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Abstract  38 
Inhibitory interneurons orchestrate information flow across cortex and are implicated in psychiatric 39 

illness. Although classes of interneurons have unique functional properties and spatial distributions 40 
throughout the brain, the relative influence of interneuron subtypes on brain function, cortical 41 
specialization, and illness risk remains elusive. Here, we demonstrate stereotyped organizational 42 
properties of somatostatin and parvalbumin related transcripts within human and non-human primates. 43 
Interneuron spatial distributions recapitulate cortico-striato-thalamic functional networks and track regional 44 
differences in functional MRI signal amplitude. In the general population (n=9,627), parvalbumin-linked 45 
genes account for an enriched proportion of genome-wide heritable variance in in-vivo functional MRI 46 
signal amplitude. This relationship is spatially dependent, following the topographic organization of 47 
parvalbumin expression in independent post-mortem brain tissue. Finally, genetic risk for schizophrenia is 48 
enriched among interneuron-linked genes and predictive of cortical signal amplitude in parvalbumin-49 
biased regions. These data indicate that the molecular genetic basis of resting-state brain function across 50 
cortex is shaped by the spatial distribution of interneuron-related transcripts and underlies individual 51 
differences in risk for schizophrenia.   52 
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Key Findings 53 
1. Spatial distributions of somatostatin (SST) and parvalbumin (PVALB) are negatively correlated in 54 

mature human and non-human primate cortex, paralleling patterns observed in utero. 55 
2. SST and PVALB are differentially expressed within distinct limbic and somato/motor cortico-56 

striato-thalamic networks, respectively.  57 
3. In-vivo resting-state signal amplitude is heritable in the general population and tracks relative 58 

SST/PVALB expression across cortex.  59 
4. Single-nucleotide polymorphisms tied to PVALB-related genes account for an enriched proportion 60 

of the heritable variance in resting-state signal amplitude.  61 
5. PVALB-mediated heritability of resting-state signal amplitude in the general population is spatially 62 

heterogeneous, mirroring the cortical expression of PVALB in independent post-mortem brain 63 
tissue.  64 

6. Polygenic risk for schizophrenia is enriched among interneuron-linked genes and predicts resting-65 
state signal amplitude in a manner that also follows the cortical expression of PVALB.  66 
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Introduction 67 
Ramón y Cajal theorized that the functional diversity of the human brain arises, in part, from the 68 

vast assortment of neurons that pattern cortex1. Inhibitory interneurons are the most varied neuronal 69 
class2, exhibiting divergent morphological and physiological properties and coordinating information flow 70 
across the brain’s collective set of functional connections (functional connectome)3,4. Foundational cross-71 
species animal and human work provides converging evidence for the role of interneurons in healthy 72 
brain functions as well as their dysregulation in psychiatric illnesses, including schizophrenia5,6 and major 73 
depressive disorder7. The development of densely sampled gene transcriptional atlases now enables the 74 
study of cellular and molecular correlates of functional brain network architecture8-11. Despite these 75 
methodological advances and a clear role for interneurons in the modulation of excitatory neuron activity, 76 
relatively little is known about how the spatial distribution of interneuron subtypes shape human brain 77 
activity and associated risk for psychiatric illness.  78 
 The topographic distribution of interneuron subtypes is theorized to contribute to regional and 79 
functional network specialization, partly by altering the relative excitatory/inhibitory balance within a given 80 
patch of cortex9,12,13. Interneurons comprise approximately 20-30% of cortical neurons14 and form 81 
stereotyped microcircuits with excitatory projection neurons15. While the precise number of interneuron 82 
subtypes is under debate, the vast majority express one of a limited set of genetic markers: somatostatin 83 
(SST), parvalbumin (PVALB), and vasoactive-intestinal peptide (VIP; a subset of HTR3A interneurons)2. 84 
Each molecular subtype possesses unique synaptic and functional characteristics, leading to the 85 
hypothesis that the ratio of specific interneuron classes may drive local differences in neural activity. For 86 
example, SST expressing interneurons preferentially target dendrites of cortical projection neurons to 87 
regulate input whereas PVALB expressing interneurons primarily synapse on perisomatic regions to 88 
regulate output2,16. Consequently, the increased presence of SST, relative to other classes of 89 
interneurons, may facilitate filtering of noisy or task-irrelevant cortical signals as well as increase recurrent 90 
excitation required for higher-order cognition20. Conversely, relative increases in PVALB may produce 91 
stronger feedback inhibition on excitatory neurons13, leading to shorter activation timescales17 suited for 92 
processing constantly changing sensorimotor stimuli. These collective results suggest that the spatial 93 
distribution of interneuron subtypes could underlie regional differences in temporal signaling across 94 
cortex, as indexed by blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging 95 
(fMRI).  96 
 Establishing the organizational principles by which cellular diversity influences brain function is a 97 
long-standing challenge in neuroscience, and could provide a route to understand individual variability in 98 
the diverse processing capabilities of the human brain across health and disease. Consistent with this 99 
aim, recent translational work suggests a core role of PVALB interneurons in the biological basis of fMRI 100 
measures of in-vivo brain function18. PVALB interneurons are known to orchestrate gamma-band 101 
oscillations (30-80 Hz19,20), a frequency range that is tightly coupled to spontaneous BOLD fluctuations21-102 
25. Optogenetic stimulation of PVALB interneurons in rodents drives rhythms in the gamma range, 103 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/481036doi: bioRxiv preprint 

https://doi.org/10.1101/481036
http://creativecommons.org/licenses/by-nc/4.0/


 5 

impacting information processing through the synchronization of excitatory neurons20. In psychiatric 104 
illness, several lines of evidence suggest that decreased PVALB-mediated inhibition may serve as a core 105 
locus of disruption in schizophrenia, giving rise to the altered gamma-band signal and working memory 106 
deficits observed in the disorder26. However, a direct link between PVALB-related genetic variation and 107 
in-vivo brain activity has yet to be established. Linking cortical interneurons to individual differences in 108 
human brain function would yield deep insight into the biological basis of the hemodynamic BOLD signal, 109 
providing an engine for the discovery of functional connectome-linked genes and associated risk for 110 
illness onset. 111 
 Here, we bridge genetic, transcriptional, and neuroimaging data to advance three related lines of 112 
inquiry linking interneurons to human brain function. First, we describe the principal organizational 113 
features of SST and PVALB expression in both human and non-human primates, demonstrating a robust 114 
pattern of anti-correlation across cortex. Supporting the hypothesis that interneuron ratios contribute to 115 
functional specialization, SST and PVALB were differentially expressed within distinct limbic and 116 
somato/motor cortico-striato-thalamic functional loops, respectively. Second, we establish that the relative 117 
density of SST and PVALB tracks regional differences in brain activity across cortex. In a population-118 
based sample of 9,627 individuals27, genetic variation among PVALB-correlated genes accounted for an 119 
enriched proportion of heritable variance in resting-state signal amplitude in a manner that mirrors the 120 
spatial expression of PVALB in an independent analysis of post-mortem brain tissue. Critically, these 121 
discoveries suggest that the molecular genetic basis of cortical function is not spatially uniform and that 122 
genes linked to PVALB interneurons underlie heritable aspects of the BOLD response. Third, we find 123 
evidence supporting the link between PVALB interneurons and psychotic illness, demonstrating that 124 
genetic risk for schizophrenia is enriched among interneuron-linked genes while also predicting reduced 125 
resting-state signal amplitude in a spatially heterogenous manner that follows the cortical expression of 126 
PVALB. These data help to address a long-standing challenge of neuroscience to understand how 127 
cytoarchitecture shapes human brain function and related vulnerability for psychiatric illness.   128 
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Results 129 
Stereotyped anti-correlation of SST and PVALB interneuron markers across cortex  130 

The unique properties of interneuron subtypes emerge early in development and are determined, 131 
in part, by their spatial location of origin in the embryonic ganglionic eminence28,29. VIP interneurons are 132 
born within the caudal ganglionic eminence (CGE), whereas SST and PVALB interneurons originate in 133 
the medial ganglionic eminence (MGE) along negatively correlated spatial gradients30. Parvalbumin- and 134 
somatostatin-destined neurons differentially cluster within the dorsal and ventral MGE, respectively31,32. 135 
Evidence in humans9,12 and rodents13 indicates that SST and PVALB maintain a negative spatial 136 
correlation in adulthood, suggesting that embryonic gradients may constitute a “proto-map” of mature 137 
cortex. Although the functional consequences of a negative spatial SST/PVALB relationship are not well 138 
understood, the presence of replicable and evolutionarily conserved expression patterns may suggest the 139 
importance of such interneuron gradients.  140 
 To characterize interneuron topography across human and non-human primate cortex, we 141 
analyze gene expression data from the Allen Human Brain Atlas (AHBA)33 and NIH Blueprint Non-Human 142 
Primate (NHP) Atlas 34. Cortical tissue AHBA samples from the left (n=1,273) and right (n=428) 143 
hemispheres were analyzed. Microarrays do not give absolute estimates of gene transcription, but can 144 
measure within-probe differences across samples. SST and PVALB expression values were mean and 145 
variance normalized across cortical samples, and subtracted (i.e. SST-PVALB) to reveal relative 146 
expression differences (Figure 1a). Extending prior evidence of negative spatial expression relationships 147 
between SST and PVALB9,12, these two transcripts were inversely correlated across available AHBA 148 
cortical samples (Figure 1e; r(1,699)=-0.43, p<2.2e-16). SST and PVALB distributions were organized 149 
along an anterior to posterior gradient, with relative SST expression greatest in orbitofrontal and medial 150 
prefrontal cortex, anterior insula, anterior cingulate, and the temporal lobe (Figure 1a-c; Supplemental 151 
Figure 1). In contrast, relative PVALB expression was greatest within unimodal sensory, motor, and visual 152 
cortices, as well as the parietal lobe. Histologically defined anatomical categories were used to 153 
characterize regional differences of interneuron density (Figure 1c). Median relative expression of SST 154 
and PVALB was negatively correlated across cortical subregions (r(39)=-0.87, p=1.0e-13).  155 

Suggesting that interneuron spatial gradients are a core organizational feature of primate cortex, 156 
the negative spatial relationship between SST and PVALB was evolutionarily conserved in non-human 157 
macaque primates across individual samples (r(34)=-0.74, p≤0.001). Given that SST and PVALB 158 
interneurons originate along a stereotyped, negatively correlated spatial gradient in embryonic ganglionic 159 
eminences32, we analyzed RNAseq data from the Brainspan Atlas of the Developing Human Brain to test 160 
whether SST/PVALB negative gradients emerge during developmental periods coinciding with major 161 
waves of interneuron colonization, approximately 10-25 post conception weeks(pcw)35,36. The negative 162 
correlation between SST and PVALB was absent in early-fetal (8-12 pcw; b=0.32, p=0.04) and early-163 
midfetal (13-21 pcw; b=0.02, p=0.85) ages. Consistent with the hypothesis that mature interneuron 164 
distributions result from developmentally programmed migration patterns, we observed significant 165 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/481036doi: bioRxiv preprint 

https://doi.org/10.1101/481036
http://creativecommons.org/licenses/by-nc/4.0/


 7 

negative correlations between SST/PVALB across late-fetal (24-37 pcw; b=-0.47, p=0.012), early-infancy 166 
(4 months; b=-0.60, p=0.0033), mid-late childhood (8-11yrs; b=-0.52, p=0.0038), and adult (18-40yrs; b=-167 
0.35, p=0.0014) age, although not in late infancy (10 months; b=-0.37, p=0.36), early-childhood (1-4yrs; 168 
b=-0.11, p=0.48), or adolescence (13-15yrs; b=-0.54, p=0.057). These data provide developmental 169 
context as well as an external replication of the SST/PVALB cortical expression pattern observed in the 170 
AHBA (adult human) and NHP Atlas (adult macaque) samples.   171 
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 172 
Fig 1. Cortical expression of SST and PVALB are negatively correlated across species and 173 
developmental stages. (a) Left-hemisphere AHBA tissue samples mapped to the human cortical 174 
surface, and (b) an illustration of non-human primate tissue sample locations, colored by relative 175 
expression of SST (red) and PVALB (blue). Normalized expression difference reflects the sample-wise 176 
subtraction of mean-normalized PVALB from SST. Relative SST-PVALB expression among anatomically 177 
defined groups from the (c) AHBA and (d) NIH Blueprint Non-Human Primate Atlas; circles=median, thick 178 
lines=interquartile range, thin lines=min and max values. (e) Sample-wise negative correlation of SST and 179 
PVALB in (e) human cortex (r=-0.43, p≤0.001) and (f) non-human primates (r=-0.74, p≤0.001). (g) 180 
Correlation of cortical SST and PVALB across nine developmental stages using data from the Brainspan 181 
Atlas of the Developing Human Brain. *p≤0.05, uncorrected; error bars=SE.   182 
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SST and PVALB distinguish limbic and somato/motor cortico-striato-thalamic networks 183 
 Spatial patterns of gene expression may recapitulate the architecture of functional networks 184 
across cortex8,10,37 and mirror functional connectivity between territories with vastly different global 185 
expression profiles (e.g., cortex and striatum9). We next examined whether the inverse spatial relationship 186 
between SST and PVALB is unique to cortex or preserved across subcortex (See Supplemental 187 
Information for subcortical sample information). Sample-wise expression was normalized separately for 188 
each of seven areas: striatum, thalamus, hypothalamus, globus pallidus, amygdala, hippocampus proper 189 
(i.e. CA1-CA4), and combined substantia nigra/ventral tegmentum. A cumulative negative relationship 190 
was observed between SST and PVALB (Figure 2a; r=-0.14), although a wide range of correlation values 191 
were observed (from -0.71 through 0.29). To demonstrate that the observed overall negative correlation 192 
between SST and PVALB is not obligated by global transcriptional properties, we display the distribution 193 
of averaged correlations, collapsed across cortex and the seven subcortical areas, of every gene to SST 194 
and to PVALB. Figure 2b demonstrates that SST is among the most negatively correlated genes to 195 
PVALB (bottom 0.014% of distribution), across all regions. Similarly, PVALB is among the most negatively 196 
correlated genes to SST (bottom 0.0012% of distribution). See Supplemental Figure 2 for SST and 197 
PVALB expression across subcortical subregions.   198 
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 199 

 200 
Figure 2. SST and PVALB are among the most negatively correlated transcripts to one another. (a) 201 
Overall, SST and PVALB are negatively correlated in subcortical regions (r=-0.14), but this relationship is 202 
variable (range -0.71–0.29). (b) The spatial correlation between SST and PVALB was averaged across 203 
cortex and the seven analyzed subcortical regions. Compared to all genes, SST and PVALB are among 204 
the most negatively correlated genes to one another. PVALB is among the top 0.0012% most negatively 205 
correlated genes to SST (top panel), and SST is among the top 0.014% most negatively correlated genes 206 
to PVALB (bottom panel). HYPO=hypothalamus, GP=Globus Pallidus, THAL=thalamus, 207 
AMYG=amygdala, HIPP=hippocampus, VTA/SN=ventral tegmental area/substantia nigra, STR=striatum, 208 
ALL=averaged subcortical correlation.    209 
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Although some subcortical regions display a positive SST-PVALB spatial correlation (e.g. 210 
striatum), anatomically defined regions do not always reflect functional organization38. For instance, the 211 
putamen contains subregions that differentially couple with default, frontoparietal, and somato/motor 212 
cortical functional networks39. Consequently, interneuron markers may show stereotyped patterns of 213 
expression when viewed through the lens of global functional network architecture rather than anatomy. 214 
Parallel distributed networks connect cortex, striatum, and thalamus to support complex affective, 215 
cognitive and motor behaviors40. To characterize relationships between these network boundaries and 216 
interneuron subtype organization, AHBA samples were aligned and analyzed according to functional 217 
parcellations of the striatum39 and thalamus41. Suggesting that interneuron subtypes differentiate large-218 
scale functional networks, paired-sample t-tests revealed significantly greater expression of SST, relative 219 
to PVALB, within a distributed limbic network encompassing ventral striatum (t(15)=6.08, p=2.1e-5), 220 
mediodorsal thalamus (t(72)=2.41, p=0.018; Figure 3c), and subgenual anterior cingulate and medial 221 
prefrontal cortex (mPFC; Figure 3e). Furthermore, we established that SST-biased sub-regions of the 222 
thalamus and striatum (Figure 3e-f) form a distributed functional network using resting-state data from an 223 
adult community-based sample (percent female=54.47, Age=62.66 (SD 7.45), min=45, max=80) from the 224 
UK Biobank project (N=9,627 see Supplemental Figures 3 & 4 for cortical correlations). Limbic striatum 225 
and default thalamus (Figure 3c) displayed overlapping positive functional connections (r’s>0.05) within 226 
medial prefrontal cortex (Figure 3e), an area with strong preferential expression of SST (F(1,337)=14.09, 227 
p=0.0002; Figure 3g). This mPFC-ventral striatum-mediodorsal thalamus network broadly supports 228 
reward and affective information processing and is consistently implicated in affective disorders42.  229 

Among regions of a distributed somato/motor network, relative PVALB expression was increased 230 
within sensory and motor cortex (Figure 3f) and dorsolateral putamen (t(11)=3.47, p=0.031), but not 231 
within ventrolateral thalamus (t(5)=1.22, p=0.28; Figure 3d), which may be due to particularly sparse 232 
sampling in this region (n=5). A visual medial occipital area of the thalamus also displayed preferential 233 
expression of PVALB (t(14)=2.74, p=0.016; Figure 3b), consistent with the proposal that PVALB/SST 234 
ratios are higher in distributed whole-brain networks that process visual and sensorimotor information13. 235 
Supporting this distinction, both somato/motor striatum and thalamus (Figure 3d) were positively 236 
functionally coupled (r’s>0.03) to motor and sensory cortex (Figure 3f), which show a PVALB expression 237 
bias (F(1,337)=6.86, p=0.009; Figure 3h).  238 

Suggesting the SST/PVALB dissociation also extends to the midbrain, relative expression of SST 239 
(M=1.15 SD=0.52) was greater than that of PVALB (M=-0.24 SD=0.71) among ventral tegmental area 240 
(VTA) samples (t(12)=-7.17, p=1.1e-5), whereas PVALB (M=0.69 SD=0.88) was greater than SST (M=-241 
0.13 SD=0.90) in the substantia nigra reticulata (STNr; t(23)=2.98, p=0.006; Supplemental Figure 2). The 242 
VTA is densely interconnected to other SST-biased regions, including the nucleus accumbens (NAcc), 243 
anterior cingulate cortex, and mediodorsal thalamus42, whereas functional neuroimaging and tract-tracing 244 
work suggests the substantia nigra pars reticulata (SNr) preferentially functionally couples to motor areas 245 
and is reciprocally connected to sensorimotor striatum40,43,44. Together, these data suggest that SST 246 
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expression is greater within distributed limbic and affect-related regions, whereas PVALB expression is 247 
elevated within a distributed sensorimotor processing network.   248 
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 249 
Figure 3. Differential SST/PVALB expression in distributed limbic and somato/motor networks. (a 250 
and b) Relative SST and PVALB expression across functionally defined striatal and thalamic subregions. 251 
(c) Relative expression of SST was highest within limbic striatum and default thalamus. (d) Relative 252 
PVALB expression was greater within somato/motor striatum and somato/motor thalamus. (e) Limbic 253 
striatum and default thalamus possess overlapping positive resting state correlations to SST-biased 254 
aspects of medial prefrontal cortex (mPFC; r’s≥0.05). Likewise, (f) somato/motor striatum and thalamus 255 
show overlapping positive correlations to PVALB-biased portions of somatosensory cortex (r’s≥0.03). (g) 256 
SST expression within the 3 overlapping mPFC limbic parcels is greater than all other cortical parcels. (h) 257 
PVALB expression within the 15 overlapping somato/motor parcels is greater than all other cortical 258 
parcels.   259 
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SST/PVALB ratios co-vary with resting-state signal amplitude across cortex.  260 
 Computational work in rodents posits that the ratio of SST to PVALB interneurons contributes to 261 
regional differences in function and hierarchical organization across cortex13. Sensory and association 262 
cortices display hierarchically organized timescales of spiking activity that progress from shorter to longer, 263 
respectively17,45. This aspect of functional organization may be indexed by variability in the resting-state 264 
BOLD signal. Accordingly, we examined whether the ratio of cortical SST/PVALB expression relates to an 265 
in-vivo measurement of cortical signal variability, resting-state functional amplitude (RSFA)46. Voxel-wise 266 
RSFA was calculated using the UK Biobank sample (n=9,627) and averaged across the 400 parcel 267 
functional atlas of Schaefer and colleagues47.  268 

We first established the heritability of RSFA. Between-subjects hierarchical clustering was used 269 
to identify cortical territories with similar patterns of signal amplitude across individuals (Figure 4a), 270 
corresponding to limbic (light beige), cingulo-opercular (teal), temporo-parietal (orange), prefrontal (red), 271 
somato/motor (blue), and visual (purple) clusters. Consistent with recent work48, this data-driven 272 
dimensionality reduction broadly categorized association and unimodal aspects of cortex. Suggesting that 273 
individual differences in RSFA can be explained by genetic variation in the general population, a 274 
significant proportion of between-subject variation in cluster-wise RSFA was found to be due to common 275 
genetic factors [h2snp: limbic=0.27 (SE 0.04), cingulo-opercular=0.22 (SE 0.04), temporo-parietal=0.28 (SE 276 
0.04), prefrontal=0.31 (SE 0.04), somato/motor=0.21 (SE 0.04), visual=0.06 (SE 0.04)]49. See 277 
Supplemental Figure 5 for parcel-wise estimates of RSFA heritability.  278 

Expression data from the AHBA were used to test whether interneuron ratios track the spatial 279 
layout of RSFA signal variability across the cortical sheet. Earlier work has documented a correlation of 280 
interneurons marker expression with fractional Amplitude of Low-Frequency Fluctuations (fALFF)50, a 281 
metric closely tied to RSFA, within a circumscribed set of cortical areas. Across the whole-brain Schaefer 282 
cortical parcellation, SST/PVALB ratio was negatively correlated with resting-state signal amplitude 283 
(r(337)=-0.52, p≤2.2e-16; Figure 4c. Parcels with higher relative expression of SST had lower RSFA (e.g. 284 
limbic parcels). Conversely, clusters with higher relative PVALB had higher RSFA (e.g., visual, parietal). 285 
Across individual interneuron markers, we observed a positive correlation to parcel-wise RSFA and 286 
expression of PVALB (r=0.48, p≤2.2e-16), and a negative correlation to SST (r=-0.44, p≤2.2e-16).   287 
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 288 
Figure 4. SST/PVALB ratio tracks inter-regional differences in cortical brain function. (a) Mean 289 
RSFA was calculated for each of 400 volumetric cortical parcels from the Schaefer parcellation47. 290 
Between-subjects hierarchical clustering of residualized RSFA values revealed 7-clusters of parcels with 291 
similar amplitude signatures; Light beige=limbic, teal=cingulo-opercular, orange=temporal-parietal, 292 
red=prefrontal, blue=somato/motor, and purple=visual. (b) Overall, a significant proportion of variability of 293 
RSFA was explained by common genetic variation (ℎ"#$% =0.06-0.31; error bars=standard error) (c) Parcel-294 
wise relative expression of SST/PVALB is negatively correlated to RSFA (r(337)=-0.52, p≤2.2e-16). 295 
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Polygenic variation among PVALB-correlated genes underlies cortical brain function 296 
 Genome-Wide Association Studies (GWAS) demonstrate that the genetic bases of many complex 297 
traits are due to the cumulative weight of genetic variants spread across the entire genome, each with a  298 
subtle effect51. Although brain phenotypes such as resting-state functional amplitude likely display such a 299 
polygenic architecture52, phenotype-relevant polymorphisms can cluster in genes expressed within 300 
relevant tissue and cell types53. Given that cortical resting-state functional amplitude tracks the 301 
topography of interneuron ratios, we next tested whether single-nucleotide polymorphisms (SNPs) 302 
underlying the heritable variance in brain activity (i.e. RSFA) are enriched within genes linked to PVALB 303 
and SST. The observation that RSFA-related SNPs are enriched within interneuron-related genes would 304 
yield insight into the molecular basis of the resting-state BOLD fluctuations. 305 
 Interneuron-correlated gene sets were nominated using a guilt-by-association logic. That is, 306 
genes that were spatially correlated to interneuron markers (i.e. SST, PVALB) were assumed to relate to 307 
each interneuron subtype. Using cortical AHBA data, genes were rank-ordered based on their spatial 308 
correlation to each interneuron marker and the top 500 most-correlated genes were selected. PVALB and 309 
SST gene sets were non-overlapping. Interneuron-related SNP lists were generated for each gene set by 310 
identifying variants within ±5000 base pairs from transcription start and stop site of each gene. eQTL 311 
variants for each gene set were included, defined using cortical data from the CommonMind consortium54 312 
and NIH GTEx55. We denote the SNP lists for each interneuron gene set as PVALBSNP and SSTSNP (see 313 
Supplemental Data). Genetic relatedness matrices were calculated for the UKB sample using each SNP 314 
set, and heritability was estimated using GCTA-REML simultaneously across three partitions: PVALBSNP, 315 
SSTSNP, and a partition containing all remaining genotyped variants49.  316 

Indicating that the genetic basis of RSFA, a measure of in vivo brain activity, is determined in part 317 
by genes linked to PVALB interneurons, the PVALBSNP set accounted for a significant proportion of 318 
heritable variance of the temporo-parietal (ℎ$&'()% =0.029 ,SE=0.0092, q=0.0047), prefrontal 319 
(ℎ$&'()% =0.023, SE=0.0091, q=0.016), and somato/motor (ℎ$&'()% =0.019, SE=0.0087, q=0.034) RSFA 320 
clusters, but not the limbic (ℎ$&'()% =0.006, SE=0.008, q=0.25), cingulo-opercular (ℎ$&'()% =0.006, 321 
SE=0.0082, q=0.25), or visual (ℎ$&'()% =0.012, SE=0.008, q=0.11) clusters. Conversely, the SSTSNP set did 322 
not explain a significant proportion of heritable variance across any partition (ℎ""*% s<0.0075, ps>0.46). A 323 
key question is whether the genetic variance explained by the PVALBSNP set is greater than what is 324 
expected given the number of SNPs examined, which would indicate the outsized, or enriched, role of 325 
these genetic variants in RSFA. Enrichment was calculated as the proportion of heritability explained by 326 
the partition, divided by the fraction of SNPs in that partition, where a value greater than 1 denotes 327 
enrichment. We observed fold enrichment greater than 1 for visual (enrich=6.49 SE=0.28), motor 328 
(enrich=3.02 SE=0.30), temporo-parietal (enrich=3.64 SE=0.32), prefrontal (enrich=2.53 SE=0.31) 329 
clusters, but not limbic (enrich=0.76 SE=0.29) or cingulo-opercular (enrich=0.86 SE=0.28). The 330 
PVALBSNP list (N=9,819 variants) constituted 2.9% of total analyzable genotyped SNPs (N=337,356 331 
variants), but accounted for 2.2-18.9% (M=8.4 SD=6.1) of total genetic variance across each of the RSFA 332 
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clusters (Figure 5a). The SSTSNP partition (2.6% of available variants) did not explain a significant 333 
proportion of genetic variance for any RSFA cluster.  334 

An important unanswered question is whether the genetic determinants of RSFA are uniform 335 
across cortex, or whether they vary according to underlying cytoarchitecture. We next tested whether the 336 
PVALBSNP and SSTSNP partitions explain a greater percentage of heritable RSFA variance in regions 337 
where the respective marker is expressed most. Partitioned heritability analyses were performed for each 338 
of the 400 Schaefer cortical parcels. Across all parcels with available AHBA expression data, normalized 339 
genetic variance explained by the PVALBSNP partition was positively correlated to PVALB expression 340 
(Figure 5b; r(326)=0.36, p=1.78e-11), corresponding to visual, superior temporal, and parietal areas of 341 
cortex (Figure 5b). Across all genes, PVALB was among the top 64 transcripts (top 0.003% of 20,738 342 
transcripts) showing a positive spatial correlation to the PVALBSNP partition map (i.e. Figure 5b), indicating 343 
that this positive relationship is not obligated by global statistical properties. Conversely, partitioned 344 
PVALBSNP heritability was negatively correlated to SST expression (r(326)=-0.36, p=2.85e-11). There was 345 
not a significant parcel-wise relationship between SSTSNP partitioned heritability and SST gene expression 346 
(r(326)=-0.03, p=0.54). Together, these findings indicate that the molecular genetic basis of resting-state 347 
functional amplitude is spatially heterogeneous, demonstrating a particularly important role of genes co-348 
expressed with PVALB.    349 
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 350 
Figure 5. PVALB genes underlie spatially variable patterns of heritable brain function. (a) Across 351 
the six data-defined RSFA clusters, the 500 gene PVALBSNP set accounted for a significant proportion of 352 
heritable variance in cingulo-opercular, prefrontal, and temporo-parietal areas. PVALBSNP enrichment was 353 
observed within tempero-parietal, prefrontal, som/motor, and visual clusters. (b) Parcel-wise partitioned 354 
heritability tracks sub-type specific gene expression for PVALBSNP (r(326)=0.36, p=1.78e-11), (c) but not 355 
the SSTSNP (r(326)=-0.03, p=0.54), partitions. Error bars=SE.   356 
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The association between genetic risk for schizophrenia and brain function follows the spatial 357 
profile of PVALB expression  358 

Understanding the molecular genetic underpinnings of brain function is pressing given the need 359 
for empirically informed treatment targets for heritable, brain-based, psychiatric illnesses like 360 
schizophrenia56. Convergent evidence from animal models and post-mortem tissue analyses suggests 361 
that interneuron dysfunction as a core pathophysiological feature of schizophrenia57. To determine 362 
whether interneuron-related genetic variation is tied to disease liability, we tested whether polygenic risk 363 
for schizophrenia58 is greater among PVALBSNP and SSTSNP variants, relative to the rest of the genome. 364 
Using a partitioned MAGMA analysis59, we divided rank-ordered PVALB, and SST gene lists into bins of 365 
500. Using MAGMA, we observed significant enrichment of schizophrenia polygenic risk for the top 366 
PVALB gene set (beta=0.083, p=0.038), but not the top SST (beta=-0.01, p=0.61). Suggesting that 367 
polygenic schizophrenia risk is greater among interneuron-related genes, we examined all gene bins 368 
examined and found that the enrichment of schizophrenia genetic risk decreased as gene bins became 369 
less spatially correlated with PVALB (r(18)=-0.65, p=0.0017), but not SST (r(18)=-0.39, p=0.09; Figure 370 
6a).  371 

To test whether polygenic risk for schizophrenia influences cortical RSFA, we calculated a 372 
schizophrenia polygenic risk score (SCZ-PRS)60 using genotyped variants from individuals in the UK 373 
Biobank imaging sample. Across the data-derived RSFA clusters, SCZ-PRS negatively predicted RSFA in 374 
the visual cluster (Benjamini-Hochberg corrected q=0.016; Figure 6b; GWAS threshold p<1.0), as well as 375 
somato/motor (q=0.070) and prefrontal (q=0.097) clusters at trend-levels. Consistent with the 376 
hypothesized link between PVALB interneurons and psychotic illness, the relationship between RSFA 377 
and polygenic schizophrenia risk was significantly negatively correlated to the topography of PVALB 378 
expression across cortex (r(337)=-0.43, p≤2.2e-16; Figure 6c). That is, regions where SCZ-PRS most 379 
negatively predicted RSFA corresponded to areas with the greatest PVALB expression (e.g. motor and 380 
visual parcels). This relationship remained significant after controlling for the overall SNP-wise heritability 381 
of each parcel (b=-.38, t(336)=-7.48, p=6.73e-13), indicating that the effect is independent of parcel-wise 382 
explainable genetic variance. Comparing the RSFA-schizophrenia polygenic risk map to all genes, 383 
PVALB was the among the top 0.0034% negatively correlated expression profiles (72 out of 20,738), 384 
showing that this relationship is not obligated by globally negative relationships between gene expression 385 
and schizophrenia risk RSFA effects. Ontological enrichment analysis further revealed that the top 500 386 
genes correlated with PVALB in the AHBA data contained genes associated to schizophrenia and bipolar 387 
disorder, neuronal signaling, and gated channel activity (Table 1). Together, these data suggest that 388 
schizophrenia-related genetic variants cluster within cell types, particularly parvalbumin interneurons, 389 
leading to differential functional disruption across cortex.  390 
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 391 
Figure 6. Schizophrenia polygenic risk predicts brain function and tracks PVALB expression. (a) 392 
Genes were rank-ordered by cortical spatial correlation to SST and PVALB, then divided into 500 gene 393 
bins. MAGMA competitive gene set analysis revealed enrichment of polygenic risk for schizophrenia in 394 
the top PVALB (p=0.032), but not the top SST (p=0.62) set. Enrichment decreased across ordered bins 395 
for PVALB (r=-0.65, p=0.0017) and SST (r=-0.39, p=0.09). (b) Schizophrenia polygenic risk negatively 396 
predicts RSFA within the visual (q=0.016) cluster, as well as somato/motor (q=0.070) and prefrontal 397 
(q=0.097) clusters at trend-levels. (f) Parcel-wise prediction of RSFA by the schizophrenia PRS 398 
significantly negatively correlated with cortical expression of PVALB (r=-0.43, p=2.2e-16). 399 
SCZ=schizophrenia; PRS=Polygenic Risk Score; RSFA=Resting State Functional Amplitude. *=q£0.05.  400 
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 Category ID Name p q FDR-BH Hits Genes in GO 

SST 

GO: BP GO:0099536 synaptic signaling 1.08e-5 2.16e-2 37 687 

GO: BP GO:0099537 trans-synaptic signaling 1.95e-5 2.16e-2 36 678 

GO: CC GO:0097458 neuron part 3.35e-6 6.31e-4 68 1545 

GO: CC GO:0045202 synapse 3.3e-4 1.69e-2 39 870 

PVALB 

GO: MF GO:0005261 cation channel activity 3.33e-12 1.74e-9 33 306 

GO: MF GO:0005249 voltage-gated potassium channel activity 1.33e-10 1.69e-8 17 91 

GO: BP GO:0071805 potassium ion transmembrane transport 2.75e-10 6.61e-7 23 181 

GO: BP GO:0098655 cation transmembrane transport 9.85e-9 7.88e-6 47 738 

GO: CC GO:0034703 cation channel complex 1.04e-10 5.07e-8 23 176 

GO: CC GO:0034702 ion channel complex 3.03e-10 5.07e-8 29 291 

Disease C0036341 Schizophrenia 1.93e-7 7.27e-4 70 1561 

 401 
Table 1. Enrichment terms for interneuron-correlated genes. Ontological enrichment analyses were 402 
conducted with ToppGene on the 500 genes used to generate the PVALBSNP and SSTSNP lists.   403 
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Discussion 404 
Integrating genetic, transcriptional, and neuroimaging data, we demonstrate that spatial 405 

distributions of interneurons are stereotyped across species and development, align to the topographic 406 
distribution of functional brain networks, and underlie a substantial portion of the heritable aspects of 407 
resting-state functional amplitude, a measure of in vivo brain activity. Somatostatin- and parvalbumin- 408 
interneuron markers were negatively spatially correlated across cortex, a relationship that was robust in 409 
early developmental periods in humans and evolutionarily conserved in non-human primates (Figure 1). 410 
Stereotyped patterns of SST and PVALB expression were observed in subcortex (Figure 2), with SST 411 
and PVALB differentially expressed within distinct limbic and somato/motor functional networks linking 412 
cortex, striatum, and thalamus (Figure 3), respectively. Computational models theorize that interneuron 413 
ratios underlie regional differences in cortical brain function13. Providing empirical support for this 414 
hypothesis, regional differences in SST/PVALB expression in post-mortem brain tissue align with spatial 415 
variability in resting-state functional amplitude in the general population (Figure 4). Suggesting the 416 
functional relevance of this spatial relationship, genetic polymorphisms linked to PVALB interneurons 417 
accounted for an enriched proportion of heritable variance underling cortical signal amplitude (Figure 5). 418 
Critically, the amount of variance explained by PVALB SNPs positively tracked spatial expression of 419 
PVALB, suggesting that common genetic polymorphisms influence brain function in a cell-type specific 420 
and regionally variable manner. Implicating genetic differences among interneurons in schizophrenia, 421 
schizophrenia-related polygenic risk was enriched among genes co-expressed with interneurons, and 422 
predicted reduced resting-state functional amplitude across cortex in a manner that tracked the spatial 423 
landscape of PVALB gene expression (Figure 6).  424 

Adaptive functioning depends on the brain’s capacity to integrate information across timescales. 425 
Higher-order cognition often requires information accumulation over time, whereas sensorimotor 426 
processing entails rapid adaption to changing external stimuli18,47,65,66. These informational demands are 427 
met, in part, through the hierarchical organization of anatomic and functional connections in cortex, as 428 
well cytoarchitectural gradients that underlie regional specialization12,61. Our data indicate that interneuron 429 
ratios, as indexed by SST and PVALB expression, are an important feature underlying regional 430 
differences in brain function (Figure 4). Due to unique electrical and synaptic properties of somatostatin 431 
and parvalbumin interneurons, relative shifts in their density can alter the balance of inhibitory control13. 432 
SST interneurons synapse onto dendrites of pyramidal neurons to gate incoming cortical signals, 433 
whereas PVALB interneurons provide perisomatic inhibition that is well-suited for feedback inhibition and 434 
output regulation2. Computational models suggest that increased dendritic (i.e. SST) over perisomatic (i.e. 435 
PVALB) inhibition results in more robust filtering of distracting information, allowing for greater recurrent 436 
excitation in association cortex for complex tasks requiring integration of information over time20. 437 
Conversely, sensorimotor regions may benefit from fast responses and lower recurrent excitation to adapt 438 
to rapidly changing inputs17, which could be facilitated by direct inhibitory signals from parvalbumin-439 
expression interneurons.  440 
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Our analyses provide molecular genetic support for a relationship between parvalbumin 441 
interneurons and the hemodynamic BOLD signal. A wealth of evidence indicates that BOLD signal most 442 
tightly couples to gamma oscillations (30-80 Hz) relative to other frequency domains21-25. Individual 443 
differences of GABA in visual cortex predict both gamma oscillations and BOLD amplitude62, a 444 
relationship that animal work suggests is primarily driven by parvalbumin interneurons19. Here, we provide 445 
initial evidence in humans for the preferential influence of parvalbumin interneurons on fMRI signal. For 446 
instance, polygenic variation among parvalbumin correlated genes explained upwards of 18% of the 447 
heritable variance in RSFA in visual cortex.  448 

Schizophrenia is among the most heritable forms of psychiatric illness (ℎ%=81%)63, underscoring 449 
the pressing need to map polygenic variation to illness-related brain phenotypes and associated risk 450 
factors. Converging lines of evidence point to GABAergic abnormalities as a cardinal feature of the 451 
disorder64, highlighting a particular role of parvalbumin interneurons26. Patients with schizophrenia exhibit 452 
reduced levels of GAD67, an enzymatic precursor of GABA65, and are characterized by parvalbumin 453 
interneurons with atypical perineuronal nets66, dysregulated mitochondrial gene transcription67, and 454 
reduced potassium signaling channels68 relative to healthy populations. These abnormalities are thought 455 
to underlie disrupted gamma-band oscillations and working memory deficits which are a hallmark of the 456 
disorder64. Linking these observations, we demonstrate here that polygenic risk for schizophrenia is 457 
increased among genes that are spatially correlated to PVALB (Figure 6a), expanding upon cell 458 
transcriptomic work implicating cortical interneurons as an illness marker53. Consistent with a relationship 459 
between schizophrenia-linked genetic vulnerability and brain function, we document a negative 460 
association between individual polygenic schizophrenia risk and resting-state functional amplitude in a 461 
large population-based sample (Figure 6b). Importantly, the topography of these effects follows spatial 462 
profile of PVALB expression across cortex (Figure 6c), highlighting the potential role of parvalbumin 463 
interneurons in mediating brain-based intermediate phenotypes associated with illness risk.  464 

Disruption of excitatory/inhibitory balance is thought to reflect a cross-diagnostic marker of 465 
psychiatric illness69. For instance, decreased expression of parvalbumin cell markers is evident in both 466 
schizophrenia and bipolar disorder70, while major depressive disorder (MDD) is marked by selective 467 
reductions in somatostatin interneurons71. Delineating the region-specific functional roles of cortical 468 
interneuron subtypes will provide biological insight into cross-diagnostic patterns of both behavior and 469 
brain function. With regard to depressed mood and negative affect, modulation of cortical somatostatin 470 
interneurons can causally influence anxiety- and depressive-like behavioral phenotypes in rodents7,72. In 471 
line with this observation, we observe the greatest expression of somatostatin within a distributed limbic 472 
network linking mPFC, NAcc, and mediodorsal thalamus (Figure 3) that processes reward and affective 473 
information42. Somatostatin-biased cortical regions (ACC, mPFC, and insula) also correspond to areas 474 
where cortical thinning has been observed in patients with MDD73,74 and individuals reporting elevated 475 
negative affect75. These converging lines of evidence support the hypothesized role of somatostatin 476 
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neurons in mood-related psychiatric symptoms71, which should be explored in future work on the 477 
molecular and neural underpinnings of affective illness.  478 

The present findings should be interpreted in light of several limitations. First, we use single 479 
molecular markers to infer the relative presence of SST and PVALB interneurons, which are not sensitive 480 
to morphological and physiological differences among interneuron subgroups2. More nuanced inference 481 
of cellular spatial distributions should be conducted as single-cell transcriptomic atlases are developed in 482 
humans. Further, we employ a “guilt-by-association” logic to nominate interneuron related gene sets. 483 
While we cannot conclude that genes within each identified interneuron group directly influence 484 
interneuron function, similar correlation-based nomination approaches have been shown to correspond 485 
well with a priori defined gene groups76. The examination of enrichment terms (Table 1; Supplemental 486 
Information) allows for more precise understanding of the biological processes contributing to our results. 487 
Lastly, the in vivo imaging and genetic analyses focus on an aging population of White/non-Latino 488 
individuals. As genetic effects can vary across ethnic and demographic subgroups77,78, the stability of the 489 
results reported here should be examined across diverse populations.  490 

Inherited genetic variation shapes brain function within and across individuals79,80. There is 491 
pressing need to identify specific molecular genetic mechanisms of human brain function to expand our 492 
biological understanding of cognition, behavior, and associated risk for psychiatric illness. Analyses of 493 
spatially-dense, whole-genome, expression atlases increasingly reveal transcriptional correlates of brain 494 
function50, structure12,87-89, functional connectivity8-10, and psychiatric illness81. With the emergence of 495 
large-scale imaging genetic data27, it is now possible to bridge structural genetic, transcriptional, and 496 
large-scale neuroimaging brain phenotypes. Here, we leverage these data to show that interneuron 497 
marker distributions correlate with cortical signal amplitude, align to distributed functional networks, 498 
underlie regional differences in heritable brain function, and associate with genetic risk for schizophrenia 499 
in the general population.  500 
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Methods 501 
Allen Human Brain Atlas.  502 

Publicly available human gene expression data from six postmortem donors (1 female), aged 24–503 
57 years of age (42.5±13.38) were obtained from the Allen Institute33. Data reflect the microarray 504 
normalization pipeline implemented in March 2013 (http://human.brain-map.org) and analyses were 505 
conducted according to the guidelines of the Yale University Human Subjects Committee. Microarray 506 
probes from eight overarching ontological categories were selected: cortex, dorsal thalamus, striatum, 507 
globus pallidus, hypothalamus, hippocampus proper (i.e. CA1-CA4), amygdala, and the combined 508 
substantia nigra and ventral tegmentum (see Supplemental Information). For genes with duplicate 509 
probes, the collapseRows function82 was used in R to select the probe with the highest mean expression 510 
(connectivityBasedCollapsing=FALSE), resulting in 20,738 unique mRNA probes. ComBat was used to 511 
normalize expression across donors before combining data from each brain83. 512 
 Individual cortical tissue samples were mapped to each AHBA donor’s Freesurfer derived cortical 513 
surfaces, downloaded from Romero-Garcia and colleagues84. Native space midthickness surfaces were 514 
transformed to a common fsLR32k group space while maintaining the native cortical geometry of each 515 
individual donor. The native voxel coordinate of each tissue sample was mapped to the closest surface 516 
vertex using tools from the HCP workbench85. Microarray expression of each gene was mean- and 517 
variance-normalized (i.e., divided by standard deviation) separately for each of the eight analyzed 518 
regions, revealing relative expression differences within cortical and subcortical territories. For region-519 
wise expression analyses (e.g. Figure 1c), ontological categories from the AHBA were used to calculate 520 
the median, min-max, and interquartile range of relative expression in each region. Detailed information 521 
about the analyzed regions is provided in the Supplemental Information. Cortical data visualization was 522 
carried out using wb_view from the HCP workbench85. The MNI locations of striatal and thalamic samples 523 
were cross-referenced to functional atlases of Choi and colleagues39 and Hwang and colleagues41. With 524 
AFNI, a single voxel (1 mm3) region of interest (ROI) was generated at the MNI location of each sample. 525 
A functional network label was assigned if the ROI fell within a volumetric parcel. If the sample did not 526 
overlap with the functional atlas, the associated ROI was expanded to 2 mm3 and the network with the 527 
most overlapping voxels in the ROI was assigned. If the expanded 2 mm3 ROI did not overlap, the 528 
process was repeated using a 3 mm3 ROI. A sample was omitted from analysis if the 3 mm3 ROI did not 529 
overlap with the associated functional atlas. Functional sub-regions with 3 or fewer samples were 530 
excluded from analyses.  531 
 532 
UKB imaging processing 533 
 Minimally preprocessed resting-state fMRI data from the UK Biobank were analyzed, reflecting 534 
the following preprocessing steps: motion correction with MCFLIRT86, grand-mean intensity normalization, 535 
highpass temporal filtering, fieldmap unwarping, and gradient distortion correction. Noise terms were 536 
identified and removed using FSL ICA+FIX87. Full information on the UKB preprocessing is published27. 537 
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Additional processing was conducted in AFNI88 and consisted of 3dDespike, resampling to MNI152 space 538 
using the UKB generated linear and nonlinear transforms, FWHM blur of 4.0mm, regression of CSF,WM, 539 
and global resting state signals, and first and second order trend removal. Voxel-wise RSFA maps were 540 
generated with 3dRSFC and then averaged within each of the approximately symmetrical 400 volumetric 541 
parcels from the 7-Network parcellation of Schaefer and colleagues47. Due to signal blurring between 542 
lateral striatum and insular cortex, resting-state analyses reflect an additional local white-matter 543 
regression against gray matter using AFNI anaticor. Imaging analyses were conducted in volume, but 544 
visualized on the cortical surface. Resting-state functional connectivity between striatum, thalamus, and 545 
cortex was estimated using AFNI’s 3dNetCorr, which calculated the Fisher-Z transformed correlation 546 
values of timeseries across the Choi 7-region striatal atlas39, the Hwang 9-region thalamic atlas41, and the 547 
Schaefer 400-region cortical atlas47.  548 
 A total of 13,236 UKB subjects were processed through the imaging pipeline. Subjects with mean 549 
run-wise frame-to-frame head motion greater than 0.20mm, and inverted rsfMRI SNR greater than 3 550 
standard deviations above the mean were removed. After filtering for White/Non-Latino subjects with 551 
usable genetic data, cryptic relatedness <0.025, and conducting row-wise deletion for the variables age, 552 
sex, height, weight, BMI, combined gray/white matter volume, combined ventricular/CSF volume, diastolic 553 
and systolic blood pressure, run-wise rsfMRI motion, rsfMRI inverse SNR, T1 inverse SNR, and UK 554 
Biobank assessment center, 9,627 subjects remained for analyses (percent female=54.47, mean 555 
age=63.33 SD=7.45, min/max age=45-80).   556 
  557 
UKB genetics 558 
 UK Biobank genotype data was filtered to include only White/Non-Latino subjects with imaging 559 
data passing the quality control thresholds described above. Plink v2.00 was used to remove samples 560 
with missingness >0.10, SNPs with minor-allele frequency <0.05, Hardy-Weinberg equilibrium <1x10-6, 561 
and call rate <0.02, resulting in 337,356 autosomal variants89. GCTA software was used to calculate a 562 
genetic relatedness matrix to remove individuals with cryptic relatedness more than 0.025, leaving 563 
N=9,627 subjects for analysis49. Ten genetic principal components were then calculated for use as 564 
covariates in polygenic risk score and heritability analyses.  565 
 566 
RSFA between-subjects clustering and heritability  567 

Voxel-wise RSFA data from the (N=9,627) UK Biobank sample was averaged within each of 400 568 
roughly symmetric volumetric ROIs from the 7-Network cortical parcellation of Schaefer and colleagues47. 569 
Parcel-wise RSFA values were residualized for the effect of age, sex, age2, ageXsex, age2Xsex, height, 570 
weight, BMI, combined gray/white matter volume (normed for head size), combined ventricular/CSF 571 
volume (normed for head size), diastolic and systolic blood pressure, run-wise rsfMRI motion, rsfMRI 572 
inverse SNR, T1 inverse SNR, and UK Biobank assessment center. Hierarchical clustering of residualized 573 
RSFA estimates was conducted using R in order to group regions with similar between-subject patterns 574 
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of covariation. A 6-parcel RSFA clustering solution was selected. Raw RSFA values were then averaged 575 
across parcels falling within the same data-derived between-subjects cluster for use in heritability 576 
analyses. SNP-wise heritability of RSFA was estimated with genotyped data using GCTA-REML software. 577 
Age, sex, age2, height, weight, BMI, combined normed gray/white matter volume, combined normed 578 
ventricular/CSF volume, diastolic and systolic blood pressure, run-wise rsfMRI motion, rsfMRI inverse 579 
SNR, T1 inverse SNR, UK Biobank assessment center, and 10 genetic principal components were 580 
included as covariates.  581 

Partitioned heritability analyses were conducted for the six RSFA clusters and for each of the 400 582 
individual cortical parcels. Using AHBA expression data, genes were rank ordered by their spatial cortical 583 
correlation to SST and PVALB. Genes without Entrez IDs were removed. The BioMart package90 was 584 
used to identify each gene’s transcription start and stop sites (±5000 base pairs) according to the 585 
GRCh37-hg19 genome assembly. If no UKB genotyped variants fell within the intragenic regions of a 586 
particular gene, that gene was excluded from analyses. Otherwise, the gene was cross-referenced to 587 
cortical eQTL databases from the NIH GTEx project55 and CommonMind consortium54. Intragenic (±5000 588 
base pairs) and eQTL SNPs associated with the top 500 SST (NSNP=8,612) and PVALB (NSNP=9,819) 589 
correlated genes were used for partitioned heritability analyses, respectively denoted SSTSNP and 590 
PVALBSNP. Genetic-relatedness matrices for the SSTSNP and PVALBSNP partitions were generated, as well 591 
as one for all remaining genotyped SNPs. RSFA heritability accounted for by each genetic relatedness 592 
matrix was estimated simultaneously for each of the three partitions using GCTA49. Partitioned heritability 593 
was then defined as the ratio phenotypic variance explained by either the SSTSNP or PVALBSNP, divided 594 
by the total phenotypic variance. To calculate the significance of individual partitions, we consider the 595 
Wald test statistic against the null of ℎ+,-.% = 0, which follows a half-half mixture of 𝜒2% (a 𝜒% distribution 596 
with a probability mass at zero) and 𝜒3% (a 𝜒% distribution with 1 degree of freedom).	Enrichment values 597 
were calculated to determine if the proportion of variability explained by a partition was greater than the 598 
proportion of variants within the partition, defined as: 599 

𝑒𝑛𝑟𝑖𝑐ℎ+,-. =
(ℎ+,-.% /	ℎ.<.,=% )
(𝑔+,-./	𝑔.<.,=)

	 600 

where ℎ+,-.%  is the heritable variance explained by the SNP partition (e.g. PVALBSNP), ℎ.<.,=%  is the 601 
heritable variance explained by all partitions, 𝑔+,-. is the number of variants within the SNP partition, and 602 
𝑔.<.,= is the total number of genotyped SNPs. Standard error for SNP partitions were similarly scaled by 603 
the genome partition denominator. When calculating RSFA partitioned heritability across individual 604 
parcels (i.e. Figure 5), parcels with outlier partitioned heritability (i.e. PVALBPART, SSTPART) and 605 
expression (i.e. PVALB, SST) greater than 4 standard deviations from the mean were excluding, resulting 606 
in 328 observations across cortex.  607 

To assess whether schizophrenia polygenic risk was enriched among SST and PVALB correlated 608 
gene sets, competitive gene-set analysis was conducted using MAGMA59. Rank-ordered SST and PVALB 609 
genes were divided into twenty non-overlapping 500-gene bins. Schizophrenia summary statistics from 610 
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the GWAS of Ripke and colleagues was used58. Intragenic variants were defined using a ±5000 base pair 611 
window, and gene set enrichment was estimated simultaneously across all 40 gene bins, revealing 612 
whether a particular bin is more associated with polygenic risk for schizophrenia than all other genes. 613 
Polygenic risk for schizophrenia58 was calculated using PRSice60. Only the top-SNP from the major 614 
histocompatibility complex was used for generation of individual risk scores. Benjamani-Hochberg False-615 
discovery rate correction was conducted separately for each GWAS p-value threshold examined (e.g. 616 
correction for 6 tests at the GWAS p<1.0 threshold).  617 
 618 
NIH Blueprint processing 619 
 Publicly available microarray data from six adult macaque primates (3 Female) were downloaded 620 
from the Gene Expression Omnibus website (https://www.ncbi.nlm.nih.gov/geo; accession number 621 
GSE31613). Expression values were converted from log10 to log2. Data from two macaques (1 Female) 622 
were excluded due to sparse sampling across cortex. Samples from the following 10 cortical regions were 623 
included in our analyses: OFC, ACC, medial temporal lobe, temporal area, DLPFC, A1C, S1C, M1C, V1, 624 
and V2. The collapseRows function82 was used in R to select the probe with the highest mean expression 625 
and ComBat was used to remove residual donor effects. SST and PVALB expression were mean and 626 
variance-normalized to reveal relative expression differences across cortex. 627 
 628 
BrainSpan processing 629 
 Publicly available RNAseq reads per kilobase per million (RPKM) data from the Brainspan atlas 630 
were used to characterize patterns of interneuron-marker gene expression across development. Cortical 631 
tissue samples were analyzed from early fetal [8-12 post-conception weeks (pcw), N=10, samples=88], 632 
early/mid fetal (13-21 pcw, N=10, samples=88), late fetal (24-37 pcw; N=5, samples=27), early infancy (4 633 
months; N=3, samples=22), late infancy (10 months; N=1, samples=8), early childhood (1-4 yrs; N=5, 634 
samples=41), mid/late childhood (8-11 yrs; N=2, samples=30), adolescence (13-15 yrs; N=2, 635 
samples=14), and adulthood (18-40 yrs; N=8, samples=85) developmental. RNAseq probes without 636 
entrez IDs were excluded and duplicated probes were removed by selecting the probe with the highest 637 
mean expression. Data was log2 transformed and the effect of donor was removed separately for each 638 
age group using ComBat. Gene expression was then mean- and variance-normalized across cortical 639 
tissue samples separately for each developmental stage. When multiple ages were present in a 640 
development stage, age was included as a covariate in a linear regression predicting normalized SST 641 
expression from normalized PVALB expression.  642 
 643 
Code Availability 644 
 Code used for these analyses will be made available upon publication at the following url: 645 

https://github.com/HolmesLab/Anderson2019_interneuron   646 
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 678 
 679 
Supplemental Figure 1. Sample and parcel-wise expression of interneuron markers SST and PVALB.  680 
 681 
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 682 
Supplemental Figure 2. Z-transformed expression values of SST and PVALB for subregions of (a) 683 
striatum, (b) thalamus, (c) hippocampus, (d) globus pallidus, (e) amygdala, (f) hypothalamus, and (g) 684 
combined ventral tegmentum and substantia nigra. Regions are ordered by relative median expression of  685 
SST to PVALB.  Circle=median, thick lines=interquartile range, thin line=minimum and maximum.   686 
 687 
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 688 
Supplemental Figure 3. Cortical resting-state functional correlation profile for each of the 5 striatal 689 
parcels39 with analyzable AHBA expression data. Averaged maps were calculated using data from 9,627 690 
participants from the UK Biobank.   691 
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 692 
Supplemental Figure 4. Cortical resting-state functional correlation profile for each of the 6 thalamic 693 
parcels with analyzable AHBA expression data41. Averaged maps were calculated using data from 9,627 694 
participants from the UK Biobank.  695 
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 696 
Supplemental Figure 5. SNP-wise heritability for each of the 400 bi-hemispheric cortical parcels from 697 
Schaefer and colleagues47.   698 
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