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Abstract 

The phenotypes caused by morpholino-mediated interference of gene function in zebrafish 

are often not observed in the corresponding mutant(s).  We took advantage of the availability 

of a relatively large collection of transcriptomic datasets to identify common signatures that 

characterize morpholino-injected animals (morphants).  In addition to the previously reported 

activation of tp53 expression, we observed increased expression of the interferon-stimulated 

genes (ISGs), isg15 and isg20, an extrinsic cell death pathway gene, casp8, and other cellular 

stress response genes including phlda3, mdm2 and gadd45aa.  Studies involving 

segmentation stage embryos were more likely to show upregulation of these genes.  We also 

found that these genes could be upregulated by an increasing dose of egfl7 morpholino, or 

high doses of standard control morpholino.  Thus, these data suggest that morpholinos can 

stimulate the innate immune response in zebrafish, as was recently reported in Xenopus. 

 

Keywords: morpholino, zebrafish, ISG, p53, knockdown, mutant. 
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Introduction 

Morpholinos are anti-sense reagents capable of knocking down gene function by inhibiting 

post-transcriptional regulation of RNAs [1].  They are synthetic nucleic acid analogs which 

can heterodimerize with complementary RNA molecules to inhibit their processing.  

Morpholinos inhibit mRNAs by blocking their splicing or translation [2-3], and they can 

inhibit miRNA function as well [4]. 

 

The ease of morpholino use in zebrafish and its effectiveness in gene knockdown enabled 

scientists to transiently inhibit gene function to study various biological processes [2].  Initial 

testing of morpholinos indicated that morphants could largely phenocopy known mutants [2, 

5].  However, the examples were limited, and restricted to genes with well characterized 

mutant phenotype(s).  With the recent advent of gene editing, scientists have now been able 

to test more extensively whether reported morphant phenotypes are similar to those observed 

in mutants, and they have found substantial discrepancy [6].  For example, a study by Kok et 

al. generated mutations in more than 20 genes and observed that most mutants appear to 

develop normally while the corresponding morphants for ten of these genes display a 

developmental phenotype, suggesting additional effects introduced by morpholinos [7].  This 

idea was supported by the observation that the hydrocephaly phenotype in megamind 

morphants could be reproduced by injecting a megamind morpholino into animals devoid of 

the megamind locus, albeit at a very high dose (20 ng) [7].  In addition, Rossi, Kontarakis et 

al. proposed that genetic compensation in mutants but not in morphants could explain their 

phenotypic discrepancy [8].   

 

One well characterized morpholino off-target effect is the activation of the p53 signaling 

pathway [9].  Additionally, a recent study in Xenopus found that morpholinos could activate 
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the innate immune pathway, as well as induce off-target mis-splicing of pre-mRNA 

transcripts [10].  These studies raise questions about the effects of morpholinos in a cell, and 

the need to fully understand them for future applications.  In this study, we sought to further 

characterize the effects of morpholinos by studying various microarray gene expression 

datasets from morpholino studies in zebrafish obtained from the Gene Expression Omnibus 

(GEO) database.  We found that the expression of interferon-stimulated genes, ISGs (isg15 

and isg20), and other cellular stress pathway genes (tp53, phlda3, casp8, gadd45aa and 

mdm2) was upregulated in several morpholino studies, especially in segmentation stage 

embryos.  Furthermore, these genes were upregulated in response to increasing doses of an 

egfl7 morpholino, or high doses of a standard control morpholino.  In contrast, a vegfaa 

morpholino did not induce the expression of these genes.  Our study suggests that 

morpholinos can induce the innate immune response and furthers our understanding of 

morpholino effects in developing zebrafish embryos. 
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Materials and Methods 

Microarray data collection and curation 

Microarray gene expression arrays of various zebrafish morpholino studies were obtained 

from the GEO database.  As of the 19th of March 2015, keyword search for “zebrafish 

morpholino” or “zebrafish knockdown” yielded 63 unique Danio rerio data series (GSE).  

The embedded metadata and raw intensities for all studies were retrieved with the R package 

GEOquery [11].   We manually curated all datasets utilizing GPL1319, a platform 

manufactured by Affymetrix, to annotate the publication, morpholino sequence, morpholino 

dose, sample source and developmental stage.  Datasets from Agilent arrays were set aside 

for meta-analysis.  All annotated information can be found in the File S1 – Section 1.   

 

Affymetrix microarray data normalization and processing 

8 GSE data series were rejected because they were not morpholino studies, were a duplicate, 

or were not linked to a publication.  The remaining data series were pooled together for 

normalization.  The raw data were read with the ReadAffy function from affy package in R 

[12], followed by the implementation of Single Channel Array Normalization (SCAN) [13] to 

normalize the pooled dataset.  Default parameters were used.  Integrating microarray datasets 

from various studies will inevitably introduce batch effects.  Thus, we corrected the 

normalized data for batch effects using ComBat [14], and defined the unique GSE ID as the 

primary source of batch effects.   

 

The data were then filtered by removing control probes as well as averaging all probesets that 

interrogate the same gene.  We also filtered genes that had little variation in gene expression 

across all pooled samples using the varFilter from geneFilter package.  These data were used 

to generate the Principal Component Analysis (PCA) plots. 
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Finally, we grouped genes that show high correlation in the microarray dataset using a 0.95 

score cutoff.  This step was carried out with the findCorrelation from caret R package [15].  

Details and quality control plots can be found in the File S1 – Section 2. 

 

Feature Selection 

We tested various models with built-in feature selection on our dataset, and we also tested the 

final predictive accuracy.  These models include: “glmnet”, “pam”, “gaussprLinear”, 

“svmLinear”, “svmPoly”, “svmRadial”, “nb”, “rf”, “knn” and “J48”.  We optimized the 

parameters for each method through the train function of caret R package [15], using Leave 

One Out Cross Validation (LOOCV) and the accuracy as the readout score.  The models were 

further tested against scrambled-labels datasets.  Relevant genes were ranked with t-test 

statistic as the linear models performed best.  We analyzed this set of genes by Gene Set 

Enrichment Analysis (GSEA) with GOrilla [16] as well as pathway analysis with Ingenuity 

Pathway Analysis (Qiagen). 

 

The features were shortlisted through recursive feature elimination and backward selection 

with rfe caret function.  The models were evaluated with 4-folds cross-validation, iterated 

100 times.  The model accuracy increases logarithmically with the number of features.  To 

avoid overfitting the model, we selected the number of features at the point of diminishing 

returns, which is 5% below the maximum accuracy score. 

 

 

Two-way ANOVA analysis 
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We conducted a standard two-way ANOVA analysis stratifying for developmental stage and 

treatment (i.e. morphants and controls).  Both variables were converted into categorical 

variables.  To determine developmental stage, we followed ZFIN’s guidelines.   

 

Agilent microarray processing and analysis 

A total of 34 microarray studies were done on a variety of Agilent microarray platforms.  

Among these studies, 12 were rejected due to the same reasons mentioned for the rejected 

Affymetrix studies.  A further 5 raw datasets were not usable for a standard pipeline because 

they were uploaded to GEO in a wrong file format or were not readable.  1 other dataset 

could not be analyzed as the experimental design is insufficient to run statistical tests.  The R 

package limma [17] was used to process the raw intensity files as well as downstream 

analyses.   

Briefly, the raw files were read and compiled into a standard “eset” object for a standard 

normalization pipeline and statistical analyses [18].  Both dual- and single-channel arrays 

were first background corrected using the “normexp” method [19], followed by within-array 

normalization by the “loess” method to correct for dye biases in dual-channel arrays [18].  

Finally, between-array normalization was performed for both microarray configurations by 

the “quantile” method [20].  Control probes were then removed prior to applying the 

empirical Bayesian statistical analyses [21].  We extracted the average log2-transformed fold-

change (logFC) and standard errors for all probes interrogating isg15, isg20, casp8, mdm2, 

gadd45aa and tp53.  As some genes were interrogated by multiple probes, we took the probe 

that detected the maximum absolute logFC. 

 

Ethics Statement 
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All zebrafish husbandry was performed under standard conditions in accordance with 

institutional (MPG) and national ethical and animal welfare guidelines. 

 

Zebrafish 

Transgenic line used in this study: 

Tg(kdrl:EGFP)s843Tg [22] 

 

Zebrafish micro-injection and Real-time PCR (qPCR) assay 

The three morpholinos used in this study are egfl7 (5’-

CAGGTGTGTCTGACAGCAGAAAGAG-3’) [23], vegfaa (5’-

GTATCAAATAAACAACCAAGTTCAT-3’) [24] and standard control morpholino (5’-

CCTCTTACCTCAGTTACAATTTATA-3’) (Gene Tools).  Each morpholino was injected 

into 1-cell stage Tg(kdrl:EGFP)S843Tg zebrafish embryos (1 nL volume).  The morpholino 

doses used are as follows: egfl7 - 0.0625, 0.125, 0.25, 0.5, 1 and 2 ng; vegfaa - 0.5, 1, 2, 4 

and 8 ng; control morpholino - 0.5, 1, 2, 8 and 16 ng.  We also injected the buffer alone to 

serve as a blank control.  Each sample was collected at 32 hours post-fertilization (hpf).  5 

embryos were pooled into one biological replicate, and a total of 4 biological replicates was 

obtained for each sample.  We extracted RNA with TRIzol® (Ambion).  The aqueous phase 

was passed through a RNA purification column (Zymogen) and treated with RQ1 DNase 

(Promega).  Samples were re-extracted by acid phenol:chloroform (Ambion) followed by 

chloroform back-extraction.  Biological replicates with poor RNA quality or insufficient 

RNA amount were discarded.  Nevertheless, each group had at least 3 biological replicates.  

150 ng of RNA from each sample was converted to cDNA by High Capacity RNA-to-cDNA 

Kit (Applied Biosystems).  Primer sequences and optimized cycling conditions for rpl13, 

gapdh, isg20, isg15, casp8, phlda3 and tp53Δ113 can be found in Table S1. 
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Statistical Analyses of qPCR assays 

All statistical analyses were performed with R statistical software.  All CT values were 

normalized to gapdh and compared to uninjected samples (-ΔΔCT).  Morpholino dose is 

transformed to a log-scale (base 2).  A dose-response curve test was applied using the LL.4 

function from drc package in R to calculate the upper limit, lower limit and the slope.  

Otherwise, linear plots were tested using linear regression to estimate the slope.  For plotting 

of graphs, both the in-built plot function of R as well as ggplot2 package [25] were utilized.  

 

Whole mount in situ hybridization (WISH) 

We injected 0.5 ng of egfl7 or control morpholino into 1-cell WT embryos (ABs).  Embryos 

were collected at 32 hpf and fixed with 4% PFA in 1X PBST (1X PBS, 0.1% Tween-20), 

followed by standard WISH protocol [26].  Primers used to clone isg20 for synthesizing the 

in situ probe are: 5’-GGAGAATCATGGGAAGTGGA-3’; and 5’-

GGCATTGAGGTTGGCAGTAT-3’. 
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Results 

Integration of Affymetrix microarray gene expression datasets 

We retrieved 63 microarray gene expression datasets from Gene Expression Omnibus (GEO) 

by keyword search.  The majority of microarrays used were manufactured by Agilent (n = 34) 

or Affymetrix (n = 19).  Duplicated datasets, datasets with no accompanying publications and 

datasets in incorrect file formats (Agilent, n = 12; Affymetrix, n= 8) were removed from 

further analyses.  We applied algorithms to eliminate batch effects and other technical noise 

in order to integrate datasets generated using the Affymetrix microarray platform (n = 11) 

into one large dataset.  Principal component analysis (PCA) of this dataset revealed that 

developmental stage and tissue source were the main factors driving the clustering in the 

principal components (PC) 1 and 2, respectively (Fig 1A).  In addition, we observed an 

occasional segregation of morphants (MO) from controls (CO or WT) for a given cluster 

group (Fig 1B).   

 

Feature selection uncovers activation of ISGs and the p53 signaling pathway 

To identify genes differentially regulated between uninjected controls or buffer injected 

controls (WT) and morphants, we fed the entire dataset into a supervised machine learning 

algorithm.  The model assigns a higher score to a gene if it performs better at predicting 

morphants.  Among the various models of feature selection, we found that the linear feature 

selection model tended to perform best (Table S2).  We then tested the accuracy of the model 

and short-listed the optimal number of genes that successfully distinguish the morphants from 

controls (see Materials and Methods).  We refer to this set of genes as “top performing 

genes” (Table S3).   
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We detected tp53 as one of these top performing genes upregulated in morphants compared 

to controls, corroborating previous findings [9].  Surprisingly, we found another gene, isg20, 

which scored higher than tp53, raising the possibility that interferon signaling was also 

activated in morphants.  Furthermore, we found biological processes such as apoptosis and 

various cell stress responses enriched when further analyzing the top performing genes (Fig 

2).   

 

ISG and p53 signaling activation in morphants are most pronounced at the 

segmentation stage 

As mentioned earlier, the samples can be separated by developmental stage along the first 

PC, as expected by the dynamic nature of gene expression in the developing zebrafish 

embryo [27-28].  Thus, we proceeded to analyze our dataset by stratifying based on 

developmental stage.  Using a two-way ANOVA approach, we identified 157 genes that were 

significantly (α = 0.001) differentially regulated between morphants and controls, depending 

on developmental stage (S4 Table).  Interestingly, we found that isg15, isg20, casp8, mdm2, 

gadd45aa, phlda3 and tp53 were profoundly upregulated during segmentation stages in 

morphants compared to controls (Fig 3).  Interestingly, Robu and colleagues similarly 

reported the activation of isg20l2, phlda3 and casp8 in their microarray assay (Fig 9C in [9]).  

Genes that are differentially regulated at other developmental stages can be found in the File 

S1 – Section 3. 

 

Analysis of Agilent microarray datasets confirms the activation of ISGs and the p53 

signaling pathway in morphants 

The Agilent microarray datasets were composed of different platform configurations which 

makes data integration challenging and could potentially introduce artefacts into the post-
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processed data.  Therefore, we individually normalized each microarray dataset to investigate 

the expression levels of isg15, isg20, casp8, mdm2, gadd45aa and tp53.  Indeed, these genes 

are similarly upregulated in some morphants compared to control embryos, and many of 

these morphants were studied at segmentation and pharyngula stages (Fig 4).   

 

ISGs are upregulated by increasing doses of some morpholinos 

We injected increasing doses of egfl7, vegfaa and standard control morpholinos, followed by 

qPCR assays of isg20, isg15, tp53Δ113 [9], phlda3 and casp8.  We found that these genes 

were upregulated by increasing doses of egfl7 morpholino, and in some assayed genes, a 

sigmoid curve was observed (Fig 5).  In contrast, these genes were not upregulated by 

increasing doses of vegfaa or standard control morpholinos (Fig 5).  However, when we 

injected 8 or 16 ng of standard control morpholino, not only did the injected embryos exhibit 

upregulation of the aforementioned genes (Fig 5), but these embryos also exhibited a delay in 

angiogenesis (Fig S1).  We performed whole-mount in situ hybridization to investigate the 

isg20 expression pattern in egfl7 morphants, and found that isg20 was upregulated throughout 

the embryo (Fig S2), but not restricted to the vascular endothelium which expresses egfl7 

specifically [23].  
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Discussion 

Morpholinos are widely used as a tool to inactivate gene and non-coding RNA function.  

However, we do not yet fully understand the responses of a cell to morpholinos.  Indeed, 

several reported side-effects of morpholinos, including tp53Δ113 upregulation [9], mis-

splicing of transcripts and induction of the innate immune response [10], could complicate 

conclusions arising from morpholino studies.  Similarly, our current study identified genes 

related to the innate immune response which are upregulated across multiple zebrafish 

morphants as well as zebrafish embryos injected with an excess of standard control 

morpholino. 

 

Apart from the p53 signaling pathway [9], we further identified the activation of ISGs.  isg20 

was previously shown to be induced by the presence of dsRNA [29-30].  dsRNA can be 

recognized by receptors including Toll-Like Receptor 3 (TLR3), RIG1 and MDA5, which 

trigger downstream interferon type-I (IFN-I) signaling [31-33].  Interestingly, we detected 

activation of the IL-8 signaling pathway in our top upregulated genes (data not shown), 

suggesting the activation of TLRs and IFN-I, possibly by an RNA-morpholino heteroduplex.   

 

Large-scale gene expression analyses have been used to identify gene expression signatures 

that correlate to tumor progression, and with thorough validation, have become diagnostic 

markers and/or drug targets [34-35].  Moreover, public databases, such as Oncomine [36], 

have been established to mine out markers across multiple studies.  We applied a similar 

strategy to multiple gene expression datasets from zebrafish morpholino studies in order to 

identify gene expression signatures that are common to morpholino-injected zebrafish, and 

found that many genes in the innate immunity pathway are upregulated in morphants.  
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Additional work will be needed to understand the underlying biology of these genes and how 

they can affect morpholino experiments.  Clearer understanding of morpholino effects, 

should help scientists make informed decisions when conducting morpholino experiments 

(see also latest guidelines in ref. 37), and to facilitate interpretation of data arising from these 

experiments. 
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Figure Legends 

Fig 1.  Principal component analysis (PCA) of integrated gene expression data compiled 

from morpholino studies in zebrafish.  (A) Gene expression patterns are clustered by 

developmental stage along PC1 and clustered by tissue source along PC2.  (B) Some 

morpholino experiments show morphants clustering marginally away from controls 

(demarcated in red). 

 

Fig 2.  Gene set enrichment analysis.  Biological processes such as apoptosis and the p53 

signaling pathway are enriched in the top performing genes (S3 Table). 

 

Fig 3.  Relative fold change of gene expression plotted against developmental stage.  

Genes from the p53 signaling pathway (tp53, mdm2, gadd45aa, phlda3), the caspase cascade 

(casp8), as well as interferon stimulated genes (isg15, isg20) are upregulated in morphants at 

the segmentation stage.  Morphants (MO) were compared to uninjected, buffer-injected or 

control morpholino (CTRL), depending on the design of the experiment from the microarray 

datasets.  

 

Fig 4.  Analysis of isg20, isg15, tp53, casp8, phlda3, gadd45aa and mdm2 expression from 

Agilent microarray datasets.  Differential expression of isg20, isg15, tp53, casp8, phlda3, 

gadd45aa and mdm2 between morphants and controls.  Red indicates significant upregulation 

(P < 0.05); green indicates significant downregulation (P < 0.05).  The darker shade of 

red/green indicates logFC > 1.   

 

Fig 5.  ISGs and stress response genes are upregulated in a morpholino dose-dependent 

manner.  qPCR assays for isg20, isg15, tp53Δ113, phlda3 and casp8 expression in 32 hpf 
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zebrafish embryos injected with increasing doses of standard control morpholino, egfl7 

morpholino and vegfaa morpholino.  N = 4 per morpholino per dose.  m - slope; LL - lower 

limit of sigmoid curve ; UL - upper limit of sigmoid curve.  P-values for individual 

parameters in parantheses.  Grey shaded region reflects the 95% confidence band of the 

curve. 
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Supporting Information 

Fig S1.  36 hpf zebrafish embryo trunks.  Micrographs of zebrafish trunks marked by an 

endothelial transgenic marker, and overlays on the bright field channel.  Embryos injected 

with 8 ng control morpholino exhibit a mild delay in intersegmental vessel sprouting, and this 

delay is more pronounced in embryos injected with 16 ng control morpholino. 

 

Fig S2.  Whole mount in situ for isg20 expression in egfl7 morphants and controls. 

 

Table S1.  Primers for qPCR assays of isg20, isg15, tp53Δ113, casp8, phlda3 and gapdh 

expression levels. 

 

Table S2.  Prediction accuracy of various machine learning methods. 

 

Table S3.  Top performing genes ranked by t-test statistics and linear models.   

 

Table S4.  Genes that are significantly differentially regulated in a two-way ANOVA 

analysis. 

 

File S1.  Supplementary Information. 
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