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ABSTRACT 

Background 

Microarray technologies have identified imbalances in the expression of specific genes and biological 

pathways in Alzheimer’s disease (AD) brains. However, there is a lack of reproducibility across 

individual AD studies, and many related neurodegenerative and mental health disorders exhibit 

similar perturbations. We are yet to identify robust transcriptomic changes specific to AD brains.  

Methods and Results 

Twenty-two AD, eight Schizophrenia, five Bipolar Disorder, four Huntington's disease, two Major 

Depressive Disorder and one Parkinson's disease dataset totalling 2667 samples and mapping to four 

different brain regions (Temporal lobe, Frontal lobe, Parietal lobe and Cerebellum) were analysed. 

Differential expression analysis was performed independently in each dataset, followed by meta-

analysis using a combining p-value method known as Adaptively Weighted with One-sided 

Correction. This identified 323, 435, 1023 and 828 differentially expressed genes specific to the AD 

temporal lobe, frontal lobe, parietal lobe and cerebellum brain regions respectively. Seven of these 

genes were consistently perturbed across all AD brain regions with SPCS1 gene expression pattern 

replicating in RNA-seq data. A further nineteen genes were perturbed specifically in AD brain regions 

affected by both plaques and tangles, suggesting possible involvement in AD neuropathology. 

Biological pathways involved in the “metabolism of proteins” and viral components were 

significantly enriched across AD brains. 

Conclusion 

This study solely relied on publicly available microarray data, which too often lacks appropriate 

phenotypic information for robust data analysis and needs to be addressed by future studies. 

Nevertheless, with the information available, we were able to identify specific transcriptomic 
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changes in AD brains which could make a significant contribution towards the understanding of AD 

disease mechanisms and may also provide new therapeutic targets. 

INTRODUCTION 

Alzheimer’s disease (AD) is the most common form of dementia affecting over 44 million individuals 

worldwide, and numbers are expected to triple by 2050 [1]. The hallmark of the disease is 

characterised by the abnormal brain accumulation of amyloid-β (Aβ) protein and 

hyperphosphorylated tau filaments, which forms structures known as plaques and tangles 

respectively. The accumulation of these proteins contributes to the loss of connections between 

neurone synapses, leading to the loss of brain tissue and disruption of normal cognitive functions.  

As AD progresses, the spread of plaques and tangles in the brain usually occurs in a predictable 

pattern and can begin up to 18 years prior to the onset of clinical symptoms [2]. In the earliest stages 

of the disease, plaques and tangles form in areas of the brain primarily involved in learning and 

memory, specifically the hippocampus and entorhinal cortex, both situated in the temporal lobe (TL) 

region [3]. Next, the frontal lobe (FL), a region involved in voluntary movement, is affected, followed 

by the parietal lobe (PL), a region involved in processing reading and writing. In the later stage of the 

disease, the occipital lobe, a region involved in processing information from the eyes, can become 

affected, followed by the cerebellum (CB), a region which receives information from the sensory 

systems and the spinal cord to regulates motor movement. Nerve cell death, tissue loss and atrophy 

occur throughout the brain as AD progresses, leading to the manifestation of clinical symptoms 

associated with loss of normal brain function. However, not all brain regions are neuropathologically 

affected in the same manner. The CB, which only accounts for 10% of the brain but contains over 

50% of the brains total neurones, is often neglected in AD research because it is generally 

considered to be partially spared from the disease as plaques are only occasionally seen but tangles 

are generally not reported [4] [5]. 
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The histopathological spread of the disease is well documented, and with the advent of high 

throughput genomics approaches, we are now able to study the transcriptomic and biological 

pathways disrupted in AD brains. Microarrays can simultaneously examine thousands of genes, 

providing an opportunity to identify imbalances in the expression of specific genes and biological 

pathways. However, microarray reproducibility has always been questionable, with replication of 

differentially expressed genes (DEG’s) very poor [6]. For example, two independent microarray 

transcriptomic studies performed differential expression analysis in the hippocampus of AD brains. 

The first study by Miller et al. identified 600 DEG’s [7], and a similar study by Hokama et al. identified 

1071 DEG’s [8]. An overlap of 105 DEG’s exist between the two studies; however, after accounting 

for multiple testing, no gene was replicated between the two studies. The Miller study consisted of 7 

AD and 10 control subjects expression profiled on the Affymetrix platform while the Hakoma study 

consisted of 31 AD and 32 control subjects expression profiled on the Illumina platform. Replication 

between the Illumina and Affymetrix platform has been shown to be generally very high [9]; 

therefore, the lack of replication between the two studies is probably down to a range of other 

factors including low statistical power, sampling bias and disease heterogeneity. 

Unlike DEG’s, replication of the molecular changes at a pathway level are more consistent and have 

provided insights into the biological processes disturbed in AD. Numerous studies have consistently 

highlighted disruptions in immune response [10] [11] [12] [13], protein transcription/translation [10] 

[11] [14] [15] [16] [17], calcium signalling [10] [18] [19], MAPK signalling [16] [7], various metabolism 

pathways such as carbohydrates [16], lipids [16] [20], glucose [21] [22] [17], and iron [11] [23], 

chemical synapse [18] [7] [19] and neurotransmitter pathways [11] [18] [19]. However, many of 

these pathways have also been suggested to be disrupted in other brain-related disorders. For 

example, disruptions in calcium signalling, MAPK, chemical synapse and various neurotransmitter 

pathways have also been implicated in Parkinsons’s Disease (PD) [24] [25]. In addition, glucose 

metabolism, protein translation, and various neurotransmission pathways have also been suggested 
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to be disrupted in Bipolar Disorder (BD) [26] [27] [28] [29]. Although the biological disruptions 

involved in AD are steadily being identified, many other neurodegenerative and mental disorders are 

showing similar perturbations. We are yet to identify robust transcriptomic changes specific to AD 

brains. 

In this study, we combined publicly available microarray gene expression data generated from AD 

human brain tissue and matched cognitively healthy controls to conduct the most extensive AD 

transcriptomic microarray meta-analyses known to date. We generate AD expression profiles across 

the temporal lobe, frontal lobe, parietal lobe and cerebellum brain regions. We further refine each 

expression profile by removing perturbations seen in other neurodegenerative and mental disorders 

(PD, BD, Schizophrenia [SCZ], Major Depressive Disorder [MDD] and Huntington’s Disease [HD]) to 

decipher specific transcriptomic changes occurring in human AD brains. These AD-specific brain 

changes may provide new insight and a better understanding of the disease mechanism, which in 

turn could provide new therapeutic targets for preventing and curing AD.  

MATERIALS AND METHODS 

Selection of publicly available microarray studies 

Publicly available microarray gene expression data was sourced from the Accelerating Medicines 

Partnership-Alzheimer’s Disease AMP-AD (doi:10.7303/syn2580853, doi:10.1038/ng.305, 

doi:10.1371/journal.pgen.1002707, doi:10.1038/ng.305, doi:10.1038/sdata.2016.89, 

doi:10.1038/sdata.2018.185) and ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) in June 2016. 

For a study to be selected for inclusion, the data had to (1) be generated from a neurodegenerative 

or mental health disorder, (2) be sampled from human brain tissue, (3) have gene expression 

measured on either the Affymetrix or Illumina microarray platform, (4) contain both diseased and 

suitably matched healthy controls in the same experimental batch and (5) contain at least 10 

samples from both the diseased and control group. 
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Microarray gene expression data pre-processing 

Data analysis was performed in RStudio (version 0.99.467) using R (version 3.2.2).  All data analysis 

scripts used in this study are available at https://doi.org/10.5281/zenodo.823256. In brief, raw 

Affymetrix microarray gene expression data was “mas5” background corrected using R package 

“affy” (version 1.42.3) and raw Illumina microarray gene expression data Maximum Likelihood 

Estimation (MLE) background corrected using R package “MBCB” (version 1.18.0). Studies with 

samples extracted from multiple tissues were separated into tissue-specific matrices, log2 

transformed and then Robust Spline Normalised (RSN) using R package “lumi” (version 2.16.0).  

BRAAK staging is a measure of AD pathology and ranges from I-VI. In general, stages I-II, III-IV and V-

VI represent the “low likelihood of AD”, “probable AD” and “definite AD” respectively [30]. To 

maintain homogeneity within the sample groups and to be able to infer pathological related genetic 

changes, if BRAAK staging was available, clinical AD samples with BRAAK scores ≤ 3 or clinical control 

samples with BRAAK scores ≥ 3 were removed from further analysis. 

Gender was predicted using the R package “massiR” (version 1.0.1) and used to subset the data into 

four groups based on diagnosis (case/control) and gender (male/female). Next, probes below the 

90th percentile of the log2 expression scale in over 80% of samples were deemed “not reliably 

detected” and were excluded from further analysis to eliminate noise [31] and increase power [32]. 

Publicly available data is often accompanied by a lack of sample processing information, making it 

impossible to adjust for known systematic errors introduced when samples are processed in multiple 

batches, a term often known as “batch effects”. To account for both known and latent variation, 

batch effects were estimated and removed using the Principal Component Analysis (PCA) and 

Surrogate Variable Analysis (SVA) using the R package “sva” (version 3.10.0). Gender and diagnosis 

information were used as covariates in sva when correcting for batch effects. Outlying samples were 

iteratively identified and removed from each gender and diagnosis group using fundamental 

network concepts described in [33]. Platform-specific probe ID’s were converted to Entrez Gene ID’s 
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using the BeadArray corresponding R annotation files (“hgu133plus2.db”, “hgu133a.db”, 

“hgu133b.db”, “hugene10sttranscriptcluster.db”, “illuminaHumanv4.db”, “illuminaHumanv3.db”) 

and differential expression analysis was performed within each dataset using the R package “limma” 

(version 3.20.9). 

Finally, study compatibility analysis was investigated through the R package “MetaOmics” (version 

0.1.13). This package uses differentially expressed genes (DEGs), co-expression and enriched 

biological pathways analysis to generate six quantified measures that are used to generate a PCA 

plot. The direction of each Quality Control (QC) measure is juxtaposed on top of the two-

dimensional PC subspace using arrows. Datasets in the negative region of the arrows were classed as 

outliers [34] and were removed from further analysis. 

Meta-analysis 

Datasets were grouped by the primary cerebral cortex lobes (TL, FL, PL) and the CB. Meta-analysis 

was performed using a “combining p-values” method known as “Adaptively Weighted with One-

sided Correction” (AW.OC), implemented through the R package “MetaDE” (version 1.0.5)[34]. A 

combining p-value method was chosen to address the biases introduced from different platforms. 

AW.OC was chosen  as it permits missing information across datasets which are introduced by 

combining data generated from different microarray platforms and expression chips. This avoids the 

need to subset individual datasets to common probes, which essentially allows for the maximum 

number of genes to be analysed. Furthermore, the method provides additional information on which 

dataset is contributing towards the meta-analysis p-value, and has been shown to be amongst the 

best performing meta-analysis methods for combining p-values for biological associations [35]. The 

meta-analysis method does not provide an overall directional change for each gene; therefore, the 

standard error (SE) was calculated from the DE logFC values of each gene across the AW assigned 

significant datasets and used for standard meta-summary estimate analysis using the R package 

“rmeta” (version 2.16). This served as the “meta expression” change in downstream analysis where 
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positive values represent a gene being up-regulated in AD and negative values as being down-

regulated in AD Selecting DE genes based on an arbitrary expression change significantly influences 

the interpretation of DE results [36]. At least half of differential expression based studies incorporate 

a fold change cut-off typically between 2-3, however, informative RNAs and expressed transcripts 

have been shown to have a fold change less than 2 [37], and genes with low fold change have been 

demonstrated to influence biological effects in signalling cascades and pathways [36]. In addition, 

gene expression is heavily influenced by tissue, and as this study performs meta-analysis across 

multiple inter-related tissues within larger brain compartments, we do not employ an arbitrary fold 

change cut-off to determine if a gene is differentially expressed, however, we do require the gene to 

be consistently expressed across these tissues. if a gene was significantly DE according to the meta-

analysis (FDR adjusted meta p-value ≤ 0.05), but at least one contributing dataset (according to 

AW.OC weights) had directional logFC discrepancy (i.e. up-regulated in one dataset and down-

regulated in another dataset), the gene was deemed to be discordant and was excluded from further 

analysis. This ensured we only captured robust, and consistently reproducible expression signatures.  

 

Generation of disease-specific meta-analysis expression profiles 

Meta-analysis was performed across all AD datasets, followed by a separate meta-analysis across the 

non-AD disorder datasets. Using these meta-analysis results we generated three expression profiles; 

(1) “AD expression profile”, (2) “AD-specific expression profile” and (3) “common neurological 

disorder expression profile”.  

The first expression profile, “AD expression profile”, is a direct result of the meta-analysis performed 

on AD studies, which represents the changes typically observed from an AD and cognitively healthy 

control study design. The second expression profile, deemed as the “AD-specific expression profile”, 

is produced by subtracting significantly DEG’s found in the non-AD meta-analysis results from the 

“AD expression profile”. This profile represents transcriptomic changes specifically observed in AD 
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and not in any other neurodegenerative or mental health disorder used in this study. The third 

expression profile, deemed as the “common neurological disorder expression profile”, represents 

genes which are significantly DE in all disorders used in this study, including AD. 

Replication of significant microarray genes in RNA-seq data 
 

The genes significantly DE and deemed to be of biological significance in this study were queried in 

the curated web-based database Agora (data version 9, accessible at 

https://agora.ampadportal.org), which provides expression change of genes in AD based on RNA-seq 

of 2100 human brain samples.  

Functional and gene set enrichment analysis  

Gene set enrichment analysis (GSEA), and Gene Ontology (GO) analysis was conducted using an 

Over-Representation Analysis (ORA) implemented through the ConsensusPathDB web platform 

(version 32) [38] in May 2017. ConsensusPathDB incorporates numerous well-known biological 

pathway databases including BioCarta, KEGG, Reactome and Wikipathways. The platform performs a 

hypergeometric test while integrating a background gene list, which in this case is a list of all the 

genes that pass quality control in this study, compiles results from each database and corrects for 

multiple testing using the false discovery rate (FDR) [38]. A minimum overlap of the query signature 

and database was set to 2, and a result was deemed significant if the q-value was ≤ 0.05.  

Network analysis 

Protein-protein interaction (PPI) networks were created by uploading the meta-analysis DEG lists 

(referred to as seeds in network analysis) along with their meta logFC expression values to 

NetworkAnalyst’s web-based platform http://www.networkanalyst.ca/faces/home.xhtml in June 

2017. The “Zero-order Network” option was incorporated to allow only seed proteins directly 

interacting with each other, preventing the well-known “Hairball effect” and allowing for better 

visualisation and interpretation [39]. Sub-modules with a p-value ≤ 0.05 (based on the “InfoMap” 
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algorithm [40]) were considered significant key hubs, and the gene with the most connections within 

this hub was regarded as the key hub gene. 

RESULTS 

The AD microarray datasets  

We Identified and acquired nine publicly available AD studies from ArrayExpress and AMP-AD, of 

which seven studies contained samples extracted from differing regions of the brain. The basic 

characteristics of each study and dataset are provided in 
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Tables 

Table 1. Separating the nine studies by brain regions resulted in 46 datasets. Here a “dataset” is 

defined by brain region and study origin. For example, ArrayExpress study E-GEOD-36980 consists of 

diseased and healthy samples extracted from three different tissues (temporal cortex, hippocampus 

and frontal cortex). All samples originating from the same tissue were classified as one dataset; 

therefore, study E-GEOD-36980 generated three datasets, representing the three different tissues.  

The 46 AD datasets contained both AD samples and healthy controls, and were assayed using seven 

different expression chips over two different microarray platforms (Affymetrix and Illumina) and 

consisted of a total 2718 samples before QC. Briefly, the MetaOmics analysis identified study 

syn4552659 as an outlier and was therefore removed from further analysis (see supplementary text 

1), resulting in 1501 samples (746 AD, 755 controls) in the remaining 22 datasets after QC 

Summary of the AD meta-analysis DEG counts 

The AD meta-analysis was performed on the 22 AD datasets and independently identified 

differentially expressed genes within the TL, FL, PL and CB brain regions. A summary of the number 

of datasets in each brain region and the number of significant DEG’s identified is provided in Table 

2Error! Reference source not found.. The complete DE results are provided in Supplementary Table 

1.  

The non-AD disorder microarray datasets  

Nine non-AD studies were identified and acquired, of which four studies consisted of samples 

generated from multiple disorders and brain regions. Separating the studies by disease and tissue 

equated to 21 datasets consisting of 8 SCZ, 6 BD, 4 HD, 2 MDD and 1 PD dataset with a total of 1166 

samples after QC. The demographics of the non-AD datasets is provided in 
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Table 3 

Summary of non-AD brain disorder meta-analyses DEG counts 

A second meta-analysis was performed on all non-AD disorders, and similarly to the AD meta-

analysis, datasets were grouped into the TL, FL, PL and CB brain regions. An overview of the non-AD 

meta-analysis results are provided in Table 4, and a complete list of DEG’s is provided in 

Supplementary Table 2.  SCZ and BD were the only disorders with expression data available across all 

four brain regions, and the frontal lobe brain region was the only region with expression data 

available from all non-AD disorders identified in this study.  

The meta-analysis expression profiles  

As described in the methods, three primary expression signatures were derived from the meta-

analyses for each of the four brain regions: - 1) “AD expression profile”, 2) “AD-specific expression 

profile” and 3) “common neurological disorder expression profile”. The numbers of significant DEG’s 

in each of the three expression signatures are provided in Table 5.  

The DEG’s from the “AD expression profile” in the TL brain region were not significantly DE in any 

other disorder included in this study. Hence, the “AD expression profile” and the “AD-specific 

expression profile” contained the same 323 genes for the TL brain region. The “AD-specific 

expression profile” for all four brain regions is provided in Supplementary Table 3. 

The “common neurological disorder expression profile” within the four brain regions consisted of 

very little or no DEG’s (except for the parietal lobe); hence, the downstream analysis did not yield 

any statistically significant results of biological relevance. We find little robust evidence of shared 

biology based on this data analysis and therefore, exclude all results generated from the “common 

neurological disorder expression profile” from this paper; however, we provide the complete list of 

significantly DEG’s within this profile in Supplementary Table 4. 
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Common differentially expressed genes across multiple brain regions in AD 

AD is known to affect all brain regions through the course of the disease, although not to the same 

degree, similar transcriptomic changes across all brain regions were deemed disease-specific, while 

perturbations in a single brain region were considered to be tissue-specific. We were particularly 

interested in disease-specific transcriptomic changes and therefore decided to focus on genes that 

were found to be consistently DE across multiple brain regions. 

Meta-analysis of the AD datasets identified a total of 2495 unique genes as significantly DE. The 

distribution of these genes across the four brain regions is shown in Figure 1. Figure 1orty-two genes 

were found to be perturbed across all four brain regions and can be grouped into three sets (Figure 

2). The first group (Gene set 1) are expressed consistently in the same direction across all four brain 

regions and can be regarded as disease-specific. The second group (Gene set 2) are expressed in the 

same direction in the TL, FL and PL, but expression is reversed in the CB brain region, a region 

suggested to be spared from AD pathology [4] [5]. This expression pattern suggests these genes may 

be involved in AD pathology. Finally, the third group (Gene set 3) are inconsistently expressed across 

the four brain regions are most likely tissue-specific or even false-positives.  

From the forty-two genes significantly differentially expressed across all brain regions, seven genes 

were DE in the same direction and belong to the “AD-specific expression profile”, that is, these seven 

genes (down-regulated NDUFS5, SOD1, SPCS1 and up-regulated OGT, PURA, RERE, ZFP36L1) were 

consistently perturbed in all AD brain regions and not in any other brain region of any other  

disorder used in this study and can be considered unique to AD brains. The expression of these 

seven genes across AD brains is shown in Figure 3. 

Differentially expressed genes in brain regions affected by AD histopathology 

In AD, the TL, FL and PL are known to be affected by both plaques and tangles, while the CB brain 

region is rarely reported to be affected. In addition to identifying genes DE across all brain regions 

and reversed in the CB brain region, we were also interested in genes perturbed in the TL, FL and PL 
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and not the CB. These genes may also play a role in general AD histopathology and could be new 

therapeutic targets in preventing or curing AD. 

Fifty-five genes were found to be significantly DE in TL, FL and PL but not the CB, of which sixteen 

were expressed in the same direction and were not DE in the other brain disorders used in this 

study. Ten of these genes (ALDOA, GABBR1, TUBA1A, GAPDH, DNM3, KLC1, COX6C, ACTG1, CLTA, 

SLC25A5) were consistently down-regulated, and six genes (PRNP, FDFT1, RHOQ, B2M, SPP1, WAC) 

were consistently up-regulated in AD.  

Furthermore, from the forty-two genes identified as significantly DE across all four AD brain regions, 

ten genes were in consensus in their expression across the TL, FL and PL brain region but expression 

is reversed in the cerebellum. Only 3 of these genes (UBA1, EIF4H and CLDND1) belong to the “AD-

specific expression profile”, and all three genes were significantly down-regulated in the TL, FL and 

PL, but significantly up-regulated in the CB brain region (see Gene set 2 in Figure 2).  

Microarray gene expression profiling in RNA-seq data 

The 7 genes (NDUFS5, SOD1, SPCS1, OGT, PURA, RERE, ZFP36L1) consistently expressed across all 

brain regions and the 19 genes (ALDOA, GABBR1, TUBA1A, GAPDH, DNM3, KLC1, COX6C, ACTG1, 

CLTA, SLC25A5, PRNP, FDFT1, RHOQ, B2M, SPP1, WAC, UBA1, EIF4H, CLDND1) consistently 

expressed in the TL, FL and PL and not in the CB or reversed in the CB, were queried in the web-

based platform Agora to compare RNA-seq based expression profiling. The results are provided in 

Table 6. Agora failed to provide expression profiling for 17/26 genes, however, from the data 

available, the genes observed to be consistently expressed across all brain regions based on 

microarray data are relatively mirrored in RNA-seq data, specifically genes SPCS1, PURA and 

ZFP36L1.   

RNA-seq data was available for only 6/19 genes (DNM3, COX6C, ACTG1, CLTA, RHOQ and B2M) 

expressed in brain regions affected by hallmark AD pathology (TL, FL and PL), and were all relatively 
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consistent in significance and directional change across AD brain regions, including the CB, a 

characteristic undesired by genes which may be associated with hallmark AD pathology.  

 

“AD Expression Profile” functional gene set enrichment and GO analysis 

Gene set enrichment analysis of the “AD expression profile” identified 205, 197, 98, and 45 biological 

pathways significantly enriched in the TL, FL, PL and CB brain regions respectively (Supplementary 

Table 5). There were ten pathways significantly enriched in all four brain regions, of which eight are 

involved in the “metabolism of protein” (specifically the translation process, the most significant 

being in CB brain region with a q-value=1.11e-7), one involved in “adenosine ribonucleotides de 

novo biosynthesis” (TL q-value = 0.007, FL q-value = 7.56e-5, PL q-value = 0.04, CB q-value = 0.03) 

and one involved in the “digestive system” (TL q-value = 0.02, FL q-value = 0.02, PL q-value = 0.01, 

CB p-value = 0.02).  

When excluding the CB brain region, 42 pathways were significantly enriched in the remaining three 

brain regions, of which five pathways obtained an FDR adjusted significance p-value of ≤ 0.01. The 

five pathways are “Alzheimer’s disease” (TL q-value = 6.53e-4, FL q-value = 0.02, PL q-value = 0.01), 

“Electron Transport Chain” (TL q-value = 0.006, FL q-value = 2.95e-5, PL q-value = 3.69e-5), 

“Oxidative phosphorylation” (TL q-value =1.77e-4, FL q-value = 4.99e-8, PL q-value = 4.18e-05), 

“Parkinson’s disease” (TL q-value =8.57e-4, FL q-value = 1.59e-6, PL q-value = 1.77e-6) and “Synaptic 

vesicle cycle” (TL q-value = 5.19e-4, FL q-value = 3.82e-7 , PL q-value = 2.03e-4 ). 

The biological GO analysis identified 384, 417, 216, and 72 biological components as significantly 

enriched in the TL, FL, PL and CB brain region respectively (Supplementary Table 6). There were 36 

pathways significantly enriched across all four brain regions at a p-value threshold of ≤ 0.05 and nine 

at an FDR adjusted significant p-value threshold of ≤ 0.01. These nine processes are “cellular 

component biogenesis” (TL q-value =1.38e-4, FL q-value = 0.002, PL q-value = 5.86e-4 , CB q-value = 

0.006), “cellular component organization” (TL q-value = 1.96e-8, FL q-value = 1.04e-8, PL q-value = 
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3.35e-5 , CB q-value = 0.004), “interspecies interaction between organisms” (TL q-value = 1.13e-

41.85e-4, FL q-value = 8.73e-5, PL q-value = 5.59e-5 , CB q-value = 0.002), “multi-organism cellular 

process” (TL q-value = , FL q-value = 4.72e-5, PL q-value = 8.04e-5, CB q-value = 0.002), “nervous 

system development” (TL q-value = 1.64e-7, FL q-value = 5.90e-14, PL q-value = 3.82e-8, CB q-value 

= 0.01), “organonitrogen compound metabolic process” (TL q-value = 0.002, FL q-value = 1.56e-5, PL 

q-value = 1.02e-5, CB q-value = 0.002), “symbiosis, encompassing, mutualism through parasitism” 

(TL q-value = 4.04e-4, FL q-value = 1.92e-4, PL q-value = 3.18e-4, CB q-value = 0.004), “translational 

initiation” (TL q-value = 0.007, FL q-value = 0.006, PL q-value = 2.41e-4, CB q-value = 5.24e-6 ), and 

“viral process” (TL q-value = 2.82e-4, FL q-value = 1.17e-4, PL q-value = 3.18e-4, CB q-value = 0.002 ). 

Excluding the CB brain region resulted in 84 common biological components being significantly 

enriched across the remaining three brain regions. 

“AD-Specific Expression Profile” functional gene set enrichment and GO analysis 

Analysis of the “AD-specific expression profile” identified 205, 196, 40 and 42 pathways as 

significantly enriched in the TL, FL, PL and CB brain region respectively in the GSEA analysis 

(Supplementary Table 7). The analysis identified six significantly enriched pathways across all four 

brain regions, and all are involved in “metabolism of protein” (specifically the translation process, 

with the most significant pathway being in the PL brain region with a q-value = 8.92e-7). The same 

six pathways were identified when the CB region was excluded.  

The GO analysis identified 384, 344, 36 and 72 significantly enriched biological components for the 

TL, FL, PL and CB brain region respectively. Only four common biological components were 

significantly enriched across all four brain regions, and all are indicative of interspecies interactions 

including viral. Excluding the CB identifies only “neural nucleus development” (TL q-value = 5.35e-5, 

FL q-value = 0.007, PL q-value = 0.003) as an additional component being enriched. The complete 

biological GO analysis results are provided in Supplementary Table 8. 
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Network analysis hub gene identification 

PPI networks were generated for each expression profile and in each of the four brain regions (TL, 

FL, PL and CB) to identify genes whose protein product interacts with other protein products from 

the same expression profile. Genes with more interactions than expected are referred to as hub 

genes and may be of biological significance. 

Temporal lobe hub genes 

PPI network analysis was performed on the expression profiles of TL brain region to identify key hub 

genes. The “AD expression profile” and the “AD-specific expression profile” both consisted of the 

same 323 DEG’s which represented 282 seed proteins with 716 edges (interactions between 

proteins). Two significant key hub genes were identified; the down-regulated Polyubiquitin-C (UBC, 

p-value = 1.57e-30) and the up-regulated Small Ubiquitin-related Modifier 2 (SUMO2, p-value = 3.7e-

4).  

Frontal Lobe hub genes 

The FL “AD expression profile” consisted of 460 DEG which represented 272 seed proteins and 620 

edges. Two significant key hub genes were identified; up-regulated Amyloid Precursor Protein (APP, 

p-value = 1.98e-08) and down-regulated Heat Shock Protein 90-alpha (HSP90AA1, p-value = 0.003). 

Using the “AD-specific expression profile” identified the same two key hub genes, with APP reaching 

a significant p-value of 2.11e-09. 

Parietal Lobe hub genes 

The PL “AD expression profile” consisted of 1736 DEG which represented 1437 seed proteins and 

5720 edges. Similar to the TL and FL, two significant key hub genes were identified; down-regulated 

Cullin-3 (CUL3, p-value = 1.84e-10) and down-regulated UBC (p-value = 1.84e-10). Using the “AD-

specific expression profile” (1023 DEGs, 810 seed proteins and 2351 edges) identified UBC as the 

only key hub gene, with a more significant p-value of 1.84e-10. The CUL3 gene is no longer a 

significant key hub gene in the network. 
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Cerebellum hub genes 

The CB “AD expression profile” consisted of 867 DEG’s which represented 548 seed proteins and 

1419 edges. Four significant key hub genes were identified; up-regulated APP (p-value =4.24e-26), 

down-regulated Ribosomal Protein 2 (RPS2, p-value = 4.24e-26), down-regulated SUMO2 (p-value = 

4e-05), and up-regulated Glycyl-TRNA Synthetase (GARS, p-value = 0.0207). Using the “AD-specific 

expression profile” for the same brain region identified APP (p-value = 3.44e-26), RPS2 (p value= 

6.61e-06), and SUMO2 (p-value = 3.78e-06) as the key hub genes only. The GARS gene is no longer a 

key hub gene in the network. 

DISCUSSION 

In this study, we acquired eighteen publicly available microarray gene expression studies covering six 

neurological and mental health disorders; AD, BD, HD, MDD, PD and SCZ. Data was generated on 

seven different expression BeadArrays and across two different microarray technologies (Affymetrix 

and Illumina). The eighteen studies consisted of 3984 samples extracted from 22 unique brain 

regions which equated to 67 unique datasets when separating by disorder and tissue. However, due 

to study and sample outlier analysis, only 43 datasets (22 AD, 6 BD, 4 HD, 2 MDD, 1 PD and 8 SCZ) 

totalling 2,667 samples passed QC. We grouped the AD datasets by tissue, into the TL, FL, PL and CB 

brain regions to perform the largest microarray AD meta-analysis known to date to our knowledge, 

which identified 323, 460, 1736 and 867 significant DEG’s respectively. Furthermore, we 

incorporated transcriptomic information from other neurological and mental health disorders to 

subset the initial findings to 323, 435, 1023, and 828 significant DEG’s that were specifically 

perturbed in the TL, FL, PL and CB brain regions respectively of AD subjects. 

Genes specifically perturbed across AD brain regions 

Seven genes (down-regulated NDUFS5, SOD1, SPCS1 and up-regulated OGT, PURA, RERE, ZFP36L1) 

were DE in AD brains and not DE in the other disorders used in this study. We deemed these seven 
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protein-coding genes as “AD-specific”. The expression patterns of three genes (SPCS1, PURA and 

ZFP36L1) were relatively mirrored in RNA-seq data, however, it is important to note the RNA-seq 

data does not contain expression profiling for the PL region and it also contains three specific brain 

regions within the TL (temporal cortex, superior temporal gyrus, Parahippocampal gyrus) and FL 

(Inferior frontal gyrus, frontal pole and dorsolateral prefrontal cortex). Nevertheless, SPCS1 gene 

was observed to be consistently down-regulated across all hierarchical AD brain regions available in 

both the microarray and RNA-seq data. In addition, based on a network of genomics and epigenomic 

elements in the region of this genes, in combination with phenotypes, the AMP-AD consortia have 

nominated SPCS1 as a druggable target for AD treatment, providing confidence the remaining genes 

identified in this study may also provide druggable targets. 

 

Three of the “AD-specific” genes (NDUFS5, SOD1 and OGT) have been previously associated with 

AD. Down-regulated NADH Dehydrogenase Ubiquinone Fe-S Protein 5 (NDUFS5) gene is part of the 

human mitochondrial respiratory chain complex; a process suggested to be disrupted in AD in 

multiple studies [38] [39]. A study investigating blood-based AD biomarkers identified 13 genes, 

including NDUFS5, which was capable of predicting AD with 66% accuracy (67% sensitivity and 75% 

specificity) in an independent cohort of 118 AD and 118 control subjects [43]. The perturbation in 

NDUFS5 expression in the blood and brains of AD subjects suggests this gene may have potential as 

an AD biomarker and warrants further investigation. 

Down-regulated Superoxide Dismutase 1 (SOD1) gene encodes for copper and zinc ion binding 

proteins which contribute to the destruction of free superoxide radicals in the body and is also 

involved in the function of motor neurons [provided by RefSeq, Jul 2008]. Mutations in this gene 

have been heavily implicated as causes of familial amyotrophic lateral sclerosis (ALS) [44] and have 

also been associated with AD risk [45]. A recent study discovered SOD1 deficiency in an amyloid 

precursor protein-overexpressing mouse model accelerated Aβ oligomerisation and also caused Tau 
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phosphorylation [46]. They also stated SOD1 isozymes were significantly decreased in human AD 

patients, and we can now confirm SOD1 is significantly under-expressed at the mRNA level in human 

AD brains as well. 

The up-regulated O-Linked N-Acetyl Glucosamine Transferase (OGT) gene encodes for a 

glycosyltransferase that links N-acetylglucosamine to serine and threonine residues (O-GlcNAc). O-

GlcNAcylation is the post-translational modification of O-GlcNAc and occurs on both neuronal tau 

and APP. Increased brain O-GlcNAcylation has been observed to protect against tau and amyloid-β 

peptide toxicity [47]. A mouse study has demonstrated a deletion of the encoding OGT gene causes 

an increase in tau phosphorylation [48]. In this study, we observe a significant increase in OGT gene 

expression throughout human AD brains, including the cerebellum where tangles are rarely 

reported, suggesting OGT gene is most likely not solely responsible for the formation of tangles.  

OGT and O-GlcNAcase (OGA) enzymes facilitate O-GlcNAc cycling, and levels of GlcNAc have also 

been observed to be increased in the parietal lobe of AD brains [49]. Appropriately, OGA inhibitors 

have been tested for treating AD with promising preliminary results [50], prompting further 

investigation into targeting OGT for AD treatment.  

Genes involved in AD histopathology 

The CB brain region is known to be free from tau pathology and occasionally free from plaques. We 

exploited the CB brain region as a secondary control to identify sixteen genes (ALDOA, GABBR1, 

TUBA1A, GAPDH, DNM3, KLC1, COX6C, ACTG1, CLTA, SLC25A5, PRNP, FDFT1, RHOQ, B2M, SPP1, 

WAC) DE specifically in TL, FL and PL and not the CB brain region of AD subjects. RNA-seq data was 

available for 6 of these genes (DNM3, COX6C, ACTG1, CLTA, RHOQ and B2M) and all 6 genes failed 

to replicate expression patterns observed with microarray data. Nevertheless, DNM3 gene has been 

previously associated with AD pathology based on proteomic data DNM3 gene encodes a member of 

a family of guanosine triphosphate (GTP)-binding proteins that associate with microtubules and are 

involved in vesicular transport. A proteomic study identified a module of co-expressed proteins, 
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which included DNM3, as negatively correlated with BRAAK staging [51]. Although DNM3 gene 

expression based on microarray and RNA-seq data are in disagreement in the CB brain region, a 

region used in this study to aid in determining whether a gene may be involved with AD pathology, 

an independent proteomic study demonstrated DNM3 might indeed be association with AD 

pathology. This suggests all 6 genes which failed replication in RNA-seq data may still be associated 

with AD pathology and require further confirmation. 

An additional 9 genes (GABBR1, GAPDH, PRPN, FDFT1, KLC1, TUBA1A, CLTA, COX6C, SLC25A5), 

where expression profiling based on RNA-seq data was unavailable, have also been previously 

associated with AD, of which four genes (GABBR1, GAPDH, PRPN and FDFT1) have individually been 

suggested to be involved with the pathogenesis of the disease. GABBR1 gene encodes a receptor for 

gamma-aminobutyric acid (GABA), which is the main inhibitory neurotransmitter in the human 

central nervous system. As observed in this study, the GABBR1 gene has been previously reported to 

be down-regulated in AD brains [52]. GABBR1 receptors are prominent in neuronal soma, where NFT 

formation is known to accumulate. A study examined the immunohistochemical localisation and 

distribution of GABABR1 protein in the hippocampus of AD subjects and observed a negative 

correlation with NFT formation and suggested an increase or stable expression of GBBR1 could 

contribute to neuronal resistance to the disease process [53]. 

 

GAPDH gene encodes for a member of the glyceraldehyde-3-phosphate dehydrogenase protein 

family, which catalyses an important step in the carbohydrate metabolism. GAPDH has been shown 

to interact with Aβ precursor protein but not cleaved Aβ, and has been proposed to be directly 

involved in tau aggregation and NFT formation in AD [54]–[56]. The PRNP gene encodes for the prion 

protein, a membrane glycosylphosphatidylinositol-anchored glycoprotein that tends to aggregate 

into rod-like structures. Mutations in the PRNP gene has been associated with AD and prion protein 

has also been suggested to be involved in the pathogenesis of AD [57]. FDFT1 gene encodes a 
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membrane-associated enzyme located at a branch point in the mevalonate pathway, which generate 

isoprenoids that have been found to be positively correlated with tau pathology [58]. KLC1 gene 

encodes for Kinesin Light Chain 1 which transports various cargos such as vesicles, mitochondria, and 

the Golgi complex along microtubules. An immunoblotting study observed decrease expression of 

kinesin light chains (KLCs) in the frontal cortex of AD subjects but not in the cerebellum of the same 

subjects [59]. TUBA1A gene encodes for Tublin Alpha 1a, which has been observed to be perturbed 

in AD [60], and CLTA gene encodes for clathrin Light Chain A, which has been observed to be 

perturbed in AD as well [61]. COX6C and SLC25A5 gene encodes for products which interact with 

mitochondria and mitochondrial dysfunction in AD has been suggested on numerous occasions [62]–

[64]. 

  

We identified an additional three AD-specific genes (UBA1, EIF4H and CLDND1) which were 

significant DE in all four brain regions. However, the genes were down-regulated in the TL FL and PL 

but up-regulated in the CB brain region. Ubiquitin-Like Modifier Activating Enzyme 1 (UBA1) encodes 

for a protein that catalyses the first step in ubiquitin conjugation to mark cellular proteins for 

degradation. Eukaryotic Translation Initiation Factor 4H (EIF4H) encodes for a translation initiation 

factors, which functions to stimulate the initiation of protein synthesis at the level of mRNA 

utilisation and Claudin Domain Containing 1 (CLDND1) is a transmembrane protein of tight junctions 

found on endothelial cells [65]. As the cerebellum is the only brain region spared from tangle 

formation and occasionally from plaque, we suggest these 19 genes (ALDOA, GABBR1, TUBA1A, 

GAPDH, DNM3, KLC1, COX6C, ACTG1, CLTA, SLC25A5, PRNP, FDFT1, RHOQ, B2M, SPP1, WAC, 

UBA1, EIF4H and CLDND1)) could potentially be associated with AD histopathology.  

Translation of proteins perturbed specifically in AD brains 

Functional gene set enrichment analysis of the “AD expression profile” revealed more pathways 

were significantly perturbed in the TL, followed by the FL, PL and CB, which is the general route AD 
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pathology is known to spread through the brain. We originally observed ten biological pathways 

being enriched across all AD brain regions, which included biological pathways likely to be irrelevant 

such as the “digestive system”. However, when incorporating transcriptomic information from non-

AD disorders, we were able to refine the AD expression signature to specific genes perturbed in AD 

only. This resulted in the enrichment of pathways only involved in the “metabolism of proteins”, 

specifically the translation process which has been previously suggested in be associated with AD on 

numerous occasions [10] [11] [14] [15] [16] [17]. We now suggest this may be a biological process 

specifically disrupted in AD brains, and not BD, HD, MDD, PD or SCZ brains. 

Previous biological perturbations observed in AD are only associated 

Temporal Lobe brain region. 

Previous AD studies have consistently suggested the immune response [10] [11] [12] [13], protein 

transcription/translation regulation [10] [11] [14] [15] [16] [17], calcium signalling [10] [18] [19], 

MAPK signalling [16] [7], chemical synapse [18] [7] [19], neurotransmitter pathways [11] [18] [19] 

and various metabolism pathways [16] [20] [21] [22] [17][11] [23] are disrupted in AD. We observe 

the same pathways enriched in our meta-analysis; however, only in the TL brain region, a brain 

region often heavily investigated in AD. Except for “metabolism of proteins”, we did not observe any 

of these pathways significantly enriched across all of the four brain regions, suggesting these 

pathways observed to be perturbed in previous studies may be tissue-specific rather than disease-

specific. 

Interspecies interactions possibly involved in AD 

Gene Ontology analysis on the “AD expression profile” identified nine different biological 

components enriched across all four brain regions. However, when we remove genes perturbed in 

other neurological or mental health disorders, we only observe four biological components as 

significantly enriched, and all four were indicative of interspecies interactions. AD brains have a 

prominent inflammatory component which is characteristic of infection, and many microbes have 
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been implicated in AD, notably herpes simplex virus type 1 (HSV1), Chlamydia pneumonia, and 

several types of spirochaete [66]. A very recent study also identified common viral species in 

normal and ageing brains, with an increased human herpesvirus 6A and human herpesvirus 

7 in AD brains [67]. Furthermore, Aβ has been suggested to be an antimicrobial peptide and has 

been shown to protect against fungal and bacterial infections [68]. Thus, the accumulation of Aβ 

may be part of the brains defence mechanism against infections. Although a controversial theory, 

we also observe a viral component in AD brains, and as a result of this meta-analysis, further suggest 

this maybe AD-specific and warrants further investigation. 

Network analysis identifies AD-specific APP UBC and SUMO2 hub genes 

Network analysis identified five (APP, HSP90AA1, UBC, SUMO2 and RPS2) significant hub genes 

specific to AD brain regions. APP, UBC and SUMO2 gene appear as hub genes in multiple brain 

regions. The APP gene encodes for a cell surface receptor transmembrane amyloid precursor protein 

(APP) that is cleaved by secretases to form a number of peptides. Some of these peptides are 

secreted and can bind to the acetyltransferase complex APBB1/TIP60 to promote transcriptional 

activation, while others form the protein basis of the amyloid plaques in AD brains. In addition, two 

of the peptides are antimicrobial peptides, having been shown to have bacteriocidal and antifungal 

activities [provided by RefSeq, Aug 2014]. Changes in APP functions have been suggested to play an 

essential role in the lack of AB clearance, ultimately leading to the formation of plaques [69].  

UBC (ubiquitin-C) gene encodes for a Polyubiquitin-C protein which is part of the ubiquitin-

proteasome system (UPS), the major intracellular protein quality control system in eukaryotic cells. 

UPS has an immense impact on the amyloidogenic pathway of APP processing that generates Abeta 

[70]. A recent GWAS study identified UBC as a novel LOAD gene, and through network analysis also 

identified UBC as a key hub gene. The study validated their findings in a UBC C. elegans model to 

discover UBC knockout accelerated age-related AB toxicity [71]. We also observe the UBC gene 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 25, 2019. ; https://doi.org/10.1101/480459doi: bioRxiv preprint 

https://doi.org/10.1101/480459
http://creativecommons.org/licenses/by/4.0/


25 

 

being down-regulated and as a key hub gene in multiple regions of human AD brains, further 

providing evidence of its key role in AD. 

Small Ubiquitin-Like Modifier 2 (SUMO2) gene encodes for a protein that binds to target proteins as 

part of a post-translational modification system, a process referred to as SUMOylation [72]. 

However, unlike ubiquitin, which targets proteins for degradation, this protein is involved in a variety 

of cellular processes, such as nuclear transport, transcriptional regulation, apoptosis, and protein 

stability [provided by RefSeq, Jul 2008]. Early studies have indicated that the SUMO system is likely 

altered with AD-type pathology, which may impact Aβ levels and tau aggregation [72]. Genetic 

studies have supported this theory with a GWAS study linking SUMO-related genes to LOAD [73], 

with further studies showing that the two natively unfolded proteins, tau and α-synuclein, are 

sumoylated in vitro [74]. We identified SUMO2 as a significant key hub gene in both the human TL 

and CB brain region. However, what makes this discovery interesting is that SUMO2 is significantly 

up-regulated in the TL, a region where both plaques and tangles can be observed, but significantly 

down-regulated in the CB, where only plaques have been occasionally observed, but tangles never 

reported. The up-regulation of SUMO2 gene may play a vital role in the formation of tangles, and 

further investigation into this gene is warranted. 

Limitations 

Although this study presents novel insights to AD-specific transcriptomic changes in the human 

brain, limitations to this study must be addressed. Firstly, we meta-analysed a total of 22 AD and 21 

non-AD datasets, and many of these datasets lacked necessary experimental processing or basic 

phenotypic information such as technical batches, RNA integrity numbers (RIN), age, NFT’s, clinical 

gender, or ethnicity, all of which can have confounding effects. To address this, we incorporated 

recommended best practices to estimate and correct for both known and hidden batch effects using 

SVA and COMBAT to ensure data is comparable between experiments and studies. However, this 

does not guarantee that all technical variation is completely removed. 
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Secondly, the terminology used to label brain tissue varied across studies, with some reporting a 

broad region such as the “hippocampus” used in study E-GEOD-48350, while others were very 

specific to the tissue layer, such as “hippocampus CA3” in study E-GEOD-29378. We, therefore, 

decided to map all brain tissue as mentioned in each dataset publication to their hierarchical 

cerebral cortex lobe (TL, FL and PL) and the CB. The mapping procedure was completed using 

publicly available literature defined knowledge, and we assume tissues within these brain regions 

are relatively comparable to infer AD-associated histopathological changes.  

Thirdly, this study relied on publicly available transcriptomic data, and as previous research has 

heavily investigated brain regions known to be at the forefront of disease manifestation, this led to 

unbalanced datasets per brain region in both the AD and non-AD meta-analysis. Subsequently, the 

AD meta-analysis consisted of 14, 4, 2, and 2 datasets for the TL, FL, PL and CB brain regions 

respectively, with the PL brain region consisting of only 74 samples (28 AD and 46 controls) in total. 

In addition, the non-AD meta-analysis lacked expression signatures form all non-AD diseases across 

all brain regions (except for FL). Nevertheless, the brain regions most affected by each disorder was 

captured in this study, suggesting we most likely were able to capture key brain transcriptomic 

changes relating to each disorder. Furthermore, as AD is known to affect all brain regions, albeit not 

to the same extent, we focus on transcriptomic changes observed across all brain regions that are 

also not observed in any brain region of the non-AD subjects, ensuring we capture transcriptomic 

signatures unique to AD brains.  

Fourthly, the advances in next sequencing technologies (RNA-seq) which are capable of profiling the 

whole transcriptome, thus not limited by the pre-defined probes based on known sequencing, would 

be ideal for disease discoveries. However, AD and mental health studies profiled through RNA-seq is 

somewhat limited in the public domain, and those that have published DE results are based on small 

sample numbers, which would fail our selection criteria, such as in  [75],  [76], [77] and [78]. In 

addition, these studies lack the same brain regions and mental health disorders covered in this 
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meta-analysis. Nevertheless, we were able to query our genes of interest in the largest known AD 

RNA-seq web-based database (Agora) which contains DE results from over 2100 human brain 

samples, however, expression profiling was unavailable for 17/26 genes and DE on the parietal lobe 

was unavailable. Therefore, this study was unable to comprehensively validate all findings in RNA-

seq data.  

Finally, we assume the non-AD datasets are comparable through meta-analysis, and by identifying 

common expression signatures that are not associated with individual disease mechanisms may 

represent false positives or even a general signature for “brain disorder”. Removing this signature 

from the AD meta-analysis expression profile may result in transcriptomic changes specific to AD 

brains, revealing more relevant changes to the underlying disease mechanism rather than general 

diseases. Under this assumption, we observe more relevant and refined biological enrichment 

results. For example, we originally observed ten biological pathways enriched across all AD brain 

regions, including biological pathways such as the “digestive system”. However, by refining the AD 

expression signature by removing genes perturbed in non-AD disorders, only pathways involved in 

the “metabolism of proteins” remain, which has been previously suggested in be associated with AD 

on numerous occasions [10] [11] [14] [15] [16] [17]. This observation provides strong evidence of our 

assumption of incorporating non-AD diseases in this study to infer AD-specific changes as valid. 

Conclusion 
We present the most extensive human AD brain microarray transcriptomic meta-analysis study to 

date, incorporating, brain regions both affected and partially spared by AD pathology, and utilise 

related non-AD disorders to infer AD-specific brain changes. This led to the identification of seven 

genes specifically perturbed across all AD brain regions and are considered disease-specific, nineteen 

genes specifically perturbed in AD brains which could play a role in AD neuropathology, and the 

refinement of GSEA and GO analysis results to identify specific biological pathways and components 

specific to AD. These AD-specific changes may provide new insights into the disease mechanisms, 

thus making a significant contribution towards understanding the disease. In addition, two genes 
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(OGT and SOD1) identified in this study have been specifically silenced in independent mouse 

models, leading to an accelerated accumulation of hallmark AD pathology and SPCS1 gene was 

observed to be consistently down-regulated in all AD brain regions based on both microarray and 

independent RNA-seq data, and has also been nominated as a druggable target for AD treatment. 

This provides confidence the remaining genes identified in this study may provide new therapeutic 

targets for AD.  
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Tables 
Table 1: Characteristics of individual AD studies processed in this meta-analysis 

Data 

repository 

Accession details 

(Publication) 

Microarray 

platform 

BeadArray 

Tissue source (as stated in the 

original study publication) 

Meta-Analysis brain region 

mapping 

Number of samples after QC  

AD (M/F) Control (M/F) 

ArrayExpress E-GEOD-118553 Illumina HumanHT-12 v4 

Entorhinal Cortex Temporal Lobe 35 (14/21) 21 (12/9) 

Cerebellum Cerebellum 38 (10/28) 19 (5/14) 

Frontal Cortex Frontal Lobe 38 (13/25) 22 (11/11) 

Temporal Cortex Temporal Lobe 51 (21/30) 29 (21/8) 

ArrayExpress E-GEOD-48350 ([79]) Affymetrix 

Human Genome U133 

Plus 2.0 

Entorhinal Cortex Temporal Lobe 11 (6/5) 38 (21/17) 

Hippocampus Temporal Lobe 15 (8/7) 41 (22/19) 

Postcentral Gyrus Parietal Lobe 19 (11/8) 33 (20/13) 

Superior Frontal Gyrus Frontal Lobe 17 (8/9) 38 (22/16) 

ArrayExpress E-GEOD-29378 ([7]) Illumina HumanHT-12 v3 

Hippocampus CA1 Temporal Lobe 16 (9/7) 16 (11/5) 

Hippocampus CA3 Temporal Lobe 15 (9/6) 16 (11/5) 

ArrayExpress E-GEOD-36980 ([8]) Affymetrix Human Gene 1.0 ST 

Frontal Cortex Frontal Lobe 14 (7/7) 17 (9/8) 

Hippocampus Temporal Lobe 7 (3/4) 10 (5/5) 

Temporal Cortex Temporal Lobe 10 (5/5) 19 (8/11) 

ArrayExpress E-GEOD-28146 ([19]) Affymetrix 

Human Genome U133 

Plus 2.0 

Hippocampus CA1 Temporal Lobe 15 (4/11) 8 (5/3) 

ArrayExpress E-GEOD-1297 ([80]) Affymetrix Human Genome Hippocampus Temporal Lobe 19 (4/11) 9 (6/3) 
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U133A 

ArrayExpress E-GEOD-5281 ([21]) Affymetrix 

Human Genome U133 

Plus 2.0 

Entorhinal Cortex Temporal Lobe 10 (4/6) 13 (11/2) 

Hippocampus CA1 Temporal Lobe 10 (4/6) 13 (10/3) 

Medial Temporal Gyrus Temporal Lobe 16 (10/6) 12 (8/4) 

Posterior Cingulate Parietal Lobe 9 (4/5) 13 (10/3) 

Superior Frontal Gyrus Frontal Lobe 23 (13/10) 11 (7/4) 

AMP syn3157225 ([81]) Illumina 

Whole-Genome DASL 

HT 

Temporal Cortex Temporal Lobe 189 (93/96) 186 (116/70) 

Cerebellum Cerebellum 169 (87/82) 171 (113/58) 

AMP syn4552659 ([82]) Affymetrix 

Human Genome 

U133A 

Frontal Pole Frontal Lobe 25 (6/19) 7 (4/3) 

Precentral Gyrus Frontal Lobe 20 (5/15) 3 (1/2) 

Inferior Frontal Gyrus Frontal Lobe 19 (5/14) 4 (1/3) 

Dorsolateral Prefrontal Cortex Frontal Lobe 19 (4/15) 8 (4/4) 

Superior Parietal Lobule Parietal Lobe 11 (2/9) 5 (2/3) 

Prefrontal Cortex Frontal Lobe 23 (7/16) 4 (2/2) 

Parahippocampal Gyrus Temporal Lobe 18 (5/13) 7 (3/4) 

Hippocampus Temporal Lobe 20 (5/15) 5 (2/3) 

Inferior Temporal Gyrus Temporal Lobe 20 (5/15) 6 (3/3) 

Middle Temporal Gyrus Temporal Lobe 15 (4/11) 7 (4/3) 

Superior Temporal Gyrus Temporal Lobe 15 (3/12) 8 (4/4) 

Temporal Pole Temporal Lobe 25 (7/18) 6 (3/3) 

AMP syn4552659 ([82]) Affymetrix 

Human Genome 

U133B 

Frontal Pole Frontal Lobe 26 (8/18) 7 (4/3) 

Precentral Gyrus Frontal Lobe 18 (4/14) 3 (1/2) 
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Nine publicly available AD studies were identified and acquired for this study. Separating the studies by tissue resulted in 46 datasets, each containing AD and healthy control samples. The brain tissue in each of the 

46 datasets was mapped to their corresponding cerebral cortex (temporal lobe, frontal lobe or parietal lobe) or the cerebellum. Due to limited phenotypic information in publicly available data, the reported gender 

was predicted from gene expression if clinical gender was unavailable. Abbreviations: M = Male, F=Female. 

 

 

Inferior Frontal Gyrus Frontal Lobe 21 (5/16) 5 (2/3) 

Dorsolateral Prefrontal Cortex Frontal Lobe 20 (5/15) 8 (4/4) 

Superior Parietal Lobule Parietal Lobe 16 (5/11) 5 (3/2) 

Prefrontal Cortex Frontal Lobe 23 (7/16) 4 (2/2) 

Parahippocampal Gyrus Temporal Lobe 19 (7/12) 7 (3/4) 

Hippocampus Temporal Lobe 22 (6/16) 5 (2/3) 

Inferior Temporal Gyrus Temporal Lobe 21 (6/15) 7 (4/3) 

Middle Temporal Gyrus Temporal Lobe 23 (8/15) 7 (4/3) 

Superior Temporal Gyrus Temporal Lobe 23 (4/19) 8 (4/4) 

Frontal Pole Frontal Lobe 26 (8/18) 7 (4/3) 
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Table 2: Summary of AD study meta-analysis DEG’s 

Brain region Number of datasets  

Number of samples 

(case/control) 

AW.OC Significant DEGs  

(FDR adjusted p ≤ 0.05) 

Temporal lobe 14 850 (419/431) 323 

Frontal lobe 4 180 (92/88) 460 

Parietal lobe 2 74 (28/46) 1736 

Cerebellum 2 397 (207/190) 867 

Twenty-two AD datasets containing a total of 1501 samples remained in this study after QC. The case/control numbers represent the total 

number of AD/healthy controls subjects across all datasets within a particular brain region. The number of significant genes was identified 

through a combining p-value method known as Adaptively Weighted with One-sided Correction (AW.OC). 
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Table 3: Characteristics of individual non-AD studies included in this meta-analysis 

Data 

repository 

ArrayExpress 

Accession details 

(Publication) 

Microarray 

Platform 

BeadArray Disorder 

Sample source (as stated 

in the original study 

publication) 

Mapping to brain 

region 

Number of samples after QC  

AD (M/F) Control (M/F) 

ArrayExpress E-GEOD-12649 ([43]) Affymetrix Human Genome U133A 

Bipolar Disorder Prefrontal Cortex Frontal Lobe 33 (16/17) 34 (25/9) 

Schizophrenia Prefrontal Cortex Frontal Lobe 33 (25/8) 32 (24/8) 

ArrayExpress E-GEOD-17612 ([44]) Affymetrix Human Genome U133 Plus 2.0 Schizophrenia Prefrontal Cortex Frontal Lobe 27 (18/9) 22 (11/11) 

ArrayExpress E-GEOD-20168 ([45]) Affymetrix Human Genome U133A Parkinson's Disease Prefrontal Cortex Frontal Lobe 14 (7/7) 16 (11/5) 

ArrayExpress E-GEOD-21138 ([46]) Affymetrix Human Genome U133 Plus 2.0 Schizophrenia Prefrontal Cortex Frontal Lobe 25 (21/4) 28 (23/5) 

ArrayExpress E-GEOD-21935 ([47]) Affymetrix Human Genome U133 Plus 2.0 Schizophrenia Temporal Cortex Temporal Lobe 22 (12/10) 19 (10/9) 

ArrayExpress E-GEOD-35978 ([48]) Affymetrix Human Gene 1.0 ST 

Bipolar Disorder Cerebellum Cerebellum 32 (16/16) 46 (29/17) 

Schizophrenia Cerebellum Cerebellum 43 (31/12) 46 (29/17) 

Bipolar Disorder Parietal Lobe Parietal Lobe 40 (24/16) 45 (32/13) 

Schizophrenia Parietal Lobe Parietal Lobe 51 (37/14) 36 (26/10) 

ArrayExpress E-GEOD-3790 ([49]) Affymetrix 

Human Genome U133A 

Huntingdon’s Disease Frontal Lobe Frontal Lobe 36 (22/14) 27 (19/8) 

Huntingdon’s Disease Cerebellum Cerebellum 38 (22/16) 27 (16/11) 

Human Genome U133B 

Huntingdon’s Disease Cerebellum Cerebellum 38 (23/15) 27 (16/11) 

Huntingdon’s Disease Frontal Lobe Frontal Lobe 37 (21/16) 29 (19/10) 

ArrayExpress E-GEOD-5388 ([50]) Affymetrix Human Genome U133A Bipolar Disorder Prefrontal Cortex Frontal Lobe 30 (16/14) 29 (23/6) 

ArrayExpress E-GEOD-53987 ([51]) Affymetrix Human Genome U133 Plus 2.0 Bipolar Disorder Prefrontal Cortex Frontal Lobe 17 (10/7) 19 (11/8) 
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Major Depressive 

Disorder 

Prefrontal Cortex Frontal Lobe 16 (9/7) 18 (10/8) 

Schizophrenia Prefrontal Cortex Frontal Lobe 14 (7/7) 19 (11/8) 

Bipolar Disorder Hippocampus Temporal Lobe 18 (11/7) 17 (9/8) 

Major Depressive 

Disorder 

Hippocampus Temporal Lobe 16 (9/7) 17 (9/8) 

Schizophrenia Hippocampus Temporal Lobe 15 (9/6) 18 (10/8) 

Nine publicly available non-AD studies were identified and acquired. Separating the studies by tissue resulted in 21 datasets. Each dataset contained both diseased and complimentary healthy controls. The brain 

tissue in each of the 21 datasets was mapped to their corresponding cerebral cortex (temporal lobe, frontal lobe or parietal lobe) or the cerebellum. Due to limited phenotypic information in publicly available data, 

the reported gender was predicted from gene expression if clinical gender was unavailable. Abbreviations: M = Male, F=Female. 
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Table 4: Summary of non-AD study meta-analysis DEG’s 

Brain region  Number of 

BD datasets 

(case/control) 

Number of 

Schizophrenia 

datasets 

(case/control) 

Number of HD 

datasets 

(case/control) 

Number of 

MDD datasets 

(case/control) 

Number of PD 

datasets 

(case/control) 

Total number of 

datasets 

 (case/control) 

AW.OC Significant 

DEGs (FDR adjusted 

p ≤ 0.05) 

Temporal lobe 1 (18/17) 2 (37/37) 0 1 (16/17) 0 4 (71/71) 51 

Frontal lobe 3 (80/82) 4 (99/101) 2 (73/56) 1 (16/18) 1 (14/16) 11 (282/273) 149 

Parietal lobe 1 (40/45) 1 (51/36) 0 0 0 2 (91/81) 2611 

Cerebellum 1 (32/46) 1 (43/46) 2 (76/54) 0 0 4 (151/146) 177 

The table illustrates the non-AD dataset and sample distribution across the four brain regions. Disease abbreviations are as follows: 

BD=Bipolar Disease, HD= Huntington’s Disease, MDD=Major Depressive Disorder and PD=Parkinson’s Disease. The case/control numbers 

represent the total number of diseased and healthy control subjects within a disease group and brain region. For instance, “3 (80/82)” for 

BD datasets in the Frontal lobe region indicates three BD datasets with a combined total of 80 BD and 82 complimentary healthy control 

subjects. The number of significant DEG’s was identified through a combining p-value method known as Adaptively Weighted with One-

sided Correction (AW.OC).  
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Table 5: Summary of DEGs in each expression signature and brain region 

Expression Profile Cerebellum Frontal lobe Parietal lobe Temporal lobe Total (unique) 

AD  867 460 1736 323 2494 

Non-AD  177 149 2611 51 2809 

AD-specific  828 435 1023 323 1994 

Common  39 25 713 0 755 

Total (unique) 1005 584 3642 374 - 

The “AD” expression profile represents genes identified as DE in the AD vs control meta-analysis. The “non-AD” expression profile 

represents genes identified as DE in the non-AD meta-analysis. The “AD-specific” expression profile is a list of genes DE in AD and no other 

disorder, and the “common” expression profile is a list of genes DE in all mental disorder used in this study. Each expression profile is brain 

region specific. The “Total (unique)” represents a unique list of the total number of genes identified as significantly DE across brain regions 

or expression profiles. 

Table 6: Microarray gene expression compared to RNA-seq gene expression 

Gene 

Microarray RNA-seq 

TL FL PL CB 

TL FL 

CB 

TCX STG PHG IFG FP DLPFC 

                        

NDUFS5 -0.127 -0.796 -0.975 -0.087               

SOD1 -0.085 -0.104 -0.047 -0.055               

SPCS1 -0.113 -0.276 -0.251 -0.079 -0.192   -0.177     -0.124 -0.317 

OGT 0.057 0.262 0.205 0.079               

PURA 0.688 0.157 0.211 0.065           0.103 0.318 

RERE 0.337 0.270 0.373 0.114               

ZFP36L1 0.484 0.502 0.317 0.123 0.603 0.389 0.619       0.355 

                        

ALDOA -1.389 -0.090 -0.091                 

GABBR1 -0.864 -0.116 -0.162                 

TUBA1A -0.728 -0.286 -0.191                 

GAPDH -0.719 -0.095 -0.759                 

DNM3 -0.611 -0.154 -0.781   -0.361   -0.119       0.141 
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KLC1 -0.530 -0.115 -0.056                 

COX6C -0.504 -0.360 -0.651     -0.140 -0.200       -0.220 

ACTG1 -0.467 -0.165 -0.326             -0.250   

CLTA -0.153 -0.097 -0.183   -0.091           -0.112 

SLC25A5 -0.147 -0.122 -0.262                 

PRNP 0.115 0.168 0.130                 

FDFT1 0.158 0.196 0.283                 

RHOQ 0.227 0.128 0.330   0.465   0.310     0.190 0.029 

B2M 0.556 0.216 0.212   0.430           0.258 

SPP1 0.935 0.557 0.316                 

WAC 1.111 0.257 0.154                 

                        

UBA1 -0.213 -0.090 -0.827 0.134               

EIF4H -0.201 -0.062 -0.093 0.063               

CLDND1 -1.100 -0.113 -0.734 0.086               

The 7 genes consistently expressed across all brain regions and the 19 genes consistently expressed 

in the TL, FL and PL and not/reversed in the CB were queried in the web-based platform Agora to 

compare RNA-seq expression. Only significantly DE genes are shown. Red cells represent down-

regulated genes in AD, green cells represent up-regulated genes in AD, white cells represent genes 

not significantly DE, and grey cells are when data is not available. Abbreviations are as follows; TL = 

Temporal Lobe, FL = Frontal Lobe, PL = Parietal Lobe, CB = Cerebellum, TCX = Temporal Cortex, STG = 

Superior temporal Gyrus, PHG = Parahippocampal Gyrus, IFG = Inferior frontal gyrus, FP = Frontal 

pole, DLPFC = Dorsolateral prefrontal cortex. 
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Figures 
 

 

Figure 1: Overlap of DEG’s in the AD expression profile across brain regions. Forty-two genes were 

observed to be significantly differentially expressed across all four AD brain regions.  
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Figure 2: Expression pattern of genes significantly differentially expressed across all four AD brain 

regions. The expression values for each gene was obtained from the meta-summary calculations. 

Red cells represent down-regulated genes, and green cells represent up-regulated genes. Forty-two 

genes were observed to be significantly perturbed across all four AD brain regions and can be 

grouped into three “sets”. Gene set 1 represents genes which are perturbed consistently in the same 

direction across all AD brain regions and can be considered disease-specific. Gene set 2 represents 

genes consistent in expression in the TL, FL and PL brain regions, but reversed in the CB brain region; 

a region often referred to be free from AD pathology. Finally, Gene set 3 represents genes which are 
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significant DE across all four brain regions, however, directional change is not consistent across the 

brain regions and may represent tissue-specific genes or even false positive. The gene names 

highlighted in red are genes perturbed in AD and not in any other disorder used in this study and are 

deemed “AD-specific”.  
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Figure 3: Seven genes consistently significantly differentially expressed in the same direction in all 

regions of AD brains but not in Schizophrenia, Bipolar Disorder, Huntington’s disease, Major 

Depressive Disorder or Parkinson’s disease brains. These seven genes can be assumed to be unique 

to AD brains, and may play an important role in disease mechanisms. 

 

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

NDUFS5

SOD1

SPCS1

OGT

PURA

RERE

ZFP36L1

LogFC

G

e
n
e

Genes significantly differentially expressed in all 

regions of AD brains

Cerebellum Parietal Lobe Frontal Lobe Temporal Lobe

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 25, 2019. ; https://doi.org/10.1101/480459doi: bioRxiv preprint 

https://doi.org/10.1101/480459
http://creativecommons.org/licenses/by/4.0/

