block AMPAR-603 
mediated currents. The decay of NMDAR current was analyzed by fitting the currents to two 604 
exponential functions using OriginPro (OriginLab). 605 

In experiments to measure PPR, AMPAR/NMDAR ratio and NMDAR-mediated currents, 606 
the patch pipette solution (4.5-7 MΩ) contained 115 mM CsMeSO3, 2.8 mM NaCl, 20 mM 607 
HEPES, 0.4 mM EGTA, 4 mM MgATP, 0.5 mM NaGTP, 10 mM sodium phosphocreatine, 5 mM 608 
TEA-Cl, and 5 mM QX-314. All data were collected using a MultiClamp 700B amplifier (Axon 609 
Instruments) digitized at 20 kHz with the analog-to-digital converter ITC-18 computer interface 610 
(Heka Instruments). Data were acquired with Igor Pro software (Wavemetrics). 611 
High-throughput Planar Patch Clamp. All recordings were performed using the SyncroPatch 612 
384PE system (Nanion). External solution was (in mM) 10 HEPES, 80 NaCl, 60 NMDG, 4 KCl, 613 
6 CaCl2, 8 glucose, pH 7.4, 290 mOsm and was supplemented with 30 μM glycine to limit the 614 
effects of glycine-dependent desensitization on recordings. Internal solution was (in mM) 20 615 
EGTA, 10 HEPES, 50 CsCl, 10 NaCl, 60 CsF pH 7.2, 285 mOsm. Divalent cation free 616 
extracellular solution (pECS DCF) was (in mM) 10 HEPES, 145 NaCl, 4 KCl, 8 glucose, pH 7.4, 617 
300 mOsm. For barium recordings, external solution was the same as above except 6 BaCl2 618 
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replacing 6 CaCl2, and internal solution was (in mM) 10 EGTA, 10 HEPES, 20 CsCl, 90 CsSO4 619 
pH 7.2, 285 mOsm. 10 μM glutamate (sodium salt) was added to external solution for ligand 620 
application. Cells were sealed in the whole-cell configuration, held at -60 mV, stimulated with a 621 
5 μL puff of glutamate, and buffer was exchanged 1 sec following ligand application. Recordings 622 
were acquired at 5 kHz for 12 seconds post-ligand application. For further details and 623 
consideration of SyncroPatch 384PE experimental design, see the reference by Pan et al116.  624 
 For data analysis, high quality traces were manually selected from DataControl and then 625 
analyzed with custom Igor scripts. Briefly, raw traces were read in as waves, Sazitzky filtered 626 
with 8 poles at 30 kHz, and trimmed to first 5 seconds of recording which were the most 627 
consistent between wells and across biological replicates. Peak currents were extracted before 628 
traces were normalized to peak current, fit with a two-exponential for decay kinetics, and 629 
averaged. The fast component of the two-exponential was reported as the decay tau, as the 630 
slow component was more variable, likely due to the incomplete removal of glutamate after 631 
ligand delivery (data not shown). Plots and statistical analysis were done in GraphPad Prism. 632 
Proteome and Phosphoproteome Study 633 

Cellular lysis and enzymatic digestion Mouse primary neuronal cultures were lysed in 634 
8 M urea with protease and phospho-protease inhibitors, and subsequently digested following a 635 
protocol described elsewhere66. A small aliquot of cellular lysate was removed from each 636 
sample for protein quantification via the Pierce BCA assay kit (Pierce, Rockford, IL). After 637 
proteolytic digestion, the samples were quenched with formic acid to a final concentration of 638 
1.0% and subsequently desalted on 30 mg OASIS HLB solid phase columns (Waters, MA, 639 
USA).  640 

Tryptic peptide labeling with TMT reagent From each condition (n=6) 460 µg aliquots 641 
of the Ng KD dried tryptic peptides were reconstituted in 100 mM HEPES (pH 8.0) to a final 642 
concentration of 1.0 mg/mL. The peptides were labeled with Thermo Fisher TMT-6 isobaric 643 
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mass tag reagent according to manufacturer’s instructions (Thermo Fisher). The peptides were 644 
labeled at a 1:8 ratio of peptide to TMT reagent, followed by one hour incubation at room 645 
temperature with bench top shaking at 850 rpm. After incubation, a 1.0 µg aliquot of labeled 646 
tryptic peptide was removed from each labeled condition, desalted with C18 stage tips117, and 647 
analyzed by mass spectrometry to ensure that isobaric label incorporation ≥ 95%. An additional 648 
1.0 µg of labeled tryptic peptide was removed from each channel, mixed together, desalted on a 649 
C18 stage tip, and analyzed via mass spectrometry to ensure equal relative protein loads. 650 
During these quality control steps the labeled peptides were stored, unquenched at -80°C. After 651 
validation, each channel was quenched with a 5% hydroxylamine solution to a final sample 652 
concentration of 0.3% to quench any unbound isobaric tags. The corresponding 6 channels 653 
were mixed together for a total amount of 2.8 mg of labeled tryptic peptides. The labeled peptide 654 
mixture was dried down in a speedvac, reconstituted in 500 µl of 3% acetonitrile/0.1% formic 655 
acid, and subsequently desalted on tC18 Sep-Pak columns (Waters, MA, USA) in preparation 656 
for basic reverse phase fractionation. 657 

Basic reverse phase fractionation The dried peptides were reconstituted in 800 μl of 5 658 
mM ammonium formate (pH 10), and were separated by basic reversed-phase chromatography 659 
on an Agilent Zorbax 300 Å 4.6mm x 250mm Extend-C18 column, using an Agilent 1100 Series 660 
HPLC instrument (Agilent Technologies). Solvent A (2% acetonitrile, 5 mM ammonium formate, 661 
pH 10), and a non-linear increasing concentration of solvent B (90% acetonitrile, 5 mM 662 
ammonium formate, pH 10) was used as the mobile phase with a flow rate of 1 ml/min through 663 
the column. A non-linear gradient with increasing percentages of solvent B with 4 different 664 
slopes was used (0% for 7 min; 0% to 16% in 6 min; 16% to 40% in 60 min; 40% to 44% in 4 665 
min; 44% to 60% in 5 min; 60% for 14 min) and the eluted peptides were collected in a 666 
Whatman polypropylene 2 mL 96 well plate. A total of 96 fractionations were collected (~1 667 
ml/fraction) for a total run time of 96 minutes. The 96 fractions were concatenated into 25 larger 668 
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fractions, based on the concatenation protocol described elsewhere118. From these 25 fractions, 669 
5% of the total volume was removed and used for global proteome analysis. The remaining 95% 670 
of each of the fractions were further concatenated down to 13 fractions and phosphopeptide 671 
enrichment was performed with these fractions following the IMAC phospho-enrichment protocol 672 
described elsewhere66. 673 

Mass spectrometry analysis Both the proteome and phosphoproteome were analyzed 674 
using a Thermo Fisher Q-Exactive Plus mass spectrometer coupled to a Thermo-Scientific 675 
EASY-nLC 1000 liquid chromatograph (Thermo Fisher Scientific). Peptides were separated at a 676 
flow rate of 200 nL/min on a self-made capillary column (Picofrit with a 10-μm tip opening and 677 
75 μm diameter, New Objective , PF360-75-10-N-5) packed with 20-cm of C18 1.9 µm silica 678 
beads (1.9-μm ReproSil-Pur C18-AQ medium, Dr. Maisch GmbH, r119.aq). Injected peptides 679 
were separated at a flow rate of 200 nL/min with a linear 84-min gradient from 100% solvent A 680 
(3% acetonitrile, 0.1% formic acid) to 30% solvent B (90% acetonitrile, 0.1% formic acid), 681 
followed by a linear 9-min gradient from 30% solvent A to 90% solvent B for a total of 110 682 
minutes. The Q-Exactive plus instrument was operated in the data-dependent mode acquiring 683 
higher-energy collisional dissociation tandem mass spectrometry (HCD MS/MS) scans 684 
(Resolution = 17,500) for TMT-6 on the 12 most abundant ions using an MS1 ion target of 3 × 685 
106 ions and an MS2 target of 5 × 104 ions. The maximum ion time used for the MS/MS scans 686 
was 120 ms; the HCD-normalized collision energy was set to 31; the dynamic exclusion time 687 
was set to 20 secs, and the peptide-match preferred setting was enabled. 688 

Quantitation and identification of peptides and proteins for both proteome and 689 
phosphoproteome All mass spectra were processed using Agilent Spectrum Mill Proteomics 690 
Workbench software package pre 6.0 commercial release. For peptide identification, the MS/MS 691 
spectra were searched against the UNIPROT mouse database 692 
(http://www.uniprot.org/uniprot/?query=proteome:UP000000589) with frequently occurring 693 
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laboratory contaminants added to the list. The peptides were searched with both fixed and 694 
variable modifications. The fixed modifications included N-terminal and lysine modification with 695 
the TMT-6 isobaric mass tag and carbamidomethylation turned on. The variable modifications 696 
included were N-terminal acetylation, oxidized methionine, and the phosphorylated amino acids 697 
serine, threonine, and tyrosine to account for phosphorylation sites. Database matches for the 698 
individual spectra were auto-validated by a user-defined threshold for peptides (false discovery 699 
rate (FDR) < 1.2%) and an automatic threshold for proteins in a two-step process. In Spectrum 700 
Mill, FDRs are calculated at 3 different levels: spectrum, distinct peptide, and distinct protein. 701 
Peptide FDRs are calculated in Spectrum Mill using essentially the same pseudo-reversal 702 
strategy previously evaluated119 and shown to perform the same as concatenation. A false 703 
distinct protein identification occurs when all of the relevant peptides, which group together to 704 
constitute a distinct protein, have a delta Forward Reverse Score < 0. Spectrum Mill also 705 
performs protein grouping using the methods described120. Briefly, when a peptide sequence 706 
(>8 residues long) is contained in multiple protein entries in the protein database, the proteins 707 
are grouped together, and the highest scoring peptide and its accession number are reported. In 708 
some cases, when the protein sequences are grouped in this manner, there are distinct 709 
peptides which uniquely represent a lower scoring member of the group (isoforms and family 710 
members). Each of these instances spawns a subgroup, and multiple subgroups are reported 711 
and counted towards the total number of proteins. TMT reporter ion ratios are obtained by 712 
calculating the median reporter ion ratio over all distinct peptides assigned to that protein 713 
subgroup.    714 

Data analysis The significance of changes in the phosphorylation of individual peptides 715 
was evaluated by moderated T-test with a Benjamini-Hochberg correction using the Limma 716 
package121, 122. Changes in phosphorylation sites on proteins for which total proteome 717 
information was available were normalized to the change in total protein quantity as determined 718 
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by Spectrum Mill. The set of significantly and differentially phosphorylated sites was taken as 719 
the union of the sites significant after normalization and non-normalized significant sites for 720 
which total protein level quantification was not available. Overlap analysis was performed with 721 
this set of proteins against the PSD proteins identified by Bayes et al73, with significance 722 
evaluated by hypergeometric test. Pathway enrichment analysis was performed on the set of 723 
differentially phosphorylated proteins overlapping the PSD using the clusterProfiler R package76. 724 
Statistical Analysis. All bar graphs are presented as the means ± standard error of the mean 725 
(SEM). The sample size and statistical methods used in each experiment is provided in the 726 
relevant figure legends. All statistical analysis was conducted using GraphPad Prism 7.02 727 
(GraphPad Software Inc.), and significance is shown as *p<0.05, **p<0.01, ***p<0.001. 728 
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Figure Legends 743 
Fig. 1 | Ng overexpression does not affect basal synaptic transmission and pairing-744 
induced LTP with 10-ms interval.  745 
(a) Ng binds to CaM and regulates the amount of CaM available for Ca2+ binding. Purple: Ng 746 
(only the CaM-binding IQ motif of Ng is depicted), Green: CaM, Yellow spheres: Ca2+ ions (PDB: 747 
CaM, 1CFD; Ca2+/CaM complex, 3CLN; Ng-CaM complex, 4E50). 748 
(b) Diagram of a lentivirus vector for Ng overexpression (Ng OE). LTR, long terminal repeat; Ψ, 749 
packing signal; Flap, flap element from HIV-1; pH1, H1 promoter; pUb, ubiquitin promoter; WRE, 750 
woodchuck hepatitis virus posttranscriptional regulatory element. 751 
(c) Immunoblot of cortical neuron culture infected with the Ng OE or GFP only (control) lentivirus 752 
shows effective overexpression of exogenous Ng-GFP fusion protein or GFP, respectively. 753 
(d) Experimental timeline for whole-cell patch clamp recordings is shown in the top panel. 754 
Bottom panel: The DIC and epifluorescence images show robust and exclusive expression of a 755 
lentiviral construct in the hippocampal CA1 region. 756 
(e) Comparison of paired-pulse ratio at 50-ms interval recorded from control and Ng OE 757 
neurons. Upper panel: average traces from control and Ng OE cells (scale bars, 100 pA, 50 ms). 758 
Bottom panel: collective data of paired-pulse ratio in control (n=12, 1.94 ± 0.10) and Ng OE (n=7, 759 
1.89 ± 0.13) cells. The paired-pulse ratio values from individual cells are shown as small open 760 
circles. The average values are shown as filled circles with SEM (n.s.; not significant, t-test).  761 
(f) Comparison of NMDAR-EPSC to AMPAR-EPSC ratio in control and Ng OE neurons. Evoked 762 
EPSCs were measured in CA1 neurons following Schaffer collateral stimulation. Left panel: 763 
superimposed representative EPSC traces of dual components (compound EPSC of AMPAR 764 
and NMDAR), NMDAR-EPSC and AMPAR-EPSC measured at +40 mV. AMPAR-EPSC was 765 
obtained by application of D-APV, and NMDAR-EPSC was calculated by subtracting AMPAR-766 
EPSC from dual components (scale bars, 50 pA, 50 ms). Right panel: collective data of the ratio 767 
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of peak AMPAR-EPSC to NMDAR-EPSC in control (n=7, 0.73 ± 0.08) and Ng OE (n=6, 0.66 ± 768 
0.06) cells. AMPAR/NMDAR ratio values from individual cells are shown as small open circles. 769 
The average values are shown as filled circles with SEM (n.s.; not significant, t-test). 770 
(g) Left panel: spike-timing-dependent plasticity was induced by 100 pairings of presynaptic and 771 
postsynaptic stimulations at 5 Hz. Each pairing consisted of stimulation at Schaeffer collaterals 772 
followed by four action potentials given at 100 Hz at various positive time intervals. An example 773 
of current clamp recording from a CA1 neuron during the pairing is shown in the right panel. 774 
(h, i) Sample recordings of STDP at 10-ms pairing interval from an uninfected control cell and a 775 
cell infected with Ng OE. Downward arrows indicate the timing of STDP induction. Traces show 776 
averaged EPSPs indicated with 1 and 2 (scale bars, 2 mV, 50 ms). 777 
(j) Averaged summary graphs of STDP at 10-ms interval in uninfected control (n=5) and Ng OE 778 
(n=6) cells. Each circle represents mean ± SEM. 779 
(k) Collective data of STDP at 10-ms interval in control (n=5, 182.4 ± 19.5 %) and Ng OE (n=6, 780 
190.6 ± 17.8%) cells. EPSP after LTP induction (% baseline) values from individual cells are 781 
shown as small filled or open circles. The average values are shown as large filled or open 782 
circles with SEM (n.s.; not significant, t-test). 783 
Fig. 2 | Ng overexpression facilitates the induction of LTP with 20-ms pairing interval.  784 
(a, b) Sample recordings of STDP at 20-ms pairing interval from an uninfected control cell and a 785 
cell infected with Ng OE. Downward arrows indicate the timing of STDP induction. Traces show 786 
averaged EPSPs indicated with 1 and 2 (scale bars, 2 mV, 50 ms). 787 
(c) Diagram of a lentivirus vector for a Ng mutant lacking the CaM-binding IQ motif (NgΔIQ). 788 
(d) Immunoblot of cortical neuron culture infected with the Ng OE or the Ng deletion mutant 789 
lentivirus shows effective overexpression of indicated constructs. The deletion mutant runs a bit 790 
smaller compared to the wildtype Ng, as expected. 791 
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(e) Binding of Ng to CaM was examined by pull-down assay in the presence of 2 mM Ca2+ or 2 792 
mM EGTA. Immunoblot of total cell lysate (input), flow through, and proteins bound to the CaM 793 
beads (CaM bead pull-down) samples probed with an antibody against Ng C-terminal. 794 
(f) A sample recording of STDP at 20-ms pairing interval from a cell infected with NgΔIQ. The 795 
downward arrow indicates the timing of STDP induction. Traces show averaged EPSPs 796 
indicated with 1 and 2 (scale bars, 2 mV, 50 ms). 797 
(g) Averaged summary graphs of STDP at 20-ms interval in uninfected control (n=9), Ng OE 798 
(n=6) and NgΔIQ (n=5) cells. Each circle represents mean ± SEM. 799 
(h) Collective data of STDP at 20-ms interval in control (n=9, 104.2 ± 10.4%), Ng OE (n=6, 800 
189.8 ± 23.2%) and NgΔIQ (n=5, 106.5 ± 19.8%) cells. EPSP after LTP induction (% baseline) 801 
values from individual cells are shown as small filled or open circles. The average values are 802 
shown as large filled or open circles with SEM (*p<0.05, One-way ANOVA and Tukey’s multiple 803 
comparison test). 804 
Fig. 3 | Ng knockdown abolishes the induction of LTP at SC-CA1 synapses. 805 
(a) Diagram of a lentivirus vector for Ng knockdown (Ng KD). LTR, long terminal repeat; Ψ, 806 
packing signal; Flap, flap element from HIV-1; pH1, H1 promoter; pUb, ubiquitin promoter; WRE, 807 
woodchuck hepatitis virus posttranscriptional regulatory element. 808 
(b) Immunoblot of cortical neuron culture infected with the Ng KD or GFP only (control) lentivirus 809 
shows effective knockdown of endogenous Ng.  810 
(c) Comparison of paired-pulse ratio at 50-ms interval recorded from control and Ng KD neurons. 811 
Upper panel: average traces from control and Ng KD cells (scale bars, 100 pA, 50 ms). Bottom 812 
panel: collective data of paired-pulse ratio in control (n=12, 1.85 ± 0.08) and Ng KD (n=9, 2.05 ± 813 
0.20) cells. The paired-pulse ratio values from individual cells are shown as small open circles. 814 
The average values are shown as filled circles with SEM (n.s.; not significant, t-test). 815 
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(d) Comparison of NMDAR-EPSC to AMPAR-EPSC ratio in control and Ng KD neurons. 816 
Evoked EPSCs were measured in CA1 neurons following Schaffer collateral stimulation. Left 817 
panel: superimposed representative EPSC traces of dual components (compound EPSC of 818 
AMPAR and NMDAR), NMDAR-EPSC and AMPAR-EPSC measured at +40 mV. AMPAR-819 
EPSC was obtained by application of D-APV, and NMDAR-EPSC was calculated by subtracting 820 
AMPAR-EPSC from dual components (scale bars, 50 pA, 50 ms). Right panel: collective data of 821 
the ratio of peak AMPAR-EPSC to NMDAR-EPSC in control (n=6, 0.91 ± 0.10) and Ng KD (n=6, 822 
0.85 ± 0.11) cells. AMPAR/NMDAR ratio values from individual cells are shown as small open 823 
circles. The average values are shown as filled circles with SEM (n.s.; not significant, t-test). 824 
(e, f) Sample recordings of STDP at 10-ms pairing interval from an uninfected control cell and a 825 
cell infected with Ng KD. Downward arrows indicate the timing of STDP induction. Traces show 826 
averaged EPSPs indicated with 1 and 2 (scale bars, 2 mV, 50 ms). 827 
(g) Averaged summary graphs of STDP at 10-ms interval in uninfected control (n=9) and Ng KD 828 
(n=6) cells. Each circle represents mean ± SEM. 829 
(h) Collective data of STDP at 10-ms interval in control (n=9, 196.3 ± 15.2 %) and Ng KD (n=6, 830 
105.1 ± 10.8 %) cells. EPSP after LTP induction (% baseline) values from individual cells are 831 
shown as small filled or open circles. The average values are shown as large filled or open 832 
circles with SEM (**p<0.01, t-test). 833 
Fig. 4 | Knockdown of Ng causes significant shifts in neuronal phosphoproteome. 834 
(a) Proteomic and phosphoproteomic workflow for the Ng KD experiment. Ng KD and the 835 
respective GFP controls were grown in triplicate (n=6), collected, and lysed in 8M urea with 836 
protease and phosphatase inhibitors. The denatured protein was reduced, and alkylated, and 837 
double digested with both Lys-C and Trypsin overnight. The tryptic peptides were labeled with 838 
TMT- 6 reagent and the individual label incorporation was checked via LC-MS/MS. The labeled 839 
digests were combined and basic reverse phase fractionated into 24 fractions. From each 840 
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fraction, 5% of the total volume was remove for proteomic analysis while the remaining 95% 841 
was used for phosphopeptide enrichment. The proteome and the phosphoproteome data was 842 
acquired on a Q-Exactive + mass spectrometer. Peptide spectrum matching and protein 843 
identification was performed using Spectrum Mill. 844 
(b) Volcano plots comparing the individual phosphoproteome phosphorylation sites of the Ng 845 
KD experiment. The -log10 of the adjusted p value is plotted against the average log2 fold 846 
change for the phosphoproteome. The dotted line represents an adjusted p value of 0.05. 847 
Orange points represent identified post-synaptic density components as described by 73. 848 
(c) Left: The pathways highlighted with down-regulated phosphorylation of PSD targets in Ng 849 
KD. Right: The pathways highlighted with up-regulated phosphorylation of PSD targets in Ng KD.  850 
(d) Left: The overlap of significantly affected phosphorylated targets by Ng KD with the ASD-851 
associated gene set. Right: The overlap of significantly affected phosphorylated targets by Ng 852 
KD with the schizophrenia-associated gene set. The upregulated phosphoproteome with Ng KD 853 
shown in blue; the downregulated phosphoproteome with Ng KD shown in purple; the ASD 854 
gene set shown in yellow; and the schizophrenia gene set shown pink.  855 
(e) The overlap of significantly affected phosphorylated targets by Ng KD with both the ASD- 856 
and schizophrenia-associated gene sets. 857 
(f) A differential phosphorylation of NMDAR subunit Grin2A was examined using a Phos-Tag 858 
SDS-PAGE, and Ng KD led to an increase in the fraction of non-phosphorylated Grin2A subunit. 859 
Fig. 5 | C-terminal phosphorylation of Grin2A modulates NMDAR-mediated current 860 
kinetics. 861 
(a) Design of wild-type (WT), C-terminus deletion (-Ct), serine to alanine (SA), and serine to 862 
glutamate (SD) isogenic, single-copy, doxycycline-inducible NMDAR expression constructs. The 863 
four phosphorylation sites selected for mutation are S1198, S1201, S1204, and S1384 in 864 
rGrin2A (Uniprot ID: P35436). 865 
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(b) Experimental design for throughput analysis of NMDAR-mediated currents using a 384-well 866 
planar patch clamp electrophysiology system. 867 
(c) Live cell confocal images demonstrating the surface expression of NMDAR WT and mutants 868 
48 hours post-induction with doxycycline, scale bar, 25 μm. 869 
(d) Left: Example of a 384-well (16 by 24) planar patch clamp recording. Right: Representative 870 
recordings of NMDAR-mediated currents using planar patch clamp.  871 
(e) Average traces of NMDAR currents with Grin2A WT and mutant normalized to peak current 872 
highlight differences in decay kinetics in –Ct, SA and SD mutants. Shaded bands represent 873 
SEM.  874 
(f) Box plots of decay Tau values of NMDAR currents recorded from the cell lines with Grin2A 875 
WT, and –Ct, SA and SD mutants. Data were compared via one-way ANOVA and significance 876 
was calculated with the Holmes-Sidak multi-comparisons test.  *p<0.05, ***p<0.001. 877 
(g-i) Gaussian fits of the cumulative distribution of decay kinetics (g), probability density 878 
histograms of decay kinetics (h) and its Gaussian fits (i) demonstrate Gaussian distributions for 879 
all experimental conditions except for -Ct. 880 
Fig. 6 | Ng knockdown accelerates the decay of NMDAR-mediated synaptic currents in 881 
SC-CA1 synapses by increasing PP2B activity. 882 
(a) Comparison of NMDAR-mediated calcium currents recorded from control and Ng KD 883 
neurons. Left panel: average traces of NMDAR currents from control (thin line) and Ng KD (thick 884 
line) cells recorded in vehicle only (upper) or in the presence of 1 μM FK506 (bottom). NMDAR 885 
currents were fitted with a two-exponential decay function, and the slow component were not 886 
significantly different across the four conditions. Right panel: collective data of the fast 887 
component of NMDAR currents measured from control (n = 21, 25.70 ± 1.44 ms) and Ng KD (n 888 
= 15, 18.63 ± 0.92 ms) cells in vehicle and from control (n = 14, 24.31 ± 1.34 ms) and Ng KD (n 889 
= 10, 25.48 ± 1.41 ms) cells in FK506. The fast component of exponential decay values from 890 
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individual cells are shown as small open circles. The average values are shown as filled circles 891 
with SEM (**p<0.01, *p<0.05, Two-way ANOVA and Tukey’s multiple comparison test). 892 
(b, c) Sample recordings of STDP at 10-ms pairing interval from an uninfected control cell and a 893 
cell infected with Ng KD in the presence of FK506. Downward arrows indicate the timing of 894 
STDP induction. Traces show averaged EPSPs indicated with 1 and 2 (scale bars, 2 mV, 50 895 
ms). 896 
(d) Averaged summary graphs of STDP at 10-ms interval in uninfected control (n=7) and Ng KD 897 
(n=6) cells in the presence of FK506. Each circle represents mean ± SEM. 898 
(e) Collective data of STDP at 10-ms interval in control (n=7, 203.6 ± 17.8 %) and Ng KD (n=6, 899 
165.1 ± 35.8%) cells in the presence of FK506. EPSP after LTP induction (% baseline) values 900 
from individual cells are shown as small filled or open circles. The average values are shown as 901 
large filled or open circles with SEM (n.s.; not significant, t-test). 902 
Fig. 7 | Ng overexpression facilitates LTP by suppressing PP2B activity. 903 
(a-d) Sample recordings of STDP at 20-ms pairing interval from an uninfected control cell in 904 
vehicle only, a control cell in the presence of FK506, a cell infected with Ng OE in vehicle only, 905 
and a cell infected with Ng OE in the presence of FK506. Downward arrows indicate the timing 906 
of STDP induction. Traces show averaged EPSPs indicated with 1 and 2 (scale bars, 2 mV, 50 907 
ms). 908 
(e) Averaged summary graphs of STDP at 20-ms interval in uninfected control cells (n=7) and 909 
Ng OE cells in vehicle (n=6). Each circle represents mean ± SEM. 910 
(f) Averaged summary graphs of STDP at 20-ms interval in uninfected control cells (n=9) and 911 
Ng OE cells in FK506 (n=6). Each circle represents mean ± SEM. 912 
(g) Collective data of STDP at 20-ms interval in control cells in vehicle (n=7, 105.7 ± 13.3%), 913 
control cells in FK506 (n=9, 177.1 ± 16.3%), Ng OE cells in vehicle (n=6, 215.6 ± 24.4%) and 914 
Ng OE cells in FK506 (n=6, 204.0 ± 26.9%) cells. EPSP after LTP induction (% baseline) values 915 
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from individual cells are shown as small filled or open circles. The average values are shown as 916 
large filled or open circles with SEM (**p<0.01, *p<0.05, Two-way ANOVA and Tukey’s multiple 917 
comparison test). 918 
 919 
  920 
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Supplementary Fig. 1 | Schematic model of influence of Ng on CaM, and the experimental 

flow. 

(a) The schematic model of the effect of Ng on relative activation of Ca2+/CaM-dependent 

CaMKII and PP2B that control the expression of LTP. 

(b) The experimental flow. Lentivirus-mediated acute knockdown and overexpression were used 

to test the effect of Ng levels on synaptic plasticity using STDP-LTP protocol at Schaffer 

Collateral-CA1 synapses (Figures 1-3). Acute knockdown approach was used for TMT-based 

quantitative proteomics and phosphoproteomics to analyze how decreasing Ng levels influences 

the neuronal phosphorylation landscape, and pathway analyses identified potential targets 

essential for synaptic plasticity, including Grin2A (Figure 4). Interestingly, Ng KD caused hypo-

phosphorylation of Grin2A in the C-terminus, and high-throughput planar patch clamp revealed 

that the phosphorylation sites in the Grin2A C-terminus identified from the phosphoproteome 

analysis play a critical role in regulating the peak and decay of NMDAR-mediated calcium influx 

(Figure 5). Lastly, pharmacological approaches were used to validate the potential downstream 

targets in both the acute knockdown and overexpression conditions (Figures 6, 7). 
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Supplementary Fig. 2 | Validation of inducible expression of WT NMDAR and mutants. 

(a) qPCR validation of Grin1 and Grin2A expression two days post-induction with doxycycline. 

Data are represented as the fold change in mRNA expression compared to non-induced parallel 

cultures normalized to β-actin. 

(b) Western validation of Grin1 and Grin2A expression two days post induction with doxycycline. 

The C-terminus deletion mutant was blotted with a polyclonal antibody raised against the N-

terminus of Grin2A as the C-terminal epitope recognized by the superior monoclonal antibody is 

not present in this mutant.  

(c) Box plots of peak current values of NMDAR currents recorded from the cell lines with Grin2A 

WT, and –Ct, SA and SD mutants. Data were compared via one-way ANOVA and significance 

was calculated with the Holmes-Sidak multi-comparisons test. ***p<0.001. 

(d) Linear regression of the correlation between peak current and decay tau for the recordings 

from NMDAR WT and mutants show no significant correlation between current size and decay 

kinetics. Dotted lines represent linear regression fits, and the value of r2 for each fit is less than 

0.05 demonstrating the poor correlation between current amplitude and decay kinetics.  

(e) Left: Representative recordings of NMDAR-mediated currents recorded in Ba2+ containing 

solution, using planar patch clamp. Right: Box plots of peak current values of NMDAR currents 

recorded in Ba2+ containing solution from the cell lines with Grin2A WT, and –Ct, SA and SD 

mutants. Data were compared via one-way ANOVA and significance was calculated with the 

Holmes-Sidak multi-comparisons test.  *p<0.05.  

(f) Average traces of NMDAR currents recorded in Ba2+ containing solution from the cell lines 

with Grin2A WT and mutants, normalized to peak current highlight differences in decay kinetics 

in –Ct, SA and SD mutants. Shaded bands represent SEM.  
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(g) Box plots of decay Tau values of NMDAR currents recorded recorded in Ba2+ containing 

solution from the cell lines with Grin2A WT and mutants. Data were compared via one-way 

ANOVA and significance was calculated with the Holmes-Sidak multi-comparisons test. 

***p<0.001. 

(h-j) Gaussian fits of the cumulative distribution of decay kinetics (h), probability density 

histograms of decay kinetics (i) and its Gaussian fits (j) from the Ba2+ recordings, demonstrate 

Gaussian distributions for all experimental conditions except for WT and -Ct. 
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Supplementary Fig. 3 | C-terminal phosphorylation of Grin2A regulates the activation 

kinetics of NMDAR-mediated calcium influx. 

(a) Linear regression of the correlation between peak current and rise tau for the recordings 

from the cell lines with Grin2A WT and mutants show no significant correlation between current 

size and rise kinetics. Dotted lines represent linear regression fits, and the value of r2 for each fit 

is less than 0.05 demonstrating the poor correlation between current amplitude and rise kinetics.  

(b) Average traces of NMDAR currents recorded from the cell lines with Grin2A WT and 

mutants, normalized to peak current highlight the differences in rise kinetics in –Ct, SA and SD 

mutants. 

(c) Box plots of rise Tau values of NMDAR currents from the cell lines with Grin2A WT and 

mutants. Data were compared via one-way ANOVA and significance was calculated with the 

Holmes-Sidak multi-comparisons test. ***p<0.001. 

(d-f) Gaussian fits of the cumulative distribution (d), probability density histograms (e) and its 

Gaussian fits (f) of rise kinetics demonstrates Gaussian distributions for all experimental 

conditions.  

(g) Average traces of NMDAR currents recorded in Ba2+ containing solutions from the cell lines 

with Grin2A WT and mutants, normalized to peak current highlight the differences in rise 

kinetics in –Ct, SA and SD mutants. 

(h) Box plots of rise Tau values of NMDAR currents recorded in Ba2+ containing solutions from 

the cell lines with Grin2A WT and mutants. Data were compared via one-way ANOVA and 

significance was calculated with the Holmes-Sidak multi-comparisons test.  

(i-k) Gaussian fits of the cumulative distribution (i), probability density histograms (j) and its 

Gaussian fits (k) of rise kinetics in Ba2+ condition, demonstrates Gaussian distributions for all 

experimental conditions. 
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Supplementary Fig. 4 | Schematic model demonstrating the effect of Ng levels on LTP. 

(a) Decrease of Ng leads to heightened PP2B activity in neurons, which dephosphorylates the 

NMDAR subunit Grin2A, and accelerates the decay of synaptic NMDAR currents, thus 

decreasing Ca2+ influx through NMDARs. The changes in this cascade leads to deficit in LTP.  
(b) Increase of Ng decreases basal PP2B activity and lowers the threshold of LTP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/481291doi: bioRxiv preprint 

https://doi.org/10.1101/481291


Hwang et al. 
Supplementary Table 1 | Phosphorylation sites (P-sites) coverage with Ng knockdown. 

 

Phosphorylation sites (normalized) 

 Overlap with PSD 

P-sites identified 29,560 9,269 (32%) 

Phospho-proteins 5,485 1,077 

P-sites regulated (phosphoproteins) 
(FDR ≤ 0.05) 

Up 2,896 (1688) 951 (460) 

Down 1,848 (1183) 529 (312) 
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Supplementary Table 2 | Significantly regulated P-sites in ASD targets affected by Ng 
knockdown. 

 

Down-regulated P-sites  

Functional Category Gene Phosphorylation sites* 

Synapse 

GRIN2A S1384  

HOMER1 S91/S97 

RIMS1 
S526, S563, S1081/S1082, S1102, T1170, 
S1219/S1224, S1342 

SHANK1 S806 

SHANK2 S839 

SHANK3 S557/T559, S771, S985  

GTPase Regulation  

AGAP1 S239, S415/S421, T836, S840 

NF1 S2812 

SYNGAP1 S117, S155, S779/S780, S817, S825, S1183  

TBC1D5 S565/S568, T728 

TTN S17523/T17538 

Ion Channels  

CACNA1D S994/S995/S998 

CACNA1E S43, S737/S746 

KCNQ3 S422 

SCN1A S537, T544, S1939 

Other 

ADNP S607 
AGBL4 S122 
ANK2  S7 

APBA2 T307, S479/T487, S481 
ATRX S1089, S828S829 

CDC42BPB T423, S1661 
CDKL5 S761 
CNR1 T314S317 

DMXL2 S930 
DSCAM S184, S1989 
HYDIN T3277 
KDM5B T263, S1456  

KHDRBS2 S38 
LZTR1 S354 
MBD3 S85 

MEF2C S222, T403  
MYO16 S1464, S320 
NIPBL T646, S1036 
PACS1 S18, T44, S493, S517 
PHRF1 S773 
PRKCB T642, S654 
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PRKD1 S427/Y437/T439 
PTPN11 Y62, Y546, T547 

RAI1 T1516S1520 
SBF1 S1047 

SLC6A8 T623/T625/S628 
SPARCL1 S78 

SYNE1 T1819S1826S1830 
TRIO S1258, S2458 
TSC2 T1334 

UBE3C S20 
VPS13B S1792, S998S1001 

Up-regulated P-Sites 

Functional Category Gene Phosphorylation sites* 

Synapse 

DMXL2 S1157, S1399/S1403, S1915 

GRIN2A S882S890 

HOMER1 S53, T66 

NBEA S1723, T2079 

NRCAM T1173/S1178, S1242 

NRXN1 S1469 

SCN1A S565 

SHANK1 S534, S564, S662, S1433 

SHANK2 S724, T903, S1238, S1388/S1390/S1392  

SLC12A5 S1021/S1024/S1025 

SPARCL1 S70/S78, S155, Y349/S353, S406 

SYN1 S578, S666/S684 

SYNGAP1 S534, S535, S1070 

SYT17 S115 

Development 
PTEN S385 
TSC1 S1074 

Kinase Pathway 

BRAF T317, S483S484 

MAPK3 T203Y205 

MARK1 S219 

MTOR T2384, S2478 

PRKCB T48, S279 

PRKD1 S203, S748 

PTEN S385 

SBF1 S20 

TRIO S1818S1821T1824 

Ion Channels 
CACNA1H S541, S1104 
CACNA1D S869, S1679, S1940, S2064   
CACNA1G S2252 
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SCN1A S565 

Other 

ACE S1305 
ADCY5 S156 
ANK2 S3936 
ATRX S896, S1041, S1287S1290 

BCL11A S625  
BZRAP1 S291  
CAPRIN1 S304S305 
CCDC88C S1824, S1863  

CDH8 S795 
CUL3 S478 

DDX3X S131 
DNMT3A S386S389, S890  
DOCK1 S1681 
DPP6 S102 

ERBB2IP S849, S869, S929 
GALNT14 S524 
GIGYF1 S756 
GIGYF2 T383 
HECW2 S220 

HEPACAM Y283, T297/S301, S321, S352 

HERC2 S1566/S1569, S4130  

IRF2BP1 S13 
KMT2C S2823, S4060   
KMT2E S845  
LZTS2 S296 

NCKAP1 S897 
NDUFA5 S89, S99 

NF1 S2498 
NIPBL T713, T724, T735 
PACS1 S664 
PHF2 S458, S899  

PHRF1 S1045 
PLCB1 S236, S308, S569, S811, T831 

PRICKLE2 T182, S788  
RAB2A Y3 
RAI1 T455 

SATB2 S13 
SLC38A10 S441, S866, S991  

SLC6A1 S14 
SLC9A6 S607 
SYNE1 S5952, S8279S8282 
ZBTB20 T305 

ZMYND11 S446 
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*Slash (/) indicates that the exact phosphorylation sites could not be unambiguously determined 
due to the presence of multiple potential phosphorylation sites on a single peptide. Multiple sites 
without (/) indicate multiple simultaneous phosphorylation within the phosphopeptide.  
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Supplementary Table 3 | Significantly regulated P-sites in SCZ targets affected by Ng 
knockdown. 

 

 Gene Phosphorylation sites* 

Down-
regulated P-

sites 

ALDOA S414 
HCN1 S99 

GRIN2A S1384 
SMG6 S239 

SNAP91 T788 

PRKD1 S427/Y438/T439 

RANBP10 S365/S367, S369 
TBC1D5 T728, S565/S568 
CNKSR2 S109, S488, S928, S936  
HIRIP3 T391  
KDM4A T361 
BAG5 S298 

ZDHHC5 S415, S577 
TMX2 S187 
TCF20 S567, S1395 

R3HDM2 S347, S383/T389 
PLCL1 T94/S96 
DOC2A S226 

Up-
regulated P-

sites 

ALDOA S90 
ATP2A2 S186, S378, T441, T537, S553 
GRIN2A S882S890 

INA S274, S441 
VPS45 T540 
PLCL1 S1080 

SNAP91 S248, S296/S300/S303 
PRKD1 S203, S718 
MAPK3 T203Y205 
GIGYF2 T383 
CNKSR2 S12, S325/T332/S338, S430 
SATB2 S13 
TMX2 S274 
MPP6 S197 
CUL3 S478 

RFTN2 S429 
PSMA4 T185 

*Slash (/) indicates that the exact phosphorylation sites could not be unambiguously determined 
due to the presence of multiple potential phosphorylation sites on a single peptide. Multiple sites 
without (/) indicate multiple simultaneous phosphorylation within the phosphopeptide. 
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