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 14 

Abstract 15 

Perceptual decisions are often based on multiple sensory inputs whose reliabilities rapidly vary 16 

over time, yet little is known about how our brain integrates these inputs to optimize behavior. Here 17 

we show multisensory evidence with time-varying reliability can be accumulated near optimally, 18 

in a Bayesian sense, by simply taking time-invariant linear combinations of neural activity across 19 

time and modalities, as long as the neural code for the sensory inputs is close to an invariant linear 20 

probabilistic population code (ilPPC). Recordings in the lateral intraparietal area (LIP) while 21 

macaques optimally performed a vestibular-visual multisensory decision-making task revealed that 22 

LIP population activity reflects an integration process consistent with the ilPPC theory. Moreover, 23 

LIP accumulates momentary evidence proportional to vestibular acceleration and visual velocity 24 

which are encoded in sensory areas with a close approximation to ilPPCs. Together, these results 25 

provide a remarkably simple and biologically plausible solution to optimal multisensory decision 26 

making. 27 

 28 
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Introduction 31 

Most perceptual decisions are based on multiple sensory inputs whose reliabilities vary over time. 32 

For instance, a predator can rely on both auditory and visual information to determine when and 33 

where to strike a prey, but these two sources of information are not generally equally reliable, nor 34 

are their reliabilities constant over time: as the prey gets closer, the quality of the image and sound 35 

typically improves, thus increasing their reliabilities. Although such multisensory decision making 36 

happens frequently in the real world, the underlying neural mechanisms remain largely unclear. 37 

 38 

The so-called drift-diffusion model (DDM) (1Ratcliff, 1978; 2Ratcliff and McKoon, 2008; 39 

3Ratcliff and Rouder, 1998; 4Ratcliff and Smith, 2004), a widely used model of perceptual 40 

decision making, cannot deal with such decisions optimally in its most standard form. DDMs have 41 

been shown to implement the optimal policy for decisions involving just one source of sensory 42 

evidence whose reliability is constant over time (5Laming, 1968; 6Bogacz, et al., 2006). Under 43 

such conditions, DDMs can implement the optimal strategy by simply summing evidence over time 44 

until an upper or lower bound, corresponding to the two possible choices, is hit (6Bogacz, et al., 45 

2006). This type of models lends itself to a straightforward neural implementation in which neurons 46 

simply add their sensory inputs until they reach a preset threshold (2Ratcliff and McKoon, 2008; 47 

7Gold and Shadlen, 2007). 48 

 49 

When multiple sensory inputs are involved, the standard DDMs can accumulate sensory evidence 50 

optimally as long as the reliabilities of the evidence stay constant during a single trial and across 51 

trials. Under this scenario, optimal integration of evidence over time can be achieved by first taking 52 

a weighted sum of the momentary evidence at each time step, with weights proportional to the 53 

reliability of each sensory stream, followed by temporal integration (8Drugowitsch, et al., 2014). 54 

However, this strategy no longer works when the reliabilities change over time within a single trial. 55 
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In this case, the momentary evidence must be linearly combined with weights proportional to the 56 

time-varying reliabilities, which requires that the synaptic weights change on a very fast time scale 57 

since, in the real life, reliability can change significantly over tens of milliseconds. Moreover, when 58 

the reliabilities of the sensory inputs are not known in advance, which is typically the case in real-59 

world situations, neurons cannot determine how to appropriately modulate their synaptic weights 60 

until after the sensory inputs have been observed. Therefore, even if it is possible to extend standard 61 

DDMs to time-varying reliability (8Drugowitsch, et al., 2014), it is unclear how such a solution 62 

could be implemented biologically.   63 

 64 

In contrast, there exists another class of models which does not necessarily involve changes in 65 

synaptic strength. As long as the sensory inputs are encoded with what is known as “invariant linear 66 

probabilistic population codes” (ilPPC), the neural solution for optimal multisensory integration is 67 

remarkably simple: it only requires that neurons compute linear combinations of their inputs across 68 

time or modalities using fixed—reliability-independent—synaptic weights (9Beck, et al., 2008; 69 

10Ma, et al., 2006). This solution relies on one specific property of ilPPC: the reliability of the 70 

neural code is proportional to the amplitude of the neural responses. As a result, when summing 71 

two sensory inputs with unequal reliability, the sensory input with the lowest reliability contribute 72 

less to the sum because of its lower firing rate. This is formally equivalent to weighting Gaussian 73 

samples with their reliability in an extended DDM, except that there is no need for actual weight 74 

changes with ilPPC (10Ma, et al., 2006). Hence, the ilPPC framework is a promising solution to 75 

multisensory decision-making tasks, but it lacks physiological supports. 76 

 77 

To investigate whether the brain may implement this solution, we recorded the activity of single 78 

neurons in the lateral intraparietal area (LIP) in macaques trained to discriminate their heading 79 

direction of self-motion based on multiple sensory inputs: vestibular signals, visual optic flow, or 80 

both. Importantly, the vestibular and visual stimuli followed a Gaussian-shape velocity temporal 81 
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profile, producing naturally varied cue reliability over time within each trial. This behavioral 82 

paradigm has been well-established for studying multisensory heading discrimination in the past 83 

decade (11Fetsch, et al., 2012; 12Gu, et al., 2008; 13Fetsch, et al., 2013). Nevertheless, these 84 

previous studies focused on areas that encode momentary heading inputs, leaving it unknown how 85 

these sensory inputs are further accumulated by downstream neurons (e.g. LIP) during perceptual 86 

decision making.  87 

 88 

We focus first in LIP because it is the most extensively studied brain region where buildup choice-89 

related activity has been found during visuomotor decisions in macaques (7Gold and Shadlen, 90 

2007; 14Shadlen and Newsome, 2001; 15Shadlen and Newsome, 1996; 16Huk, et al., 2017; 91 

17Roitman and Shadlen, 2002). In addition, LIP receives abundant anatomical inputs 92 

(18Boussaoud, et al., 1990) from areas encoding momentary vestibular and visual self-motion 93 

information for heading discrimination, such as the dorsal medial superior temporal (MSTd) area 94 

(12Gu, et al., 2008; 19Gu, et al., 2006) and the ventral intraparietal area (VIP) (20Chen, et al., 2011c; 95 

21Chen, et al., 2013). It is therefore expected that the activity of LIP neurons should carry buildup 96 

choice signals germane to the formation of multisensory decisions. Note that two recent rodent 97 

studies (22Nikbakht, et al., 2018; 23Raposo, et al., 2014) also have described multisensory decision 98 

signals in rat posterior parietal cortex, a region analogous to its primate counterpart. However, these 99 

studies did not characterize the computational solution implemented by these neural circuits, which 100 

is precisely the question we investigate here. Specifically, we explored whether the response of LIP 101 

neurons is consistent with the ilPPC theory in which neurons take fixed linear combinations of their 102 

sensory inputs without any need for complex, time-dependent, modality-specific, reweighting of 103 

the sensory inputs during multisensory decision making.  104 
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Results 105 

Optimal multisensory decision-making behavior on macaques 106 

We trained two macaque monkeys to perform a vestibular-visual multisensory decision-making 107 

task (12Gu, et al., 2008) (Figure 1a). On each trial, the monkeys experienced a 1.5s-fixed-duration 108 

forward motion with a small deviation either to the left or to the right of the dead ahead. At the end 109 

of the trial, the animals were required to report the perceived heading direction by making a saccade 110 

decision to one of the two choice targets (Figure 1b). We randomly interleaved three cue conditions 111 

over trials: a vestibular condition and a visual condition in which heading information was solely 112 

provided by inertial cues and optic flow, respectively, and a combined condition consisting of 113 

congruent vestibular and visual cues. Importantly, both the vestibular and visual stimuli followed a 114 

Gaussian-shape velocity temporal profile, peaking at the middle of the 1.5-s stimulus duration. This 115 

modulation of velocity over time has an important implication for the reliability of the sensory 116 

inputs provided to the animals. Indeed, previous psychophysical studies have established that a 117 

model in which the reliability of the visual flow field is proportional to velocity and the reliability 118 

of the vestibular signal is proportional to the acceleration, provides the best fits to the behavioral 119 

data (8Drugowitsch, et al., 2014). Therefore, this stimulus allows us to test how neural circuits 120 

accumulate multisensory evidence whose reliability varies over time with distinct temporal profiles 121 

(see below). 122 

 123 

To quantify the monkeys’ behavioral performance, we plotted psychometric curves for each cue 124 

condition (Figure 1c). Consistent with the previous results (12Gu, et al., 2008), the monkeys made 125 

more accurate decisions in the combined condition, as evidenced by a steeper psychometric 126 

function and a smaller psychophysical threshold (Figure 1c). Across all recording sessions and for 127 

both monkeys, the psychophysical threshold of the combined condition was significantly smaller 128 

than those of single cue conditions and close to the threshold predicted by optimal Bayesian  129 
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Figure 1  Optimal cue integration in vestibular-visual multisensory decision-making task. 
(a) Schematic drawing of the experimental setup (top view). The vestibular (blue) and visual (red) 
stimuli of self-motion were provided by a motion platform and an LCD screen mounted on it, 
respectively. The monkey was seated on the platform and physically translated within the 
horizontal plane (blue arrows), whereas the screen rendered optic flow simulating what the 
monkey would see when moving through a three-dimensional star field (red dots). In a combined 
condition (green), both vestibular and visual stimuli were presented synchronously. The monkey’s 
task was to discriminate whether the heading direction was to the left or the right of the straight 
ahead (black dashed line). (b) Task timeline. The monkey initiated a trial by fixating at a fixation 
point, and two choice targets appeared. The monkey then experienced a 1.5-s forward self-motion 
stimulus with a small leftward or rightward component, after which the monkey reported his 
perceived heading by making a saccadic eye movement to one of the two targets. The self-motion 
speed followed a Gaussian-shape profile. (c) Example psychometric functions from one session. 
The proportion of “rightward” choices is plotted against the headings for three cue conditions 
respectively. Smooth curves represent best-fitting cumulative Gaussian functions. (d) Average 
psychophysical thresholds from two monkeys for three conditions and predicted thresholds 
calculated from optimal cue integration theory (black bars). Error bars indicate s.e.m.; p values 
were from paired t-test. 
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multisensory integration (24Knill and Richards, 1996) (Figure 1d). Therefore, the monkeys can 131 

integrate vestibular and visual cues near-optimally during our multisensory decision-making task. 132 

 133 

Heterogeneous multisensory choice signals in LIP 134 

Next, we set out to explore how these optimal decisions were formed in the brain. We recorded 135 

from 164 single, well-isolated neurons in LIP of two monkeys while they were performing the task 136 

(Supplementary Figure 1). As expected, we found buildup choice-related signals in LIP neurons 137 

under all cue conditions. As shown in PSTHs of the example cells (Figure 2a and Supplementary 138 

Figure 2), there was generally an increasing divergence between the neuron’s firing rate on trials 139 

in which the monkey chose the target in the neuron’s response field (IN choices, solid curves) and 140 

trials in which the opposite target was chosen (OUT choices, dashed curves). Importantly, in all cue 141 

conditions, the buildup choice signals tended to be stronger for heading directions more distant 142 

away from straight ahead (Supplementary Figure 3), suggesting that the response of LIP neurons 143 

reflects the accumulation of visual and vestibular sensory evidence for heading judgments. 144 

 145 

To better quantify the choice-related signals, we used a ROC analysis to generate an index of choice 146 

divergence (CD) (23Raposo, et al., 2014) that measures the strength of the choice signals (Figure 147 

2b). The four cells illustrated in Fig. 2 exhibited canonical ramping choice signals, but their CDs 148 

varied greatly across cue conditions. For example, for Cell 1, the CD was largest in the combined 149 

condition, modest in the visual condition, and smallest in the vestibular condition. By contrast, for 150 

Cell 4, the CD was largest in the vestibular condition. The heterogeneity of choice signals was also 151 

manifest at the population level.  Approximately half of the LIP neurons exhibited statistically 152 

significant CD (p < 0.05, two-sided permutation test) in each cue condition (vestibular: 52%, visual: 153 

46%, combined: 59%; Figure 2c), but these three subpopulations did not fully overlap. While more 154 

than two thirds of neurons (76%) had significant choice signals in any of the three  155 
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Figure 2  Heterogeneous choice signals in LIP population. 
(a) Peri-stimulus time histograms (PSTHs) of four example cells. Spike trains were aligned to 
stimulus onset (left subpanels) and saccade onset (right subpanels), respectively, and grouped by 
cue condition and monkey’s choice. Vestibular, blue; visual, red; combined, green. Toward the 
cell’s response field (RF), or IN choices, solid curves; away from the cell’s RF, or OUT choices, 
dashed curves. Mean firing rates were computed from 10-ms time windows and smoothed with a 
Gaussian (σ = 50 ms); only correct trials or 0° heading trials were included. Shaded error bands, 
s.e.m. Horizontal color bars represent time epochs in which IN and OUT trials have significantly 
different firing rates (p < 0.05, t-test), with the color indicating cue condition and the position 
indicating the relationship between IN and OUT firings (IN > OUT, top; IN < OUT, bottom). Gray 
dashed curves represent the actual speed profile measured by an accelerometer attached to the 
motion platform. (b) Choice divergence (CD) of the same four cells. CD ranged from -1 to 1 and 
was derived from ROC analysis for PSTHs in each 10-ms window (see Methods). Horizontal color 
bars are the same as in a except that p-values were from permutation test (n = 1000). (c) Venn 
diagram showing the distribution of choice signals. Numbers within colored areas indicate the 
numbers of neurons that have significant grand CDs (CD computed from all spikes in 0–1500 ms) 
under the corresponding combinations of cue conditions. 

c

15 10

17

3

18

39

12
50

a

b

0.0

0.5

1.0

0 10000 1000 Sac. Sac. Sac. Sac.0 1000 0 1000

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0

20

40

60

80

0

20

40

0

20

40

60

0

20

40

p < 0.05
Fi

rin
g 

ra
te

 (H
z)

C
ho

ic
e 

di
ve

rg
en

ce

Time to stimulus onset (ms)

Cell 1 Cell 2 Cell 3 Cell 4

Vestibular Visual Combined IN choices OUT choices

M133 M121P174P313

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/480178doi: bioRxiv preprint 

https://doi.org/10.1101/480178


conditions (“Any choice” cells in Figure 2c), only a third of neurons (30%) had significant choice 157 

signals in all of the three conditions (“All choices” cells in Figure 2c).  158 

 159 

Apart from the heterogeneous choice signals, LIP also encodes heterogeneous sensory modality 160 

signals. For example, Cell #12 in Supplementary Figure 2 exhibited differentiated firing rates 161 

across cue conditions without much choice-related signal. In fact, as shown in Supplementary 162 

Figure 4a, the majority of LIP neurons actually carried mixed choice and modality signals, 163 

exhibiting a category-free like neural representation as previously seen in rat posterior parietal 164 

cortex (23Raposo, et al., 2014). However, although randomly mixed at the single neuron level, the 165 

choice and modality signals can still be linearly decoded from the LIP population (Supplementary 166 

Figure 5). Therefore, we ignore the mixed modality signals thereafter, since they are irrelevant to 167 

our heading discrimination task and orthogonal to the decision signals that we really care about. 168 

 169 

Another potential difficulty in interpreting LIP activity arises from the fact that LIP neurons also 170 

multiplex a combination of temporally overlapping decision- and non-decision- signals (25Park, et 171 

al., 2014; 26Meister, et al., 2013). In particular, the signal of saccade preparation may interfere with 172 

the one reflecting evidence accumulation (14Shadlen and Newsome, 2001). However, this was not 173 

likely to be an issue in our study. In our fixed-duration task, we introduced a 300–600 ms delay 174 

between the stimulus offset and the time at which the monkey was allowed to saccade (see 175 

Methods). Moreover, the monkeys tended to stop integrating evidence around 500 ms prior to the 176 

stimulus offset (see Figure 3b and below), further separating in time the processes of evidence 177 

accumulation and saccade preparation. Therefore, the premotor activity of LIP should not play a 178 

significant role in our analysis of multisensory evidence accumulation. 179 

 180 

LIP integrates vestibular acceleration and visual velocity  181 
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Despite the high degree of heterogeneity, there was nonetheless a property shared amongst the LIP 182 

neurons, namely, the temporal dynamics of the ramping activity was significantly faster in the 183 

vestibular and combined conditions than in the visual condition (Figure 3). This was evident not 184 

only in the averaged rate-based or ROC-based measures (“Any choice” cells, Figure 3a, b), but 185 

also in the cell-by-cell analysis (Figure 3c). Notably, the averaged divergence time under the 186 

vestibular and combined conditions aligned well to the acceleration peak of the Gaussian-shape 187 

motion profile, whereas the divergence time under the visual condition better aligned to the velocity 188 

peak (Figure 3c, dashed curves). This suggests that the physical quantities being integrated over 189 

time are speed for the visual stimulus and acceleration for the vestibular stimulus.  190 

 191 

An alternative explanation, however, might be that the apparent ~400 ms interval between the 192 

vestibular and visual ramping was caused purely by a difference in their sensory latencies rather 193 

than in their underlying physical quantities. For example, LIP activity could have been driven by 194 

an ultrafast vestibular signal but a slow visual signal, both of which followed the velocity of the 195 

motion. To test this, we designed an experiment in which we used two distinct velocity profiles, a 196 

wide one and a narrow one (Figure 3d). These profiles were designed to have temporally aligned 197 

velocity peaks but misaligned acceleration peaks. If our original physical-quantity hypothesis was 198 

correct, we would expect the visual ramping to remain nearly the same under both profiles, while 199 

the vestibular ramping should start earlier for the wide profile than for the narrow one, thus 200 

reflecting the earlier acceleration peak under the wide profile. In contrast, if the sensory-latency 201 

hypothesis was correct, there should be no shift in either the vestibular or visual ramping across the 202 

two profiles. Our data matches the first prediction (Figure 3e, f). In other words, the temporal 203 

discrepancy between the vestibular and visual ramping activities indeed resulted from different 204 

physical quantities underlying the momentary evidence fed into LIP. This physiological finding 205 

echoed a recent psychophysical study showing that, at the behavioral level, human subjects 206 

optimally integrate vestibular and visual momentary evidence with reliability following the  207 
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Figure 3  LIP integrates vestibular acceleration but visual speed. 
(a and b) Population average of normalized PSTHs (a) and CD (b) from 125 “any choice” cells. The 
vestibular (blue) and combined (green) CDs ramped up much earlier than the visual one (red). 
Horizontal color bars indicate the time epochs in which population CDs are significantly larger than 
zero (p < 0.05, t-test). Gray dashed curve, the actual Gaussian speed profile; shaded error bands, 
s.e.m. (c) Divergence time of cells with significant grand CD for each condition. Divergence time was 
defined as the first occurrence of a 250-ms window in which CD was consistently larger than zero (p 
< 0.05, permutation test). Gray lines connect data from the same cells; acceleration and speed 
profiles shown in the background. Data points with horizontal error bars, mean ± s.e.m. of population 
divergence time; p values, t-test. (d) Two motion profiles used to isolate contributions of acceleration 
and speed to LIP ramping. Top and solid, the narrow-speed profile; bottom and dashed, the wide-
speed profile; blue, acceleration; red, speed. Note that by widening the speed profile, we shifted the 
time of acceleration peak forward (blue vertical lines) while keeping the speed peak unchanged (red 
vertical lines). (e) Vestibular and visual CDs under the two motion profiles. (f) Comparison of 
divergence time between narrow and wide profiles. Note that the vestibular divergence time was 
significantly shifted, whereas the visual one was not, indicating that LIP integrates sensory evidence 
from vestibular acceleration and visual speed. 
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amplitude of acceleration and velocity, respectively (8Drugowitsch, et al., 2014).  209 

 210 

Network model implementing ilPPC for multisensory decision making 211 

Next, we developed a neural model of multisensory decision making (refer to as M1 thereafter) 212 

which takes as input vestibular neurons tuned to acceleration and visual neurons tuned to velocity 213 

as observed in vivo (equation (2) and (3) in Methods; Figure 4a). These inputs converge onto an 214 

integration layer which takes the sum of the visual and vestibular inputs, as well as integrates this 215 

summed input over time. This layer projects in turn to an output layer, labeled LIP, which sums the 216 

integrated visuo-vestibular inputs with the activity from another input layer encoding the two 217 

possible targets to which the animal can eventually saccade (Figure 4b, c). As long as the input 218 

layers encode the sensory inputs with ilPPC, this simple network can be shown analytically to 219 

implement the Bayes optimal solution even when the reliability of the sensory inputs vary over 220 

time as is the case in our experiment (9Beck, et al., 2008; 10Ma, et al., 2006). Note that separating 221 

the integration layer from the LIP layer is not critical to our results. We did so to reflect the fact 222 

that current experimental data suggest that LIP may not be the layer performing the integration per 223 

se, but may only reflect the results of this integration (27Katz, et al., 2016).  224 

 225 

In an ilPPC, the gain, or amplitude, of the tuning curves of the neurons should be proportional to 226 

the reliability of the encoded variable. For instance, in the case of vestibular neurons, the amplitude 227 

of the tuning curves to heading should scale with acceleration. In vivo, however, the responses of 228 

vestibular and visual neurons are not fully consistent with the assumption of ilPPC because while 229 

the amplitude does increase with reliability, in some neurons, the baseline activity decreases with 230 

reliability (equation (2) and (3) in Methods and Supplementary Figure 6a). This violation of the 231 

ilPPC assumption implies that a simple sum of activity could incur an information loss. Fortunately, 232 

this information loss is small for a population of neurons with tuning properties similar to what has  233 
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  234 

Figure 4  Neural network model with invariant linear probabilistic population codes (ilPPC). 
(a) Network architecture of model M1. The model consists of three interconnected layers of linear-
nonlinear-Poisson units (inset). Units in Vestibular and Visual layers have bell-shape ilPPC-
compatible tuning curves for heading direction and receive heading stimuli with temporal dynamics 
following acceleration and speed, respectively. The intermediate Integrator layer simply sums the 
incoming spikes from the two sensory layers over time and transforms the tuning curves for heading 
direction to that for saccade direction (-90°, leftward choice; +90°, rightward choice). The LIP layer 
receives the integrated heading inputs from the Integrator layer, together with visual responses 
triggered by the two saccade targets. LIP units also have lateral connections implementing short-
range excitation and long-range inhibition. Once a decision boundary is hit, or when the end of the 
trial is reached (1.5 s), LIP activity is decoded by a linear support vector machine for action selection 
(see Methods). Circles indicate representative patterns of activity for each layer; spike counts from 
800–1000 ms; combined condition, 8° heading. (b) Population firing rate in the LIP layer at five 
different time points (the same stimulus as in a, averaged over 100 repetitions). (c) Average PSTHs 
across LIP population. Trials included three cue conditions and nine heading directions (±8°, ±4°, ±2°, 
±1°, 0°). To mimic the experimental procedure, only units with preferred saccade direction close to 
±90° were used (with deviation less than 20°; yellow shaded area in b). Notations are the same as in 
Figure 2a and Figure 3a. 
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been reported experimentally and information limiting correlations (28Moreno-Bote, et al., 2014). 235 

Indeed, we found numerically that the information loss was around 5% over a wide range of 236 

parameters values (Fano factor, mean correlation, baseline changes, and so on) (Supplementary 237 

Modeling and Supplementary Figure 6).  238 

 239 

Importantly, we also endowed the network with a stopping mechanism which terminates sensory 240 

integration whenever a function of the LIP population activity reaches a preset threshold (see 241 

Methods). Our experiment is not a reaction time experiment and may not require, in principle, such 242 

a stopping bound. However, as can be seen in Figure 3b, LIP population response saturates around 243 

1s, suggesting that evidence integration stops prematurely. This is indeed consistent with the 244 

previous results suggesting that animals and humans use a stopping bound even in fixed duration 245 

experiments (29Kiani, et al., 2008). 246 

 247 

LIP data are compatible with the ilPPC framework 248 

In the first set of simulations on M1, we adjusted the height of the stopping bounds and found that 249 

the model can replicate the near optimal animals’ performance (Figure 5a). We then plotted the 250 

activity of a typical output neuron (in the LIP layer) in all three conditions. As expected, the activity 251 

in the combined condition is roughly equal to the sum of the vestibular-only activity and visual-252 

only activities (Figure 5b), at least in the first half of the trial. In the second half of the trial, the 253 

activity in the combined condition deviates strongly from the sum because the traces correspond to 254 

averages across trials that terminated at different times on different trials due to the stopping bound.  255 

 256 

Neurons in M1 are homogeneous in the sense that they all take a perfect sum of their vestibular and 257 

visual inputs. Importantly, however, optimal integration does not require such a perfect sum; it can 258 

also be achieved with random linear combinations of vestibular and visual inputs  259 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/480178doi: bioRxiv preprint 

https://doi.org/10.1101/480178


  260 

Figure 5  Optimal ilPPC model M1 can be linearly approximated by M2 and LIP but not by M3 and MSTd. 
(a) Model M1 exhibited near-optimal behavior as the monkey. The psychophysical threshold under the combined condition 
(green) was indistinguishable from the Bayesian optimal prediction (black). (b) Ramping activity of M1 computed as the 
difference of PSTHs for IN and OUT trials. Activities from hypothetical units in the LIP layer with preferred direction close 
to ±90° were averaged together (see Figure 4c and Methods). Since M1 is optimal and homogeneous, we refer to M1’s 
activities as “optimal traces” (see the main text). Notations are the same as before. (c) Optimal traces from M1 (thick 
shaded bands) can be linearly reconstructed by population activities obtained from a heterogenous model M2 (dashed 
curves). Model M2 had the same network architecture as M1 except that it relies on random combinations of ilPPC inputs 
in the integration layer (see Methods). (d) Optimal traces can also be linearly reconstructed by heterogenous single neuron 
activities from the LIP data. The similarity between c and d suggests that both model M2 and monkey LIP are 
heterogeneous variations of to the optimal ilPPC model M1. (e and f) In contrast, the optimal traces cannot be 
reconstructed from activities of a suboptimal model M3 (e) or from the MSTd data (f), presumably because the time 
constants in M3 and MSTd were too short. (g) Mean squared error of the fits in panels c–f. Error bars and p values were 
from subsampling test (n = 50 neurons, 1000 times). (h) Normalized readout weights ordered by magnitude. Shaded error 
bands indicate standard deviations of the subsampling distributions. (i) The kurtosis of the distributions of weights. The 
black curve in (h) and black bar in (e) were from random readout weights (see Methods). 
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(10Ma, et al., 2006). Accordingly, we simulated a second model, refer to as M2, in which the visual 261 

and vestibular weights of each neuron were drawn from lognormal distributions (Figure 5c and see 262 

Methods). Like M1, model M2 can be tuned to reproduce the Bayes optimal discrimination 263 

thresholds (Supplementary Figure 7a, b). However, in contrast to model M1, the neurons showed 264 

a wide range of response profiles closer to what we observed in vivo (Supplementary Figure 7c). 265 

In particular, we found that the distribution of visual and vestibular weights was similar in the 266 

model and in LIP data (Supplementary Figure 7d).  267 

 268 

Since model M2 is a linear combination away from model M1, we tested whether the response of 269 

M1 neurons could be estimated by linearly combining the response of M2 neurons. Multivariate 270 

linear regression confirmed that M1 response profiles could indeed be perfectly reproduced by 271 

linearly combining M2 responses (Figure 5c). Since LIP neurons also appear to be computing 272 

random linear combinations of visual and vestibular inputs, the same result should hold for LIP 273 

responses. This is indeed what we found: the response of M1 neurons can be closely approximated 274 

by linearly combining the response of LIP neurons (Figure 5d, g and Supplementary Figure 9).  275 

 276 

This last result is key: it suggests that LIP neurons behave quite similarly to the neurons in M2. The 277 

two sets of neurons, however, differ quite significantly in how they integrate their inputs over time. 278 

LIP neurons display a wide variety of temporal profiles (see Supplementary Figure 2), suggesting 279 

that very few neurons act like perfect temporal integrators, in contrast to M2 neurons. Nonetheless, 280 

the fact that linear combinations of LIP neurons could reproduce the response of M1 neurons 281 

indicates that LIP responses provide a basis set sufficiently varied to allow perfect integration at 282 

the population level, a result consistent with what has been recently reported in the posterior parietal 283 

cortex of rats engaged in a perceptual decision making task (30Scott, et al., 2017). 284 

 285 

In addition to this second model, we simulated a third model (M3) in which the time constant of 286 
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the integration layer was reduced to 100 ms. Interestingly, we found that it was not possible to 287 

linearly combine the responses of M3 output neurons to reproduce the traces of the optimal model 288 

M1 (Figure 5e, g), thus emphasizing the importance of long integration time constant for fitting 289 

the optimal model. We also wondered whether M1 could be fitted by the response of MSTd neurons, 290 

which are known to combine visual and vestibular responses and whose time constant are believed 291 

to be of the same order as model M3. We found that the fit to M1 from MSTd neurons was markedly 292 

worse than those obtained from M2 and LIP but was close to that from M3 (Figure 5f, g). Moreover, 293 

only a small fraction of cells contributed significantly to this fit, in sharp contrast to what we 294 

observed in M2 and LIP (Figure 5h, i). In fact, the late phase of M1 responses was captured mostly 295 

by MSTd cells with short time constants who seemed sensitive to deceleration, rather than 296 

integrating cells (Supplementary Figure 8).  297 

 298 

Finally, we computed the shuffled Fisher information over time for the models and the experimental 299 

data (Figure 6). The Fisher information in a neuronal population is a measure inversely 300 

proportional to the square of the discrimination threshold of an ideal observer (31Beck, et al., 2011; 301 

32Seung and Sompolinsky, 1993). The shuffled Fisher information is a related measure 302 

corresponding to the information in a data set in which neurons are recorded one at a time, as 303 

opposed to simultaneously, which is the case for our data set (33Series, et al., 2004) (see Methods). 304 

Our network simulations revealed that the shuffled Fisher information should increase over time in 305 

all conditions, reflecting the temporal accumulation of evidence (Figure 6a). In addition, we 306 

observed that this rise in information starts earlier in the vestibular condition than in the visual one 307 

because of the temporal offset between acceleration and velocity. In the combined condition, the 308 

Fisher information follows at first the vestibular condition before exceeding the vestibular trace 309 

once the visual information becomes available. Remarkably, the shuffled Fisher information 310 

estimated from the LIP responses follows qualitatively the same trend as the ones observed in the 311 

model (Figure 6b). In contrast to M2 and LIP neurons, shuffled Fisher information in M3 and  312 
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Figure 6  Shuffled Fisher information for the model and the experimental data. 

(a) Shuffled Fisher information of M2 calculated by 𝐼𝐼𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = ∑ 𝑓𝑓𝑖𝑖
′2/σi

2
𝑖𝑖  , where 𝑓𝑓𝑖𝑖′  denotes the 

derivative of the local tuning curve of the 𝑖𝑖th neuron and 𝜎𝜎𝑖𝑖
2 denotes the averaged variance of its 

responses around 0° (see Methods). Both correct and wrong trials were included. Shaded error 
bands, s.e.m. estimated from bootstrap. Note that the absolute value of shuffled Fisher information 
is arbitrary. (b-d) Same as in a but for the monkey LIP data, the M3 responses, and the monkey 
MSTd data, respectively. Note that LIP is similar to M2, and MSTd to M3. 
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MSTd followed the profile expected for neurons with short time constant: it simply reflected the 314 

velocity profile of the stimulus and did not exhibit the plateau expected from a decision area 315 

(Figure 6c, d). 316 

 317 

Taken together, our results are consistent with the notion that MSTd neurons provide the visual 318 

momentary evidence for decision making, while LIP circuits, or circuits upstream from LIP, 319 

implement the near optimal solution of model M1, in the sense that the LIP population activity is a 320 

mere linear transformation away from that solution.  321 
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Discussion 322 

Integrating ever-changing sensory inputs from different sources across time is crucial for animals 323 

to optimize their decisions in a complex environment, yet little is known about the underlying 324 

mechanisms, either experimentally or theoretically. In the current study, we present, to the best of 325 

our knowledge, the first electrophysiological data on multisensory decision making from non-326 

human primates. We found that LIP neurons in the macaque posterior parietal cortex encode 327 

ramping decision signals not only for the visual condition, as widely shown in the literature, but 328 

also for the vestibular and combined conditions, except with distinct temporal dynamics. 329 

Importantly, these data are compatible with an ilPPC framework where optimal multisensory 330 

evidence accumulation is achieved by simply summing sensory inputs across both modalities and 331 

time, even with mismatched temporal profiles of cue reliabilities and with heterogeneous sensory-332 

motor representation. Therefore, our results provide the first neural correlate of optimal 333 

multisensory decision making.  334 

 335 

Distinct visual and vestibular temporal dynamics in LIP 336 

By comparing the temporal dynamics of LIP population under different modalities, we found that 337 

LIP neurons accumulate vestibular acceleration and visual speed, which serve as momentary 338 

evidence for their respective modalities. These findings may seem confusing at first glance, since 339 

it is more intuitive to assume that neural circuits would combine evidence with the same temporal 340 

dynamics across cues, namely, either visual and vestibular speed or visual and vestibular 341 

acceleration (19Gu, et al., 2006; 34Chen, et al., 2011a; 35Fetsch, et al., 2010; 36Smith, et al., 2017). 342 

In support of this idea, recent studies have found a remarkable transformation from acceleration-343 

dominated to speed-dominated vestibular signal along the vestibular pathway, i.e. from peripheral 344 

otolith organs to the central nervous system (37Laurens, et al., 2017), as well as a moderate but 345 

noticeable further transformation along several sensory cortices (19Gu, et al., 2006; 34Chen, et al., 346 
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2011a; 35Fetsch, et al., 2010; 37Laurens, et al., 2017). Given that visual motion responses are 347 

typically dominated by speed (19Gu, et al., 2006; 38Lisberger and Movshon, 1999), one would 348 

think that the brain may deliberately turn the vestibular signal from acceleration- to speed-sensitive 349 

to facilitate the combination with the visual signal.  350 

 351 

However, if the vestibular momentary evidence is proportional to acceleration corrupted by white 352 

noise across time, integrating this evidence to obtain a velocity signal would not simplify decision 353 

making. On the contrary, this step would introduce temporal correlations (39Churchland, et al., 354 

2011), in which case, even with ilPPC, a simple sum of the momentary evidence would no longer 355 

be optimal (6Bogacz, et al., 2006). Instead, downstream circuits would have to compute a weighted 356 

sum of the sensory evidence, which would effectively differentiate the momentary evidence before 357 

summing them. In other words, optimal integration would effectively recover the original 358 

acceleration signals. Our results, along with previous psychophysical results (8Drugowitsch, et al., 359 

2014), strongly suggest that the brain does not go through this extra step and uses the acceleration 360 

signals as momentary evidence instead.  361 

 362 

Multisensory convergence in the brain for heading decision 363 

One of the long-standing questions about multisensory integration is whether integration takes 364 

place early or late along the sensory streams (40Bizley, et al., 2016). There are clear signs of 365 

multisensory responses in relatively early- or mid- stage of sensory areas, thus supporting the early 366 

theory (41Gu, 2018). Our results are more consistent with the late-convergence theory in which 367 

multisensory momentary evidence are combined across modalities and time in decision areas such 368 

as LIP. However, this dichotomy between early and late theories does not necessarily make sense 369 

given the recurrent nature of the cortical circuitry. In a highly recurrent network, it is notoriously 370 

difficult to identify a node as a primary site of integration. Thus, integration might take place 371 
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simultaneously across multiple sites but in such a way that the output of the computation is 372 

consistent across sites. For example, Deneve, et al. 42 demonstrated how this could take place in a 373 

large recurrent network performing optimal multisensory integration, though their work did not 374 

consider the problem of temporal integration. 375 

 376 

It might be possible to gain further insight into the distributed nature of multisensory decision 377 

making by combining the previous models with the one we have presented here. Such an extended 378 

model might explain why vestibular momentary evidence is tuned to velocity by the time they 379 

appear in MSTd (37Laurens, et al., 2017; 41Gu, 2018), and why this velocity tuned vestibular input 380 

does not appear to be integrated in LIP. It could also shed light on recent physiological experiments 381 

in which electrical microstimulation and chemical inactivation in MSTd could dramatically affect 382 

heading discrimination based on optic flow while this effect was largely negligible in the vestibular 383 

condition (43Gu, et al., 2012). By contrast, and in accord with our finding that LIP integrates 384 

vestibular acceleration, inactivating the vestibular cortex PIVC, where vestibular momentary 385 

evidence is dominated by acceleration (34Chen, et al., 2011a; 37Laurens, et al., 2017), substantially 386 

diminished the macaque’s heading ability based on vestibular cue (44Chen, et al., 2016). Note, 387 

however, a detailed construction of such a model lies beyond the scope of the present study but will 388 

eventually be required for a multi-area theory of multisensory decision making. 389 

 390 

Computational models for multisensory decision making 391 

Our results indicate that, at the population level, LIP implements an optimal solution for 392 

multisensory decision making under the assumption that the sensory inputs are encoded with ilPPC. 393 

This assumption is not perfectly satisfied in our experiment since the visual and vestibular inputs 394 

deviate from pure ilPPCs, but we saw that this deviation introduces only a minor information loss. 395 

While these results provide the first experimental support for the ilPPC theory of multisensory 396 
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decision making, it will be important to test in future experiments other predictions of this 397 

framework. In particular, the ilPPC theory predicts that LIP activity encodes a full probability 398 

distribution over choices given the evidence so far (9Beck, et al., 2008). Testing this prediction 399 

thoroughly requires simultaneous recording of LIP ensemble, manipulating the cue reliability 400 

(motion profile or visual coherence) on a trial-by-trial basis, and preferably engaging the animals 401 

in a reaction-time task, all of which should be addressed in future studies.  402 

 403 

There are of course other models of decision making which could potentially account for the 404 

responses we have observed in LIP (45Chandrasekaran, 2017). In particular, it has been argued 405 

that LIP is part of a network of areas implementing point attractor networks (46Wong and Wang, 406 

2006; 47Wang, 2002). However, it is not immediately clear how this approach can be generalized 407 

to the type of decision we have considered here. Indeed, as we have seen, the optimal solution 408 

depends critically on the code that is used to encode the momentary evidence. To the extent that 409 

this code is close to an ilPPC, the optimal solution is to sum the inputs spikes, in which case one 410 

needs a line attractor network, which is effectively what our network approximates. Therefore, as 411 

long as these previous models of decision making are fine-tuned to approximate line attractor 412 

networks, and as long as they are fed ilPPCs as inputs, the two classes of models would be 413 

equivalent.  414 

 415 

Training recurrent neural network (RNNs) on our task (48Mante, et al., 2013; 49Song, et al., 2017) 416 

provides a third alternative for modeling multisensory decision making. We also tried this approach 417 

and found that the resulting network was capable of reproducing the behavioral thresholds of the 418 

animal while exhibiting a wide variety of single neuron responses similar to what we saw in LIP ( 419 

Supplementary Figure 10). Nonetheless, this approach has one major drawback: it makes it very 420 

difficult to understand how the network solves the task. We could try to reverse engineer the 421 

network, but given that an analytical solution can be derived from first principles for our task, and 422 
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given that this solution is close to what we observed in LIP, it is unclear what insight could be 423 

gained from the recurrent network. In contrast, our ilPPC model provides a close approximation to 424 

the optimal solution, consistent with the experimental results, along with a clear understanding as 425 

to why this approach is optimal.   426 

 427 

  428 
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Methods 429 

Subjects and Apparatus 430 

All animal procedures were approved by the Animal Care Committee of Shanghai Institutes for 431 

Biological Sciences, Chinese Academy of Sciences and have been described previously in detail 432 

(12Gu, et al., 2008; 19Gu, et al., 2006). Briefly, two male adult rhesus monkeys, Monkey P and 433 

Monkey M, weighing ~8 kg, were chronically implanted with a lightweight plastic ring for head 434 

restraint and a scleral coil for monitoring eye movements (Riverbend Instruments). During 435 

experiments, the monkey sat comfortably in a primate chair mounted on top of a custom-built 436 

virtual reality system, which consisted of a motion platform (MOOG MB-E-6DOF/12/1000KG) 437 

and an LCD screen (~30 cm of view distance and ~90° × 90° of visual angle; HP LD4201), 438 

presenting vestibular and visual motion stimuli to the monkey, respectively. The stimuli were 439 

controlled by customized C++ software and synchronized with the electrophysiological recording 440 

system by TEMPO (Reflective Computing, U.S.A).  441 

 442 

To tune the synchronization between vestibular and visual stimuli, we rendered a virtual world-443 

fixed crosshair on the screen while projected a second crosshair at the same place on the screen 444 

using a real world-fixed laser pen. When the platform was moving, we carefully adjusted a delay 445 

parameter in the C++ software (with 1 ms resolution) until the two crosshairs aligned precisely 446 

together all the time, as verified by a high-speed camera (Meizu Pro 5) and/or a pair of back-to-447 

back mounted photodiodes. This synchronization procedure was repeated occasionally over the 448 

whole period of data collection. 449 

 450 

Behavioral Tasks  451 

Memory-guided Saccade Task 452 

We used the standard memory-guided saccade task (50Barash, et al., 1991) to characterize and 453 
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select LIP cells for recording in the main decision-making experiments. The monkey fixated at a 454 

central fixation point for 100 ms and then a saccade target flashed briefly (500 ms) in the periphery. 455 

The monkey was required to maintain fixation during the delay period (1000 ms) until the fixation 456 

point extinguished and then saccade to the remembered target location within 1000 ms for a liquid 457 

reward. For all tasks in the present study, at any time when there existed a fixation point, trials were 458 

aborted immediately if the monkey’s gaze deviated from a 2° × 2° electronic window around the 459 

fixation point. 460 

 461 

Multisensory Heading Discrimination Task 462 

In the main experiments, we trained the monkeys to report their direction of self-motion in a two-463 

alternative forced-choice heading discrimination task (12Gu, et al., 2008) (Figure 1). The monkey 464 

initiated a trial by fixating on a central, head-fixed fixation point, and two choice targets then 465 

appeared. The locations of the two targets were determined case-by-case for each recording session 466 

(see below). After fixating for a short delay (100 ms), the monkey then began to experience a fixed-467 

duration (1.5 s) forward motion in the horizontal plane with a small leftward or rightward 468 

component relative to straight ahead. The animals were required to maintain fixation during the 469 

presentation of the motion stimuli. At the end of the trial, the motion ended, and the monkey was 470 

required to maintain fixation for another 300–600 ms random delay (uniformly distributed) until 471 

the fixation point disappeared, at which point the monkey was allowed to make a saccade choice 472 

toward one of the two targets to report his perceived heading direction (left or right). 473 

 474 

Across trials, nine heading angles (±8°, ±4°, ±2°, ±1°, and 0°) and three cue conditions (vestibular, 475 

visual, and combined) were jointly interleaved, resulting in 27 unique stimulus conditions, each of 476 

which was repeated 15 ± 3 (median ± m.a.d.) times per one session. In a vestibular or a visual trial, 477 

heading information was solely provided by inertial motion (real movement of the motion platform) 478 

or optic flow (simulated movement through a star field on the display), respectively, whereas in a 479 
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combined trial, congruent vestibular and visual cues were provided synchronously. To maximize 480 

the behavioral benefit of cue integration, we balanced the monkey’s performance under the 481 

vestibular and the visual conditions by manipulating the motion coherence of the optic flow (the 482 

percentage of dots that moved coherently). The visual coherence was 12% and 8% for monkey P 483 

and M, respectively. 484 

 485 

To ensure that the reliabilities of sensory cues varied throughout each trial, we used Gaussian-shape, 486 

rather than constant, velocity profiles for all motion stimuli. In the main experiments, the Gaussian 487 

profile had a displacement 𝑑𝑑 = 0.2 𝑚𝑚 and a standard deviation 𝜎𝜎 = 210 𝑚𝑚𝑚𝑚 (half duration at about 488 

60% of the peak velocity), resulting in a peak velocity 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 0.37𝑚𝑚 𝑚𝑚⁄  and a peak acceleration 489 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 1.1𝑚𝑚 𝑚𝑚2⁄ . In the experiment where we sought to independently vary the peak times of 490 

velocity and acceleration (Figure 3), two additional sets of motion parameters were used. For the 491 

narrow-speed profile, 𝑑𝑑 = 0.10 𝑚𝑚 , 𝜎𝜎 = 150 𝑚𝑚𝑚𝑚 , 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 0.37 𝑚𝑚 𝑚𝑚⁄  , and 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 1.1𝑚𝑚 𝑚𝑚2⁄  ; for 492 

the wide-speed profile, 𝑑𝑑 = 0.25 𝑚𝑚, 𝜎𝜎 = 330 𝑚𝑚𝑚𝑚, 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 0.31𝑚𝑚 𝑚𝑚⁄ , and 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 0.6𝑚𝑚 𝑚𝑚2⁄ . 493 

 494 

Electrophysiology 495 

We carried out extracellular single-unit recordings as described previously (12Gu, et al., 2008) from 496 

four hemispheres in two monkeys. For each hemisphere, reliable area mapping was first achieved 497 

through cross-validation between structural MRI data and electrophysiological properties, 498 

including transition patterns of gray/white matter along each penetration, sizes of visual 499 

receptive/response field, strengths of spatial tuning to visual and vestibular heading stimuli, and 500 

activities in the memory-guided saccade task. Based on the mapping results, Area LIP was 501 

registered by its spatial relationships with other adjacent areas (VIP, Area 5, MSTd, etc.), its weak 502 

sensory encoding of heading information, and its overall strong saccade-related activity 503 

(Supplementary Figure 1). Our recording sites located in the ventral division of LIP, extending 504 
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from 7–13 mm lateral to the midline and -5 mm (posterior) to +3 mm (anterior) relative to the 505 

interaural plane. 506 

 507 

Once we encountered a well-isolated single unit in LIP, we first explored its response field (RF) by 508 

hand (using a flashing patch) and then examined its electrophysiological properties using the 509 

memory-guided saccade task. The saccade target in each trial was randomly positioned at one of 510 

the 8 locations 45° apart on a circle centered on the fixation point (5°–25° radius, optimized 511 

according to the cell’s RF location). We calculated online the memory-saccade spatial tuning for 512 

three response epochs: (1) visual response period, 75–400 ms from target onset; (2) delay period, 513 

25–900 ms from target offset; and (3) presaccadic period, 200–50 ms before the saccade onset 514 

(Supplementary Figure 2). The cell’s spatio-temporal tunings were used to refine its RF location 515 

(via vector sum) and to determine its inclusion in the subsequent decision-making task. Since the 516 

decision-related activity of LIP neurons cannot be strongly predicted by the persistent activity 517 

during the delay period alone (26Meister, et al., 2013) (Supplementary Figure 4b), we adopted a 518 

wider cell selection criterion than conventionally used, in which we included cells that have 519 

significant spatial selectivity for any of the three response epochs (26Meister, et al., 2013) (one-520 

way ANOVA, p < 0.05, 3–5 repetitions). If the cell met this criterion, then we recorded its decision-521 

related activity while engaging the monkey in the main multisensory decision-making task, with 522 

the two choice targets being positioned in its RF and 180° opposite to its RF, respectively.  523 

 524 

Although we collected data from a relatively broad sample of LIP neurons, we nevertheless had 525 

two sampling biases during this process. First, we were biased toward cells with strong persistent 526 

activity so that our multisensory data could be better compared with previous unisensory data in 527 

the decision-making literature, where in most cases only these cells were recorded. Second, we 528 

were biased toward cells with RF close to the horizontal line through the fixation point. Unlike the 529 

classical random dot stimuli whose motion direction on the fronto-parallel plane can be aligned 530 
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with the cell’s RF (and the choice targets) session by session, our self-motion stimuli were always 531 

on the horizontal plane and thus were not adjustable according to the cell’s RF on the fronto-parallel 532 

plane. As a result, the subjects had to make an additional mapping from their perceived heading 533 

directions (always left or right) to the choice targets (often inclined, and in extreme cases, up or 534 

down). Therefore, to make the task more intuitive to the monkeys and to minimize the potential 535 

influence of this mapping step on neural activity, we discarded a cell if the angle between the 536 

horizontal line and the line connecting the fixation point to its RF exceeded 60°, although we 537 

observed little change in monkeys’ behavior even when this angle approached 80°. 538 

 539 

Data Analysis 540 

Psychophysics 541 

To quantify the behavioral performance for both the monkeys and the model in the multisensory 542 

decision-making task, we constructed psychometric curves by plotting the proportion of “rightward” 543 

choices as a function of heading (Figure 1c) and fitted them with cumulative Gaussian functions 544 

(12Gu, et al., 2008). The psychophysical threshold for each cue condition was defined as the 545 

standard deviation of their respective Gaussian fit. The Bayesian optimal prediction of 546 

psychophysical threshold under the combined condition 𝜎𝜎𝑝𝑝𝑟𝑟𝑢𝑢𝑢𝑢𝑖𝑖𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟 was solved from the inverse 547 

variance rule (24Knill and Richards, 1996) 548 

1
𝜎𝜎𝑝𝑝𝑟𝑟𝑢𝑢𝑢𝑢𝑖𝑖𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟

2 = 1
𝜎𝜎𝑣𝑣𝑢𝑢𝑠𝑠𝑟𝑟𝑖𝑖𝑣𝑣𝑢𝑢𝑢𝑢𝑚𝑚𝑟𝑟

2 + 1
𝜎𝜎𝑣𝑣𝑖𝑖𝑠𝑠𝑢𝑢𝑚𝑚𝑢𝑢

2  549 

where 𝜎𝜎𝑣𝑣𝑢𝑢𝑠𝑠𝑟𝑟𝑖𝑖𝑣𝑣𝑢𝑢𝑢𝑢𝑚𝑚𝑟𝑟 and 𝜎𝜎𝑣𝑣𝑖𝑖𝑠𝑠𝑢𝑢𝑚𝑚𝑢𝑢 represent psychophysical thresholds under the vestibular and visual 550 

conditions, respectively. 551 

 552 

Choice-related neural activities 553 

We constructed peri-stimulus time histograms (PSTHs) for two epochs of interest in a trial, the 554 
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decision formation epoch and the saccade epoch, by aligning raw spike trains to the stimulus onset 555 

and the saccade onset, respectively. Firing rates were computed in non-overlapping 10-ms bins and 556 

smoothed over time by convolving with a Gaussian kernel (𝜎𝜎 = 50 𝑚𝑚𝑚𝑚). Unless otherwise noted, 557 

only correct trials were used in the following analyses, except for the ambiguous 0° heading where 558 

we included all complete trials. 559 

 560 

To illustrate the choice-related activity of a cell, we grouped the trials according to the monkey’s 561 

choice, i.e., trials ending up with a saccade toward the cell’s RF (IN trials) versus trials ending up 562 

with a saccade away from the cell’s RF (OUT trials), and computed the averaged PSTHs of these 563 

two groups of trials for each cue condition (Figure 2a). When averaged across cells, each cell’s 564 

PSTHs were normalized such that the cell’s overall firing rate had a dynamic range of [0, 1] (Figure 565 

3). To quantify the strength of choice signals and better visualize ramping activities, we calculated 566 

choice divergence (23Raposo, et al., 2014) for each 10-ms time bin and for each cue condition using 567 

receiver operating curve (ROC) analysis (Figure 2b). Choice divergence ranged from -1 to 1 and 568 

was defined as 2 × (AUC − 0.5), where AUC represents the area under the ROC curve derived 569 

from PSTHs of IN and OUT trials. To capture the onset of choice signals, we computed a 570 

divergence time defined as the time of the first occurrence of a 250-ms window (25 successive 10-571 

ms bins) in which choice divergence was consistently and significantly larger than 0 (Figure 3c,  572 

f). The statistical significance of choice divergence (p < 0.05, relative to the chance level of 0) was 573 

assessed by two-sided permutation test (1000 permutations). We also calculated a grand choice 574 

divergence which ignored temporal information and used all the spikes in the decision formation 575 

epoch (0–1500 ms from the stimulus onset). The same permutation test was performed on the grand 576 

choice divergence to determine whether a cell had overall significant choice signals for a certain 577 

cue condition (for example, in Figure 2c).  578 

 579 
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Linear Fitting of Mean Firing Rates 580 

We fitted a linear weighted summation model to predict neural responses under the combined 581 

condition with those under the single cue conditions, using (12Gu, et al., 2008) 582 

𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑣𝑣𝑖𝑖𝑟𝑟𝑢𝑢𝑢𝑢 = 𝑤𝑤𝑣𝑣𝑢𝑢𝑠𝑠𝑟𝑟𝑖𝑖𝑣𝑣𝑢𝑢𝑢𝑢𝑚𝑚𝑟𝑟𝑟𝑟𝑣𝑣𝑢𝑢𝑠𝑠𝑟𝑟𝑖𝑖𝑣𝑣𝑢𝑢𝑢𝑢𝑚𝑚𝑟𝑟 + 𝑤𝑤𝑣𝑣𝑖𝑖𝑠𝑠𝑢𝑢𝑚𝑚𝑢𝑢𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑢𝑢𝑚𝑚𝑢𝑢 + 𝐶𝐶 583 

where 𝐶𝐶 is a constant, and 𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑣𝑣𝑖𝑖𝑟𝑟𝑢𝑢𝑢𝑢, 𝑟𝑟𝑣𝑣𝑢𝑢𝑠𝑠𝑟𝑟𝑖𝑖𝑣𝑣𝑢𝑢𝑢𝑢𝑚𝑚𝑟𝑟, and 𝑟𝑟𝑣𝑣𝑖𝑖𝑠𝑠𝑚𝑚𝑢𝑢𝑢𝑢 are mean firing rates across a trial (0–584 

1500 ms from stimulus onset) for the three cue conditions, respectively. The weights for single cue 585 

conditions, 𝑤𝑤𝑣𝑣𝑢𝑢𝑠𝑠𝑟𝑟𝑖𝑖𝑣𝑣𝑢𝑢𝑢𝑢𝑚𝑚𝑟𝑟  and 𝑤𝑤𝑣𝑣𝑖𝑖𝑠𝑠𝑢𝑢𝑚𝑚𝑢𝑢 , were determined by the least-squares method and plotted 586 

against each other to evaluate the heterogeneity of choice signals in the population for both LIP 587 

data and the model (Supplementary Figure 7d). 588 

 589 

Fisher Information Analysis  590 

To compute Fisher information (32Seung and Sompolinsky, 1993), the full covariance matrix of 591 

the population responses is needed, but this requires simultaneously recording from hundreds of 592 

neurons, which is not accessible to us yet. Instead, we calculated the shuffled Fisher information, 593 

which corresponds to the information in a population of neurons in which correlations have been 594 

removed (typically via shuffling across trials, hence the name). Shuffled Fisher information is given 595 

by (33Series, et al., 2004; 51Gu, et al., 2010): 596 

𝐼𝐼𝑚𝑚ℎ𝑢𝑢𝑓𝑓𝑓𝑓𝑢𝑢𝑢𝑢𝑑𝑑 = �
𝑓𝑓𝑖𝑖

′2

𝜎𝜎𝑖𝑖
2

𝑁𝑁

𝑖𝑖=1

(1) 597 

where 𝑁𝑁  is the number of neurons in the population; for the 𝑖𝑖th neuron, 𝑓𝑓𝑖𝑖
′ denotes the derivative 598 

of its local tuning curve, and 𝜎𝜎𝑖𝑖
2 denotes the averaged variance of its responses around 0° heading. 599 

The tuning curve 𝑓𝑓𝑖𝑖 was constructed from both correct and wrong trials grouped by heading angles, 600 

using spike counts in 250-ms sliding windows (advancing in 10-ms steps), and its derivative 𝑓𝑓𝑖𝑖
′ 601 

was obtained from the slope of a linear fit of 𝑓𝑓𝑖𝑖 against headings. The variance 𝜎𝜎𝑖𝑖
2 was computed 602 

for each heading angle and then averaged. To estimate the standard errors of 𝐼𝐼𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢, we used a 603 
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bootstrap procedure in which random samples of neurons were drawn from the population by 604 

resampling with replacement (1000 iterations). To compare the experimental data with the model, 605 

we repeated all the above steps on artificial LIP neurons in the model M2 and M3 (see below), with 606 

the inter-neuronal noise correlation being ignored as well (Figure 6). 607 

  608 

Two caveats are noteworthy when interpreting the Fisher information results. First, since the slope 609 

of tuning curve 𝑓𝑓′ is squared in the right-hand side of equation (1), the Fisher information will 610 

always be non-negative regardless of the sign of 𝑓𝑓′. As a result, even when the motion speed was 611 

zero at the beginning of a trial, the population Fisher information already had a positive value 612 

because of the noisy tuning curves during that period. Second, since we ignored inter-neuronal 613 

noise correlations, 𝐼𝐼𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 is most likely very different from the true Fisher information and thus 614 

its value is arbitrary (33Series, et al., 2004). Nonetheless, if we assume the noise correlation 615 

structure of LIP population is similar across cue conditions, we can still rely on the qualitative 616 

temporal evolution of 𝐼𝐼𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 to appreciate how multisensory signals are accumulated across time 617 

and cues in LIP.  618 

 619 

Network Simulation of ilPPC Framework 620 

The responses of visual and vestibular neurons closely approximate ilPPC 621 

As mentioned previously, an important assumption of ilPPC is that the amplitude of the sensory 622 

tuning curves be proportional to the nuisance parameters (in our case visual speed and vestibular 623 

acceleration) (9Beck, et al., 2008). To check whether this is the case for the visual neurons, we 624 

analyzed the spatio-temporal tuning curves of neurons in area MSTd (data from (19Gu, et al., 2006)). 625 

We noticed that, for some neurons, the average tuning curves are not fully consistent with the ilPPC 626 

assumption (Supplementary Figure 6a). Briefly, the mean firing rate of an MSTd neuron at time 627 

𝑡𝑡 in response to a visual stimulus with heading 𝜃𝜃 can be well captured by 628 
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𝑓𝑓(𝜃𝜃, 𝑡𝑡) = 𝑣𝑣(𝑡𝑡)(𝐴𝐴exp[𝐾𝐾(cos(𝜃𝜃 − 𝜃𝜃𝑖𝑖) − 1)] − 𝐶𝐶) + 𝐵𝐵 (2) 629 

where 𝜃𝜃𝑖𝑖 denotes the preferred heading of the neuron 𝑖𝑖 and 𝑣𝑣(𝑡𝑡) is the velocity profile; 𝐴𝐴, 𝐾𝐾, 𝐶𝐶, 630 

and 𝐵𝐵 correspond to the amplitude, the width, the null inhibition, and the baseline of its tuning 631 

curve, respectively. The ilPPC framework requires the 𝑣𝑣(𝑡𝑡) term to be separable, namely, 𝑓𝑓(𝜃𝜃, 𝑡𝑡) =632 

ℎ(𝜃𝜃)𝑔𝑔�𝑣𝑣(𝑡𝑡)�, where ℎ(𝜃𝜃) is a pure spatial component and 𝑔𝑔�𝑣𝑣(𝑡𝑡)� is a multiplicative gain function 633 

(9Beck, et al., 2008; 10Ma, et al., 2006). In equation (2), this requirement is equivalent to 𝐶𝐶 = 0 634 

and 𝐵𝐵 = 0, however, we found that some MSTd neurons often had non-zero baselines (𝐶𝐶 > 0 and 635 

𝐵𝐵 > 0). This will be harmful to the optimality of the ilPPC framework because, for example, when 636 

𝑣𝑣(𝑡𝑡) = 0 (and thus the sensory reliability is zero), MSTd neurons still tend to generate background 637 

spikes, which will bring nothing but noise into the simply summed population activity of 638 

downstream areas in an ilPPC network.  639 

 640 

To estimate the information loss due to this deviation, we simulated a population of MSTd neurons 641 

with heterogeneous spatio-temporal tuning curves similar to what has been found experimentally 642 

(19Gu, et al., 2006). We calculated the information that can be decoded from the population by a 643 

series of optimal decoders 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  and that can be recovered by the ilPPC solution 𝐼𝐼𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖 . We 644 

assumed that the population responses in MSTd contains differential correlations (28Moreno-Bote, 645 

et al., 2014) such that the discrimination threshold of an ideal observer of MSTd activity was of 646 

the same order as the animal’s performance. Under such conditions, we found that the information 647 

loss (𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐼𝐼𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖) 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜⁄   was around 5%. Detailed calculations of information loss are 648 

provided in the Supplementary Materials. Therefore, the population response of MSTd neurons 649 

provide a close approximation to an ilPPC, in the sense that simply summing the activity of MSTd 650 

neurons over time preserve 95% of the information conveyed by these neurons.  651 

 652 

We also checked whether the ilPPC assumption holds in the case of vestibular neurons. Equation 653 
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(2) above still provides a good approximation to vestibular tuning curves, except that 𝐶𝐶 is close to 654 

zero for most neurons (37Laurens, et al., 2017), in which case the information less is even less 655 

pronounced.  656 

 657 

Network Model Implementing the ilPPC solution (Model M1) 658 

We extended a previous ilPPC network model for unisensory decision making (9Beck, et al., 2008) 659 

to our multisensory decision-making task. Two sensory layers, the vestibular layer and the visual 660 

layer, contained 100 linear-nonlinear-Poisson (LNP) neurons with bell-shape tuning curves to the 661 

heading direction (equation (2)). For the 𝑖𝑖th neuron in the vestibular or visual layer, the probability 662 

of firing a spike at time step [𝑡𝑡𝑟𝑟 − 𝛿𝛿𝑡𝑡, 𝑡𝑡𝑟𝑟] was given by 663 

𝑝𝑝(𝑟𝑟𝑖𝑖
∙(𝑡𝑡𝑟𝑟) = 1) = [𝛿𝛿𝑡𝑡(𝑔𝑔∙(𝑡𝑡)(𝐴𝐴 exp[𝐾𝐾(cos(𝜃𝜃 − 𝜃𝜃𝑖𝑖) − 1)] − 𝐶𝐶) + 𝐵𝐵) + 𝑛𝑛𝑖𝑖]+ (3) 664 

where ∙ ∈ {VEST,VIS}, 𝐴𝐴,𝐾𝐾,𝐶𝐶, 𝐵𝐵, 𝜃𝜃, and 𝜃𝜃𝑖𝑖 have the same meanings as in equation (2), 𝑛𝑛𝑖𝑖 is a 665 

correlated noise term, and [⋅]+  is the threshold-linear operator: [𝑥𝑥]+ = max(𝑥𝑥, 0) . The spatial 666 

tuning was gain-modulated by a time-dependent function 𝑔𝑔∙(𝑡𝑡), which modeled the reliability of 667 

the sensory evidence and took the form 668 

𝑔𝑔VEST(𝑡𝑡) = 𝑐𝑐VEST|𝑎𝑎(̂𝑡𝑡)|,   𝑔𝑔VIS(𝑡𝑡) = 𝑐𝑐VIS𝑣𝑣(̂𝑡𝑡)  669 

in which 𝑎𝑎(̂𝑡𝑡) and 𝑣𝑣(̂𝑡𝑡) are the same acceleration and velocity profiles as the experiments but with 670 

the maximum values normalized to 1, respectively, whereas 𝑐𝑐VEST and 𝑐𝑐VIS are scaling parameters 671 

used to control the signal-to-noise ratio of sensory inputs and to balance the behavior performance 672 

between the two cue conditions like in the experiments. The noise 𝑛𝑛𝑖𝑖 in equation (3) was generated 673 

by convolving independent Gaussian noise with a circular Gaussian kernel, 674 

𝑛𝑛𝑖𝑖 = �𝐴𝐴𝜂𝜂 exp �𝐾𝐾𝜂𝜂�cos�𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑗𝑗� − 1�� 𝜂𝜂𝑗𝑗
𝑗𝑗

 675 

where 𝜂𝜂𝑗𝑗 ∼ 𝑖𝑖. 𝑖𝑖. 𝑑𝑑.𝑁𝑁(0,1), and 𝐴𝐴𝜂𝜂 and 𝐾𝐾𝜂𝜂 were set to 10-5 and 2, respectively. Other parameters 676 

we used were: 𝐴𝐴 = 60 Hz,𝐾𝐾 = 1.5,𝐶𝐶 = 10 Hz,𝐵𝐵 = 20 Hz, 𝑐𝑐VEST = 𝑐𝑐VIS = 2.4, 𝛿𝛿𝑡𝑡 = 1 ms . 677 
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Note that in equation (3), the gain 𝑔𝑔∙(𝑡𝑡) cannot be factored out because 𝐵𝐵 > 0, which is the same 678 

case as in MSTd (equation (2)). Accordingly, the neural code of M1’s sensory layers is not exact 679 

ilPPC (9Beck, et al., 2008). However, it is still a close approximation to ilPPC, since we have shown 680 

in the previous section that MSTd is 95% ilPPC-compatible. 681 

 682 

The two sensory layers then projected to 100 LNP neurons in the integrator layer. We distinguished 683 

the integrator layer from the LIP layer because there are reasons to believe that LIP reflects the 684 

integration of the evidence but may not implement the integration per se (27Katz, et al., 2016). The 685 

integrator layer summed the sensory responses across both cues and time, 686 

𝑚𝑚𝑖𝑖
INT(𝑡𝑡𝑟𝑟+1) = 𝑚𝑚𝑖𝑖

INT(𝑡𝑡𝑟𝑟) + 𝑔𝑔𝑠𝑠𝑟𝑟𝑖𝑖𝑚𝑚(𝑡𝑡𝑟𝑟)�� 𝑊𝑊𝑖𝑖𝑗𝑗
INTVEST𝑟𝑟𝑗𝑗

VEST(𝑡𝑡𝑟𝑟)
𝑗𝑗

+ � 𝑊𝑊𝑖𝑖𝑗𝑗
INTVIS𝑟𝑟𝑗𝑗

VIS(𝑡𝑡𝑟𝑟)
𝑗𝑗

� (4) 687 

where 𝑚𝑚𝑖𝑖
INT  denotes the membrane potential proxy of neuron 𝑖𝑖 , 𝑊𝑊𝑖𝑖𝑗𝑗

INTVEST  and 𝑊𝑊𝑖𝑖𝑗𝑗
INTVIS  are 688 

matrices for the feedforward weights from the vestibular and visual layer to the integrator layer, 689 

respectively, and 𝑔𝑔𝑠𝑠𝑟𝑟𝑖𝑖𝑚𝑚(𝑡𝑡𝑟𝑟) is an attentional gain factor (see below). Note that we ignored the issue 690 

of how neural circuits perform perfect integration and just assumed that they do. We could have 691 

simulated one of the known circuit solutions to this problem (52Goldman, 2009), but this would 692 

not have affected our results, while making the simulation considerably more complicated.  693 

 694 

The feedforward connections 𝑊𝑊𝑖𝑖𝑗𝑗
INT∙ map the negative and positive heading directions onto the 695 

two saccade targets, i.e., neurons preferring −90° and +90° in the integrator layer, respectively, by 696 

𝑊𝑊𝑖𝑖𝑗𝑗
INT∙ = 𝑎𝑎 exp�𝑘𝑘�cos�𝜃𝜃𝑖𝑖

 INT − 𝜃𝜃�̂ − 1�� �sin�𝜃𝜃𝑗𝑗
 ∙��  697 

in which a step function 𝜃𝜃 ̂controls the mapping, 698 

𝜃𝜃 ̂ = �
− 𝜋𝜋 2⁄ ,    if 𝜃𝜃𝑗𝑗

 ∙ ≤ 0

π 2⁄ ,    if 𝜃𝜃𝑗𝑗
 ∙ > 0

 . 699 

We used 𝑎𝑎 = 20 and 𝑘𝑘 = 4 in our simulations. After the linear step, the membrane potential proxy 700 
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was used to determine the probability of the 𝑖𝑖th integrator neuron firing a spike between times 𝑡𝑡𝑟𝑟 701 

and 𝑡𝑡𝑟𝑟 + 𝛿𝛿𝑡𝑡, 702 

𝑝𝑝(𝑟𝑟𝑖𝑖
INT(𝑡𝑡𝑟𝑟) = 1) = [𝑚𝑚𝑖𝑖

INT(𝑡𝑡𝑟𝑟)]+. 703 

 704 

Finally, the LIP layer received excitatory inputs from the integrator layer, together with visual 705 

inputs triggered by the two saccade targets (sent from the target layer). In addition, there were also 706 

lateral connections in LIP to prevent saturation. In the linear step, the membrane potential proxy of 707 

the 𝑖𝑖th LIP neuron followed 708 

𝑚𝑚𝑖𝑖
LIP(𝑡𝑡𝑛𝑛+1) = �1 −

𝛿𝛿𝑡𝑡
𝜏𝜏
� 𝑚𝑚𝑖𝑖

LIP(𝑡𝑡𝑛𝑛) +
1
𝜏𝜏

�� 𝑊𝑊𝑖𝑖𝑖𝑖
LIPINT𝑟𝑟𝑖𝑖

INT(𝑡𝑡𝑛𝑛)
𝑖𝑖

+ � 𝑊𝑊𝑖𝑖𝑖𝑖
LIPTARG𝑟𝑟𝑖𝑖

TARG(𝑡𝑡𝑛𝑛)
𝑖𝑖

+ � 𝑊𝑊𝑖𝑖𝑖𝑖
LIP𝑟𝑟𝑖𝑖

LIP(𝑡𝑡𝑛𝑛)
𝑖𝑖

� (5) 709 

where the time constant, 𝜏𝜏 , was set to 100 ms; 𝑊𝑊𝑖𝑖𝑗𝑗
LIPINT and 𝑊𝑊𝑖𝑖𝑗𝑗

LIPTAR are weight matrices for the 710 

feedforward connections from the integrator layer and the target layer to the LIP layer, respectively, 711 

and 𝑊𝑊𝑖𝑖𝑗𝑗
LIP  is the matrix for the recurrent connections within LIP. We used translation-invariant 712 

weights for all these connections, 713 

𝑊𝑊𝑖𝑖𝑗𝑗 = 𝑎𝑎 exp�𝑘𝑘�cos�𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑗𝑗� − 1�� + 𝑏𝑏. 714 

For 𝑊𝑊𝑖𝑖𝑗𝑗
LIPINT, we used 𝑎𝑎 = 15, 𝑘𝑘 = 10, 𝑏𝑏 = −3.6 ; for 𝑊𝑊𝑖𝑖𝑗𝑗

LIPTARG, we used 𝑎𝑎 = 8, 𝑘𝑘 = 5, 𝑏𝑏 = 0; 715 

and for 𝑊𝑊𝑖𝑖𝑗𝑗
LIP, we used 𝑎𝑎 = 5, 𝑘𝑘 = 10, 𝑏𝑏 = −3 . The term 𝑟𝑟𝑗𝑗

TARG(𝑡𝑡𝑟𝑟) in equation (5) denotes the 716 

visual response of the 𝑖𝑖th neuron in the target layer induced by the two saccade targets, 717 

𝑝𝑝�𝑟𝑟𝑗𝑗
TAR(𝑡𝑡𝑟𝑟) = 1� = 𝑚𝑚𝑟𝑟𝑚𝑚𝑟𝑟𝑡𝑡(𝑡𝑡𝑟𝑟) � 𝑝𝑝𝑟𝑟𝑚𝑚𝑟𝑟𝑡𝑡 exp�𝑘𝑘𝑟𝑟𝑚𝑚𝑟𝑟𝑡𝑡�cos�𝜃𝜃𝑗𝑗

TAR − 𝜃𝜃𝑚𝑚� − 1��
2

𝑚𝑚=1
  718 

where 𝜃𝜃1 = − 𝜋𝜋 2⁄  and 𝜃𝜃2 = 𝜋𝜋 2⁄ , 𝑝𝑝𝑟𝑟𝑚𝑚𝑟𝑟𝑡𝑡 = 0.050, and 𝑘𝑘𝑟𝑟𝑚𝑚𝑟𝑟𝑡𝑡 = 4. The term 𝑚𝑚𝑟𝑟𝑚𝑚𝑟𝑟𝑡𝑡(𝑡𝑡𝑟𝑟) modeled the 719 

saliency of the targets: 𝑚𝑚𝑟𝑟𝑚𝑚𝑟𝑟𝑡𝑡(𝑡𝑡𝑟𝑟) = 1 before stimulus onset and 𝑚𝑚𝑟𝑟𝑚𝑚𝑟𝑟𝑡𝑡(𝑡𝑡𝑟𝑟) = 0.6 afterwards.  720 

 721 

After the linear step done in equation (5), the probability of observing a spike from the 𝑖𝑖th LIP 722 

neuron for the next time step was given by, again,  723 
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𝑝𝑝�𝑟𝑟𝑗𝑗
LIP(𝑡𝑡𝑟𝑟+1) = 1� = [𝑚𝑚𝑖𝑖

LIP(𝑡𝑡𝑟𝑟+1)]+. (6) 724 

 725 

Decision Bound and Action Selection 726 

To let the model make decisions, we endowed it with a stopping bound such that the evidence 727 

integration terminated when the peak activity in the LIP layer reached a threshold value. This 728 

mechanism generates premature decisions in our fixed duration task, which have been observed in 729 

the previous experiments (29Kiani, et al., 2008) as well as ours (see the main text). Specifically, 730 

once the firing rate of any neuron in the LIP layer (determined from equation (6)) exceeded Θ∙ =731 

37 Hz for a vestibular or a visual trial and ΘCOMB = 42 Hz for a combined trial, we blocked the 732 

sensory inputs to the integrator layer by setting the gain factor in equation (4) to zero: 733 

𝑔𝑔𝑠𝑠𝑟𝑟𝑖𝑖𝑚𝑚(𝑡𝑡𝑟𝑟) = �
1,   if 𝑡𝑡𝑟𝑟 < 𝑡𝑡Θ
0,   if 𝑡𝑡𝑟𝑟 ≥ 𝑡𝑡Θ

     734 

where 𝑡𝑡Θ denotes the time of bound crossing. The instantaneous population activity at this time 735 

point 𝒓𝒓LIP(𝑡𝑡Θ)  was then used to determine the model’s choice, while the network dynamics 736 

continued to evolve until the end of the 1.5-s trial. 737 

 738 

To read out the model’s choice, we trained a linear support vector machine (SVM) to classify the 739 

heading direction from 𝒓𝒓LIP(𝑡𝑡Θ). We ran the network for 100 trials, used 𝒓𝒓LIP(𝑡𝑡Θ) in 30 trials to 740 

train the SVM, and then applied the SVM on the remaining 70 trials to make decisions and generate 741 

psychometric functions of the model (with bootstrap 1000 times, Figure 5a and Supplementary 742 

Figure 7a). The SVM acts like (or even outperforms) a local optimal linear estimator (LOLE) 743 

trained by gradient descent (33Series, et al., 2004). Importantly, such decoders could be 744 

implemented with population codes in a biologically realistic point attractor network tuned for 745 

optimal action selection in a discrimination task (53Deneve, et al., 1999), which could correspond 746 

to downstream areas such as the motor layer of the superior colliculus (9Beck, et al., 2008). 747 

 748 
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Heterogeneous ilPPC Network (M2) 749 

In model M2, we generalized the homogeneous ilPPC network described above (model M1) to a 750 

heterogeneous one. Instead of taking perfect sums like in model M1, neurons in the integration 751 

layer of the model computed random linear combinations of vestibular and visual inputs. It is 752 

indeed been widely shown that integration weights in vivo are heterogeneous and are well-captured 753 

by “long-tailed” lognormal distributions (see for example (54Song, et al., 2005)). To simulate this 754 

in M2, we drew each synaptic weight 𝑤𝑤M2 in M2 from a lognormal distribution 755 

𝑝𝑝(𝑤𝑤M2 = 𝑥𝑥) = 1√
2𝜋𝜋𝜎𝜎𝑥𝑥

exp�− (log 𝑥𝑥 −𝜇𝜇)2

2𝜎𝜎2 � (7)    756 

where 𝜇𝜇 and 𝜎𝜎 were chosen such that the expectation 𝑢𝑢(𝑤𝑤M2) and the standard deviation 𝑚𝑚(𝑤𝑤M2) 757 

of 𝑤𝑤M2 were both equal to its counterpart synaptic weight 𝑤𝑤M1 in model M1: 758 

𝑢𝑢(𝑤𝑤M2) = 𝑚𝑚(𝑤𝑤M2) = 𝑤𝑤M1. 759 

The parameters 𝜇𝜇 and 𝜎𝜎 in equation (7) were related to 𝑒𝑒 and 𝑠𝑠 through 760 

𝜇𝜇 = log�𝑢𝑢2 �𝑢𝑢2 + 𝑚𝑚2⁄ �

𝜎𝜎 = �log(𝑚𝑚2 𝑢𝑢2⁄ + 1)  .
 761 

If 𝑤𝑤M1 < 0 , a negative sign was added to the resulting 𝑤𝑤M2 , since lognormal distributions are 762 

always non-negative. 763 

 764 

Network with Short Integration Time Constant (M3)  765 

We also simulated a sub-optimal model M3 in which the network does not integrate evidence over 766 

time. This was done by replacing equation (4) with 767 

𝑚𝑚𝑖𝑖
INT(𝑡𝑡𝑟𝑟+1) = �1 −

𝛿𝛿𝑡𝑡
𝜏𝜏
� 𝑚𝑚𝑖𝑖

INT(𝑡𝑡𝑛𝑛) +
1
𝜏𝜏

𝑔𝑔𝑠𝑠𝑟𝑟𝑖𝑖𝑚𝑚(𝑡𝑡𝑟𝑟)�� 𝑊𝑊𝑖𝑖𝑗𝑗
INTVEST𝑟𝑟𝑗𝑗

VEST(𝑡𝑡𝑟𝑟)
𝑗𝑗

+ � 𝑊𝑊𝑖𝑖𝑗𝑗
INTVIS𝑟𝑟𝑗𝑗

VIS(𝑡𝑡𝑟𝑟)
𝑗𝑗

� 768 

where  𝜏𝜏 = 100 𝑚𝑚𝑠𝑠 and other terms are the same as in equation (4). 769 

 770 

Linear Reproduction of M1 Response 771 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/480178doi: bioRxiv preprint 

https://doi.org/10.1101/480178


To test whether the responses of the optimal and homogeneous model M1 can be linearly 772 

reproduced from responses of M2, M3, and the experimental data, we first calculated the “optimal 773 

traces” from M1 (Figure 5b), using 774 

Δ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃M1
∙ = < 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀1,𝑖𝑖

∙,+ > − < 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀1,𝑖𝑖
∙,− > 775 

Where  ∙  denotes three cue conditions (vestibular, visual, and combined), 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀1,𝑖𝑖
∙,+   and 776 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀1,𝑖𝑖
∙,−  denote averaged PSTH for the 𝑖𝑖th LIP unit in the network M1 when the network makes 777 

correct choices towards the neuron’s preferred direction and null direction, respectively, and <⋅> 778 

denotes averaging across cells. To mimic the experimental procedure, only cells whose preferred 779 

directions were close to ±90° (with deviations less than 20°) were used. Similarly, we extracted 780 

single cell activities from M2, M3, the LIP data, and the MSTd data (19Gu, et al., 2006)  781 

Δ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗,𝑖𝑖
∙ = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗,𝑖𝑖

∙,+ − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗,𝑖𝑖
∙,− 782 

where ∗ ∈ {M2,M3, LIP data, MSTd data} . Then we optimized sets of linear weights 𝒘𝒘∗  to 783 

minimize the cost function 784 

𝐸𝐸∗ = ���Δ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃M1
∙ (𝑡𝑡𝑟𝑟) − �𝑤𝑤∗,𝑖𝑖Δ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗,𝑖𝑖

∙

𝑖𝑖
(𝑡𝑡𝑟𝑟)�

2

𝑟𝑟∙
(8) 785 

where, for example, 𝑤𝑤LIP,𝑖𝑖  represents the weight of the neuron 𝑖𝑖  in the LIP data when a 786 

downstream area reads out LIP dynamics linearly to reproduce the optimal traces. To reduce 787 

overfitting, we partitioned the data into two subsets along time by randomly assigning the time bins 788 

into two sets, one for fitting (𝑃𝑃fit) and the other for validating (𝑃𝑃valid). During fitting, when the 789 

validating error 𝐸𝐸∗,𝑟𝑟𝑛𝑛∈𝑇𝑇valid
 started increasing, we stopped the iteration, a procedure known as early 790 

stopping. The fitting results are shown in Figure 5c–f. Note that the Δ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃s in the cost function 791 

(equation (8)) grouped all the heading angles together. The results were qualitatively similar when 792 

the cost function included error terms calculated from each heading angle separately, i.e., 793 
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𝐸𝐸∗ = ����Δ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃M1
∙,|ℎ|(𝑡𝑡𝑟𝑟) − �𝑤𝑤∗,𝑖𝑖Δ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗,𝑖𝑖

∙,|ℎ|

𝑖𝑖
(𝑡𝑡𝑟𝑟)�

2

|ℎ|𝑟𝑟∙
(9) 794 

where |ℎ| denotes the absolute value of heading angle (0°, 1°, 2°, 4°, 8°). The reconstructions of 795 

M1 traces with LIP activities using equation (9) are shown in Supplementary Figure 9. 796 

 797 

To assess the robustness of the linear reconstruction, we randomly subsampled the same number of 798 

neurons (n = 50, without replacement) from the four data sets, performed the linear fitting, and 799 

repeated this procedure for 1000 times. The mean squared error and the distribution of readout 800 

weights of the fittings are shown in Figure 5g, h. To examine whether only a small fraction of cells 801 

contributed heavily to the fittings or whether the majority of cells did, we compared the 802 

distributions of weights from the four data sets with the distribution of weights from a random 803 

linear decoder. To do so, for each subsampling, we also generated a set of random readout weights 804 

from a rectified Gaussian distribution (Figure 5h, black curve) and computed the kurtosis of the 805 

distribution of weights from the random decoder as well as those from the four data sets (Figure 806 

5i). The p-values were derived from the empirical subsampling distributions (two-tailed). 807 

 808 

Data and Code Availability 809 

MATLAB code for the network model and the information loss calculation is available at the 810 

following public repository: https://github.com/hanhou/Multisensory-PPC. Experimental data and 811 

code for data analysis are available upon request to the authors. 812 
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Figure 1  Optimal cue integration in vestibular-visual multisensory decision-making task. 
(a) Schematic drawing of the experimental setup (top view). The vestibular (blue) and visual (red) 
stimuli of self-motion were provided by a motion platform and an LCD screen mounted on it, 
respectively. The monkey was seated on the platform and physically translated within the 
horizontal plane (blue arrows), whereas the screen rendered optical flow simulating what the 
monkey would see when moving through a three-dimensional star field (red dots). In a combined 
condition (green), both vestibular and visual stimuli were presented synchronously. The monkey’s 
task was to discriminate whether the heading direction was to the left or the right of the straight 
ahead (black dashed line). (b) Task timeline. The monkey initiated a trial by fixating at a fixation 
point, and two choice targets appeared. The monkey then experienced a 1.5-s forward self-motion 
stimulus with a small leftward or rightward component, after which the monkey reported his 
perceived heading by making a saccadic eye movement to one of the two targets. The self-motion 
speed followed a Gaussian-shape profile. (c) Example psychometric functions from one session. 
The proportion of “rightward” choices is plotted against the headings for three cue conditions 
respectively. Smooth curves represent best-fitting cumulative Gaussian functions. (d) Average 
psychophysical thresholds from two monkeys for three conditions and predicted thresholds 
calculated from optimal cue integration theory (black bars). Error bars indicate s.e.m.; p values 
were from paired t-test. 
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Figure 2  Heterogeneous choice signals in LIP population. 
(a) Peri-stimulus time histograms (PSTHs) of four examples cells. Spike trains were aligned to 
stimulus onset (left subpanels) and saccade onset (right subpanels), respectively, and grouped by 
cue condition and monkey’s choice. Vestibular, blue; visual, red; combined, green. Toward the 
cell’s response field (RF), or IN choices, solid curves; away from the cell’s RF, or OUT choices, 
dashed curves. Mean firing rates were computed from 10-ms time windows and smoothed with a 
Gaussian (σ = 50 ms); only correct trials or 0° heading trials were included. Shaded error bands, 
s.e.m. Horizontal color bars represent time epochs in which IN and OUT trials have significantly 
different firing rates (p < 0.05, t-test), with the color indicating cue condition and the position 
indicating the relationship between IN and OUT firings (IN > OUT, top; IN < OUT, bottom). Gray 
dashed curves represent the actual speed profile measured by an accelerometer attached to the 
motion platform. (b) Choice divergence (CD) of the same four cells. CD ranged from -1 to 1 and 
was derived from ROC analysis for PSTHs in each 10-ms window (see Methods). Horizontal color 
bars are the same as in a except that p-values were from permutation test (n = 1000). (c) Venn 
diagram showing the distribution of choice signals. Numbers within colored areas indicate the 
numbers of neurons that have significant grand CDs (CD computed from all spikes in 0–1500 ms) 
under the corresponding combinations of cue conditions. 
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Figure 3  LIP integrates vestibular acceleration but visual speed. 
(a and b) Population average of normalized PSTHs (a) and CD (b) from 125 “any choice” cells. The 
vestibular (blue) and combined (green) CDs ramped up much earlier than the visual one (red). 
Horizontal color bars indicate the time epochs in which population CDs are significantly larger than 
zero (p < 0.05, t-test). Gray dashed curve, the actual Gaussian speed profile; shaded error bands, 
s.e.m. (c) Divergence time of cells with significant grand CD for each condition. Divergence time was 
defined as the first occurrence of a 250-ms window in which CD was consistently larger than zero (p 
< 0.05, permutation test). Gray lines connect data from the same cells; acceleration and speed 
profiles shown in the background. Data points with horizontal error bars, mean ± s.e.m. of population 
divergence time; p values, t-test. (d) Two motion profiles used to isolate contributions of acceleration 
and speed to LIP ramping. Top and solid, the narrow-speed profile; bottom and dashed, the wide-
speed profile; blue, acceleration; red, speed. Note that by widening the speed profile, we shifted the 
time of acceleration peak forward (blue vertical lines) while keeping the speed peak unchanged (red 
vertical lines). (e) Vestibular and visual CDs under the two motion profiles. (f) Comparison of 
divergence time between narrow and wide profiles. Note that the vestibular divergence time was 
significantly shifted, whereas the visual one was not, indicating that LIP integrates sensory evidence 
from vestibular acceleration and visual speed. 
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Figure 4  Neural network model with invariant linear probabilistic population codes (ilPPC). 
(a) Network architecture of model M1. The model consists of three interconnected layers of linear-
nonlinear-Poisson units (inset). Units in Vestibular and Visual layers have bell-shape ilPPC-
compatible tuning curves for heading direction and receive heading stimuli with temporal dynamics 
following acceleration and speed, respectively. The intermediate Integrator layer simply sums the 
incoming spikes from the two sensory layers over time and transforms the tuning curves for heading 
direction to that for saccade direction (-90°, leftward choice; +90°, rightward choice). The LIP layer 
receives the integrated heading inputs from the Integrator layer, together with visual responses 
triggered by the two saccade targets. LIP units also have lateral connections implementing short-
range excitation and long-range inhibition. Once a decision boundary is hit, or when the end of the 
trial is reached (1.5 s), LIP activity is decoded by a linear support vector machine for action selection 
(see Methods). Circles indicate representative patterns of activity for each layer; spike counts from 
800–1000 ms; combined condition, 8° heading. (b) Population firing rate in the LIP layer at five 
different time points (the same stimulus as in a, averaged over 100 repetitions). (c) Average PSTHs 
across LIP population. Trials included three cue conditions and nine heading directions (±8°, ±4°, ±2°, 
±1°, 0°). To mimic the experimental procedure, only units with preferred saccade direction close to 
±90° were used (with deviation less than 20°; yellow shaded area in b). Notations are the same as in 
Figure 2a and Figure 3a. 

-180 -90 0 90 180
0

10

20

LIP

-180 -90 0 90 180
0

5

10

Target

Preferred saccade direction (°)

Preferred saccade direction (°)

Sp
ik

e 
co

un
t

-180 -90 0 90 180
0

10

20

Integrator
Preferred saccade direction (°)

Sp
ik

e 
co

un
t

Sp
ik

e 
co

un
t

LEFT RIGHT
Linear SVM readouta b

c

+

Linear-nonlinear- 
Poisson units

=

LIP population activity 
(combined, heading = 8 degree)

-180 -90 0 90 180
0

10

20

30

40

50 250 ms
500 ms
750 ms
1000 ms
1250 ms

LIP preferred saccade direction (°)

M
ea

n 
fir

in
g 

ra
te

 (H
z)

Vestibular Visual

-180 -90 0 90 180
0

10

20

Preferred heading direction (°)

Sp
ik

e 
co

un
t

8°

-180 -90 0 90 180
0

5

10

Preferred heading direction (°)

8°

Sp
ik

e 
co

un
t

Stim 1000 ms

10

20

30

M
ea

n 
fir

in
g 

ra
te

 (H
z)

IN choices
OUT choices

(M1)

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/480178doi: bioRxiv preprint 

https://doi.org/10.1101/480178


  257 

Figure 5  Optimal ilPPC model M1 can be linearly approximated by M2 and LIP but not by M3 and MSTd. 
(a) Model M1 exhibited near-optimal behavior as the monkey. The psychophysical threshold under the combined condition 
(green) was indistinguishable from the Bayesian optimal prediction (black). (b) Ramping activity of M1 computed as the 
difference of PSTHs for IN and OUT trials. Activities from hypothetical units in the LIP layer with preferred direction close 
to ±90° were averaged together (see Figure 4c and Methods). Since M1 is optimal and homogeneous, we refer to M1’s 
activities as “optimal traces” (see the main text). Notations are the same as before. (c) Optimal traces from M1 (thick 
shaded bands) can be linearly reconstructed by population activities obtained from a heterogenous model M2 (dashed 
curves). Model M2 had the same network architecture as M1 except that it relies on random combinations of ilPPC inputs 
in the integration layer (see Methods). (d) Optimal traces can also be linearly reconstructed by heterogenous single neuron 
activities from the LIP data. The similarity between c and d suggests that both model M2 and monkey LIP are 
heterogeneous variations of to the optimal ilPPC model M1. (e and f) In contrast, the optimal traces cannot be 
reconstructed from activities of a suboptimal model M3 (e) or from the MSTd data (f), presumably because the time 
constants in M3 and MSTd were too short. (g) Mean squared error of the fits in panels c–f. Error bars and p values were 
from subsampling test (n = 50 neurons, 1000 times). (h) Normalized readout weights ordered by magnitude. Shaded error 
bands indicate standard deviations of the subsampling distributions. (i) The kurtosis of the distributions of weights. The 
black curve in (h) and black bar in (e) were from random readout weights (see Methods). 
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Figure 6  Shuffled Fisher information for the model and the experimental data. 

(a) Shuffled Fisher information of M2 calculated by 𝐼𝐼𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = ∑ 𝑓𝑓𝑖𝑖
′2/σi

2
𝑖𝑖  , where 𝑓𝑓𝑖𝑖′  denotes the 

derivative of the local tuning curve of the 𝑖𝑖th neuron and 𝜎𝜎𝑖𝑖
2 denotes the averaged variance of its 

responses around 0° (see Methods). Both correct and wrong trials were included. Shaded error 
bands, s.e.m. estimated from bootstrap. Note that the absolute value of shuffled Fisher information 
is arbitrary. (b-d) Same as in a but for the monkey LIP data, the M3 responses, and the monkey 
MSTd data, respectively. Note that LIP is similar to M2, and MSTd to M3. 
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