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Abstract

DNA encodes protein primary structure using 64 di↵erent codons to specify 20
di↵erent amino acids and a stop signal. Frequencies of codon occurrence when
ordered in descending sequence provide a global characterization of a genome’s
preference (bias) for using the di↵erent codons of the redundant genetic code.
Whereas frequency/rank relations have been described by empirical relations,
here we propose a statistical model in which two di↵erent forms of codon us-
age co-exist in a genome. We investigate whether such a model can account
for the range of codon usages observed in a large set of genomes from di↵erent
taxa. The di↵erences in frequency/rank relations across these genomes can be
expressed in a single parameter, the proportion of the two codon compartments.
One compartment uses di↵erent codons with weak bias according to a Gaussian
distribution of frequency, the other uses di↵erent codons with strong bias. In
prokaryotic genomes both compartments appear to be present in a wide range of
proportions, whereas in eukaryotic genomes the compartment with Gaussian dis-
tribution tends to dominate. Codon frequencies that are Gaussian-distributed
suggest that many evolutionary conditions are involved in shaping weakly-biased
codon usage, whereas strong bias in codon usage suggests dominance of few evo-
lutionary conditions.
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1. Introduction

Genome sequencing has produced a large amount of information on how
specific genomes use the 64 di↵erent codons of the redundant genetic code.
This information on codon usage by genomes has raised many issues ranging
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from fundamental to technical: Can codon usage help elucidate the origin of
the universal genetic code [1]? Do genes carry information beyond amino acid
sequence in their usage of synonymous codons [2]? What are the evolutionary
mechanisms and possible (dis)advantages that make genomes use certain dif-
ferent codons more (less) often than others [2, 3, 4, 5]? How do variations of
codon usage arise in evolution [6, 7, 8, 9]? What needs to be understood and
controlled to optimize translation in heterologous expression systems [10]?

The detailed information compiled on diversity of codon usages within and
across specific genomes has naturally overshadowed a search for common pat-
terns in codon usage that overarch specific codon usages in specific organisms.
One such pattern is the descending sequence of genomic codon frequencies. It
characterizes bias inherent to the usages of di↵erent codons made within a given
genome. Intra-genomic bias is necessary for the existence of inter-genomic di-
versity in the usage of the di↵erent codons.

Interest into frequency/rank relations of genomes first concerned linguistic
analogies of the ‘language of genes’ and spoken languages [11]. Empirical formal
descriptions from this line of work include a power of rank (Zipf’s law) [11, 12],
an exponential of rank [13, 14], and a combination of exponential and linear
relations [15]. Codon frequency/rank curves were described by statistical rela-
tions with either no external parameter [16], or two external parameters [17, 18].
With exception of the statistical model of [16], these descriptions have not been
interpreted with regard to characteristics of evolutionary conditions that shape
codon usage. In contrast, to account for observations of inhomogeneous codon
usages among genes of the same organism, Gusein-Zade and Borodovsky [19]
have proposed that there exist two compartments of genes that make distinct
usages of the di↵erent codons.

In this study we investigate intra-genomic bias in codon usage and test the
applicability of a two-compartment model in a large set of genome-wide codon
usages. We find that superposition of two patterns of codon frequencies de-
scribes genomic frequency/rank plots consistently. Variation of the proportion
of the two patterns captures the variations observed among frequency/rank
plots of genomes from many taxa. The frequency distributions underlying the
two patterns are distinct. In one compartment, prevailing in eukaryotes, codon
usage follows a random pattern as described by a Gaussian distribution of fre-
quencies. Usage bias in that compartment is weak. In the other compartment
usage bias is strong to the extent of using essentially a subset of the available dif-
ferent codons. Prokaryote genomes reveal both compartments in widely varying
proportions.

The existence of a genomic compartment using codons with Gaussian-distributed
frequencies likely implies the existence of many contributing evolutionary con-
ditions that together have shaped codon usage in eukaryotic genomes.

2. Biased usage of codons: observations

Di↵erent codons occur with a range of frequencies in a given genome, and a
given di↵erent codon tends to occur with generally di↵erent frequencies across
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di↵erent genomes. These two aspects of bias in codon usage are illustrated in
the cases of four organisms sampled from diverse taxa (Fig. 1A,B).

In Fig. 1A, the frequencies of the 64 di↵erent codons in human genomic
DNA have been put in descending order (red color). When the frequencies of
the di↵erent codons of the plant Arabidopsis thaliana are plotted in the order of
the ordered human codons, they do not form a descending sequence (blue color).
The codon frequencies of the plant, however, when ordered among themselves,
form a descending sequence that is quite similar to that of the ordered human
frequencies (line). Codon usages of the bacteria Clostridium tetani and Strep-

tomyces griseus also reveal similar intra-genomic bias, but diverse patterns of
cross-genomic bias (Fig. 1B). Both forms of bias are stronger in the bacteria
than in human and plant. In each of the pairs of genomes of Fig. 1A,B, a
shared pattern of intra-genomic bias is associated with two distinct patterns of
cross-genomic bias.

Here we study the intra-genomic aspect of codon usage bias in the genomic
coding DNA of a set of 1840 organisms of di↵erent taxa tabulated in the CUTG
database [20] (files ‘gbxxx.spsum.txt’ where xxx = bct, inv, mam, pln, pri,
rod, vrt). We restrict analysis to genomes represented with total codon countsP64

i=1 ci � 104, and define frequencies of occurrence, yi, of di↵erent codons i
(1  i  64) by

yi =
ciP64
i=1 ci

(1)

.
For a non-parametric assessment we measure intra-genomic ‘bias’ as

B =

vuut
64X

i=1

✓
yi �

1

64

◆2

(2)

For a hypothetical genome in which all di↵erent codons occur with the uniform
frequency 1/64, bias B = 0. A real genome will have bias B > 0.

A histogram of codon usage bias B constructed over the entire set of 1840
analysed genomes is shown in Fig. 1C (gray-shaded). Histograms drawn as
lines represent the subsets eubacteria (black), archaea (red, counts scaled by
the factor 5), and eukaryotes (blue). The genomes presented as examples in
Fig. 1A,B locate to the bins marked by asterisks.

Weak bias of codon usage is characteristic of eukarytotic genomes, whereas
prokaryotic genomes reveal a wide range of bias. Overall, bias varies about
threefold over the sampled set of genomes.

Frequency/rank curves averaged over the genomes in each bin of the bias
histogram in Fig. 1C are shown in Fig. 1D. Codon usage bias with respect
to average codon frequency (dashed line) is observed in all genomes, but a
characteristic of the frequency/rank curve changes in the succession of curves
from weak (purple lines) to strong bias (red lines): in curves associated with
weak bias, curvature changes direction near the mean frequency, whereas curves
associated with strong bias decline without inflection. Moreover, frequency of
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Figure 1: Biased usage of di↵erent codons in genomes. Codon frequencies of Homo sapiens
(A, red color), Arabidopsis thaliana (A, blue color), Streptomyces griseus (B, red color), and
Clostridium tetani E88 (B, blue color). Frequencies are ordered as described in the text, with
the smaller frequency of each two compared genomes shown in the foreground. C: histograms
of bias B for 1840 genomes from the CUTG database (gray shaded) and of the eubacterial
(black line), archaeal (red, scaled by 5), and eukaryotic subsets (blue) of these genomes. The
total set comprised 1855 genomes, of which 1840 located to the binned range; the latter are
analyzed in this study. Asterisks mark the bins to which the genomes of the panels A,B locate.
D: frequency/rank curves averaged over the genomes of each histogram bin in panel C (with
bias increasing from purple to red).
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genomes with strong bias decays in a cascade-like fashion about the lower and
upper halfs of the ranks.

Frequency/rank relations of a genome assign to a given frequency the number
of di↵erent codons that have frequencies larger than or equal to that frequency.
In this way they define the cumulative distribution of the random variable,
codon frequency. For this statistical view of the descending frequency sequence,
rotate Fig. 1 clockwise by 90 degrees. Then the horizontal axis in panels A,B,
and D is the random variable, codon frequency. A position on the vertical axis,
read as o↵set with respect to rank 64, indicates how many di↵erent codon values
have frequencies less than that at that frequency. The distributions in Fig. 1A
reveal a sigmoidal cumulative distribution, whereas those in Fig. 1B ressemble
an exponential distribution.

In an earlier study of codon usage, Gusein-Zade and Borodovsky [19] have in-
vestigated the possibility that genomes are inhomogeneous due to the existence
of gene compartments that make distinct usages of di↵erent codons. Specifically,
they developed a model of two compartments, each characterized by an expo-
nential distribution. When only one compartment was present in a genome, the
distribution was exponential. When both compartments co-existed, the over-
all frequency distribution was described by the convolution of the two scaled
exponential distributions. This model was compared to a small data set then
available to the authors and found to account for characteristics such as the
inflection observed in certain frequency/rank relations.

In view of the larger data set provided by the CUTG database, we noticed
that the GZB model with two exponentially distributed components falls short
regarding the range of bias that it can describe. Here, bias can vary between
1/
p

(64) = 0.125 and 1/
p
(128) ⇡ 0.088 depending on the proportion of the

two compartments. This range is substantially less than the observed bias range
(Fig. 1C). In this study, we find that a two-compartment model of codon usage
describes also the larger data set of the CUTG database. Then variations among
genomes are accounted for by a single parameter, the proportion of the two
compartments. An improvement of the GZB model, however, is necessary to
describe the larger data set: the distributions that describe codon usage in each
compartment need to be chosen di↵erently.

In our improved model, one compartment uses di↵erent codons according
to a Gaussian distribution that produces minimal bias. We suppose this com-
partment to dominate codon usages like those by the genomes in Fig. 1A. A
Gaussian distribution would be expected to arise due to the Central Limit The-
orem of statistics if many di↵erent evolutionary conditions shape codon usage
in this compartment. Alternatively, the Gaussian compartment could repre-
sent many smaller compartments with not necessarily Gaussian distributions of
codon frequencies.

The other compartment of our model is governed by a distribution that pro-
duces even stronger bias than the exponential distributions proposed by GZB.
The exponential distribution, as pointed out by GZB [19], ’obeys the principle
of maximum diversity of frequencies’, but this does not exclude that more bi-
ased distributions are possible (though less likely to arise by pure chance). For
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instance, genomes might restrict their machinery of translation to using a subset
of di↵erent codons within the degenerate genetic code, or even use certain amino
acids with preference. Such a codon usage is manifest in the genomes of Fig.
1B. In our model, we derive an empirical description of codon frequencies in the
second compartment from a subset of the data. We suppose this compartment
to dominate in genomes that use di↵erent codons with strong bias.

3. Construction of the model

We describe the model together with a Monte-Carlo numerical approach that
we use to construct it (Fig. 2). Our approach reveals (and allows one to assess)
a limitation inherent to modeling multiple compartments of codon usage.

Assume a genome comprises two compartments in which, generally, each
di↵erent codon is used according to two distinct and mutually independent sta-
tistical distributions: a Gaussian distribution in compartment 1, and an empiri-
cally described distribution in compartment 2. Both distributions are naturally
truncated to the range of codon frequency, 0  y  1. Overall frequency of a
di↵erent codon is given by the algebraic sum of the scaled frequencies in the
two compartments. If ↵ is the proportion of compartment 1,

y = ↵y1 + (1� ↵)y2 (3)

The cumulative probability of frequency y1 in compartment 1 is that of a
truncated Gaussian distribution,

P1(y1) =
�
�y1�µ

�

�
� �

��µ
�

�

�
� 1�µ

�

�
� �

��µ
�

� (4)

where � denotes the cumulative normal distribution function with position µ
and scale �. These two parameters are restricted by the requirement that the
mean of the truncated distribution be equal to 1/Ncodons (Ncodons = 64 being
the number of di↵erent codons). This restriction follows from the normalization
inherent to codon frequency. It leads to the relation

1/Ncodons = µ+
�
� 1�µ

�

�
� �

��µ
�

�

�
� 1�µ

�

�
� �

��µ
�

� ⇥ � (5)

where �(t) = d�(t)/dt. Thereby, the Gaussian distribution has only one external
parameter. We will choose � and determine µ by solving eq. 5 for µ.

We generate a frequency sequence for compartment 1 using Monte-Carlo
sampling of frequency intoNcodons discrete bins that are associated with uniform
increments of cumulative probability over the range 0 < P < 1. In each of 106

sampling cycles, a cumulative probability value is drawn from a generator of
uniform random values in the range 0 < R < 1. The associated frequency y1
is computed by solving eq. 4 for y1 using a root finder. The frequency y1 is
included into the frequency average accumulated in the bin associated with the
probability interval. A Monte-Carlo sampled frequency sequence is shown in
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Fig. 2A (solid line). This calculation needs to be done only once for a chosen
Gaussian distribution.

We compute the frequency sequence of compartment 2 empirically, as aver-
age over a group of genomes that reveal the strongest bias of codon usage in our
data set. We average the frequency sequences of the genomes locating to the
right-most bin of the bias histogram (Fig. 1C). In this study we will not further
analyse the statistical basis of this empirical distribution. We will show here
that the characteristics of that distribution are universally detected in genomes
across taxa, as are the characteristics of a particular Gaussian distribution.

To construct a frequency sequence for a genome comprising, e.g., two equally
large codon compartments, we scale the compartmental distribution frequencies
by 1/2. We also randomize the association of di↵erent codon and frequency rank
among the two scaled frequency sequences. This is done by assuming some order
of di↵erent codons in the ranks of both compartments. Compartment 1 retains
that order (represented by a rainbow sequence of colors in Fig. 2A), whereas
the order is scrambled in compartment 2 by swapping the colors of randomly
chosen pairs of ranks in 104 cycles (Fig. 2B).

We merge the scaled and ordered sequences by algebraically adding to each
frequency from compartment 1 the frequency from compartment 2 that is asso-
ciated with the same di↵erent codon (i.e., color). This produces the frequency
sequence in Fig. 2C, which happens to be no longer in descending order. Re-
ordering of that sequence produces the joint frequency sequence of the two codon
compartments of the genome (Fig. 2D).

The frequency sequence of the compartmentalized genome is intermediate
between the compartmental sequences. It also has stochastic roughness that
does not exist in the contributing sequences. Both compartmental sequences
are thoroughly sampled in the procedure of merging frequencies but each joint
frequency is sampled from exactly one pair of frequencies that is formed by
a particular di↵erent codon in the two compartmental sequences. We cannot
expect to model this pseudo-stochastic aspect of joint frequencies because an
observed genomic frequency sequence does not reveal how a di↵erent codon
is associated with rank in each compartment. We can, however, assess the
potential consequences of this uncertainty by simulations with the model.

We re-compute the joint frequency sequence using di↵erent associations of
di↵erent codons and frequency ranks in the model compartments (by random-
izing the ‘colors’ in compartment 2 for each trial). Fig. 2E shows examples of
frequency sequence computed in three di↵erent trials (colored lines) and an av-
erage curve computed over 100 trials (black line) after re-ordering the sequence
from each trial. All individual trials produce frequency sequences that fluctuate
with respect to their mean to an extent small enough (rms of ⇡ 10�3) to pre-
serve systematic features of the frequency sequence. These simulations quantify
how much the mean theoretical curve, which does not capture consequences of
specific ranks of di↵erent codons, is expected to diverge from the curve observed
in a genome in whose compartments di↵erent codons have specific, but unknown
ranks.

The computer code for all computations was written from scratch in a
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Figure 2: Codon usage in a two-compartment genome model. Frequency sequences computed
with Gaussian (A) or empirical frequency distribution (B) (lines). Colored : frequencies scaled
by 1/2 for constructing a joint sequence representing two codon compartments of equal sizes.
The colors illustrate di↵erent codons associated with the frequency ranks: the order of the
second compartment is randomized with regard to the first. (C) Pairwise algebraic sum
of the compartmental frequencies of each di↵erent codon (matched by color). (D) Frequency
sequence (C) after re-ordering for a descending joint sequence. (E) Three samples of frequency
sequence like that in (D) computed for di↵erent randomizations of the order of di↵erent codon
in panel B (colored lines), and the mean of 100 samples (black line). Colored lines along the
bottom of the graph: di↵erences between individual samples and the mean.
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PostScript-like language and is available under https://github.com/Bohdan-Khomtchouk/
Gaussian-distributed-codon-frequencies-of-genomes. Code was executed
using a virtual machine [21].

4. Comparison of ordered sequences of observed codon frequencies
with the theoretical sequences

We test the improved two-compartment model on 1840 genomes from the
CUTG database. Frequency sequences of the entire genome set are modeled by
adjusting only the proportion ↵ of the compartment with the Gaussian distribu-
tion while maintaining the Gaussian or empirical distributions of each compart-
ment invariant. The scale of the Gaussian distribution is chosen to be � = 0.009,
which implies the position µ = 0.1461 by eq. 5. The standard deviation of the
truncated Gaussian distribution is 0.0081, and that of the empirical distribu-
tion 0.0207. These compartmental distributions (and ↵ = 1/2) have been used
in the computations for Fig. 2. In optimizing ↵ we quantify the closeness of
fit by the rms residual between observed and mean theoretical frequencies (the
latter determined from 100 trials as described above). This residual is expected
to approach 10�3 for ↵ = 0.5 because the theoretical frequency sequence is an
average over many di↵erent rankings of a di↵erent codon’s frequency in the two
compartments (Fig. 2E).

Fig. 3A,B,D,E shows observed and theoretical frequency/rank relations for
the genomes introduced in Fig. 1A,B. The model describes the data quite well,
as is indicated by the residuals of the fit (dotted lines).

The specific order of codons in the hypothesized compartments of the indi-
vidual genomes, which is unknown, might actually limit our model’s capacity
to account for the frequencies in an individual genome. On the assumption
that di↵erent genomes of similar codon usage bias have di↵erent specific orders
of codons in their compartments (compare Fig. 1A,B), we expect that averag-
ing the ordered sequences of frequencies of such genomes produces a frequency
sequence that is more accurately predicted by the (averaged) sequence of the
model than are sequences of individual genomes. Fig. 3C,F compare averaged
observed frequency sequence with fitted theoretical sequence. The residuals are
substantially smaller than in the case of the individual genomes (Fig. 3A,B,D,E;
see legend for rms values of residuals). The model describes frequency/rank re-
lations averaged over genomes more accurately than those of individual genomes
of similar usage bias.

Fig. 4 extends the comparison of observed and theoretical frequency se-
quences to twelve genomes that are commonly studied. These genomes belong
to diverse taxa, and the bias of their codon usage is in the range most frequently
observed in the genomes of the CUTG database. In all cases, adjustment of the
proportion of two compartments in the model within the range 0.55  ↵  0.8
allows the model to reproduce these frequency sequences quite well. Although
the theoretical frequency sequences are determined by varying substantial con-
tributions from both hypothesized compartments in these cases, the observed
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Figure 3: Observed frequencies of codon occurrence compared to theory. Gray shaded: ordered
sequences of the frequencies of four genomes (A, B, D, E) and ordered frequencies averaged
across the subsets of genomes in the two marked histogram bins in Fig. 1C (C, F). Theoretical
frequencies (black lines) are computed with the indicated proportion, ↵, of the compartment
with Gaussian distribution; dotted lines: residuals between observed and theoretical frequen-
cies. The rms values of the residuals, scaled by 103, are: 1 (A), 0.8 (B), 0.4 (C), 2.2 (D), 1.9
(E), and 1.1 (E).
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sequences are reproduced without any change made to the distributions that
are assumed to underly codon usage in each compartment.

Fig. 5A,B summarize the application of the model to the entire set of genomes,
divided between eubacteria and archaea (A) and plants, invertebrates, and ver-
tebrates (B). The proportion of the Gaussian compartment, ↵, which is obtained
by the fits of the model to the data, is plotted versus the observed bias (eq. 1)
for each individual genome (symbols). The lines show the theoretical relation

B =
q
[Ncodons � 1][↵2s21 + (1� ↵)2s22] (6)

where s1 = 0.0081 is the standard error of the truncated Gaussian distribution,
and s2 = 0.0207 the standard error of the empirical distribution.

Genomes follow the theoretical relation very closely for all taxa represented
here, showing that the model produces a consistent relation between compart-
ment proportions and codon usage bias over the full range of bias and of shapes
found in the frequency/rank relations of these 1840 genomes.

The accuracy of the model in describing these data is quantified in Fig.
5C showing the rms residual between observed and theoretical frequency/rank
relations for each genome (symbols). The line gives the rms residual expected to
arise from the uncertain frequency ranks of a di↵erent codon in the two model
compartments (see Construction of the model and Fig. 2E). For the majority of
genomes, the actual residual of the fit is similar to the residual expected from
the uncertainty of ranks.

5. Discussion

We have analyzed aspects of biased usage of di↵erent codons at a scale
ranging from the individual full genome to many genomes of di↵erent taxa.
Building on work of Gussein-Zade and Borodovsky [19], we have constructed a
statistical model that describes the ordered sequence of codon frequencies of a
genome, and the variations of the ordered frequency sequence across genomes.

The model posits that codon usage is generally inhomogeneous within a
genome, albeit to varying extents. Two compartments of codons, each with
a distinct distribution of codon frequencies, provide a good description if the
proportion of the two compartments is adjusted for the specific genome while the
compartmental frequency distributions are kept the same. The model parameter
distinguishing the codon usages of di↵erent genomes thus has a simple meaning.

The two distributions of the model are ‘antipodal’ in that one is Gaussian
with a scale that results in weak bias of codon usage, and the other, described
empirically, results in very strong bias. The model is not concerned with a
specific map relating the two compartments to the genome’s codons (at whatever
scale), nor with a specific association of di↵erent codons (or their nucleotide
composition) with rank in the ordered frequency sequence. Nevertheless, the
model reveals a pattern of codon usages that is apparently universal among
genomes.
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Figure 4: Observed frequencies of codon occurrence compared to theory. Sequences of fre-
quencies of 12 genomes (gray-shaded). Lines are computed from theory with the indicated
proportion, ↵, of the compartment with Gaussian distribution.
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Figure 5: The two-compartment model describes biased codon usage of 1840 genomes. (A)
The single varied model parameter ↵ describing a genome plotted versus the observed codon
usage bias, eq. 1 : black symbols eubacteria, red symbols archaea. The line represents the
theoretical relation, eq. 6 . (B) Like panel A, representing eukaryotes: green plants, blue
invertebrates, red vertebrates. (C) rms of residuals between the observed and theoretical
frequency/rank relations (symbols) and theoretical rms expected to arise due to unknown
ranks of a di↵erent codon in the model compartments (line).
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The existence, within one and the same genome, of two forms of codon us-
age indicates the existence of ‘inhomogeneous conditions of molecular evolution
within a genome’ [19]. Inhomogeneity must be strong enough to drive codon
usage into into two antipodal compartmental patterns. Of the conditions that
support either antipodal distribution of codon frequency, the ones that result
in the strongly biased distribution might intuitively appear as the stronger de-
terminants of codon usage. Then, the compartment with Gaussian distribution
might be determined more by the absence of strong determinants than by dis-
tinguished conditions that favor the more balanced codon usage. Such a simple
view of conditions determining codon usage is di↵racted by the fact that even
the postulated ‘strong’ conditions must generally result in much di↵erent ranks
of particular di↵erent codons in similar ordered sequences of frequency (Fig.
1B), a tendency recognizable even in genomes that use codons with less bias
(Fig. 1A). It is therefore clear that a further discussion of conditions that shape
codon usage needs to consider the fate of the specific di↵erent codons (a study
of this kind will be presented in a separate paper).

In the codon compartment that we model by a Gaussian distribution of fre-
quency, that distribution likely summarizes consequences of many evolutionary
conditions as well as outcomes in many subpopulations of the compartment.
The Central Limit Theorem of statistics would then predict that the joint dis-
tribution approaches a Gaussian, even if individual contributions themselves do
not produce a Gaussian distribution. We find that one Gaussian distribution
(of fixed scale and position) describes the compartment across genomes. Condi-
tions creating this distribution might be universal across genomes but must have
weak consequences individually. On the other hand, the strongly biased distri-
bution of the other compartment, by virtue of being non-Gaussian, suggests a
comparably simple structure informed by few but strong evolutionary condi-
tions. This raises the question of how consequences of both weak and strong
evolutionary conditions might co-exist in one genome. An answer might have to
include not only the short-term evolutionary status but also the long-term evo-
lutionary history of an organism – the evolutionary conditions informing codon
compartments need not co-exist within one and the same span of time.
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