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Abstract 13 

Background 14 

The viral component of microbial communities play a vital role in driving bacterial diversity, 15 

facilitating nutrient turnover and shaping community composition. Despite their importance, the vast 16 

majority of viral sequences are poorly annotated and share little or no homology to reference 17 

databases. As a result, investigation of the viral metagenome (virome) relies heavily on de novo 18 

assembly of short sequencing reads to recover compositional and functional information.  19 

Metagenomic assembly is particularly challenging for virome data, often resulting in fragmented 20 

assemblies and poor recovery of viral community members. Despite the essential role of assembly in 21 

virome analysis and difficulties posed by these data, current assembly comparisons have been limited 22 

to subsections of virome studies or bacterial datasets.  23 
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Design 24 

This study presents the most comprehensive virome assembly comparison to date, featuring 16 25 

metagenomic assembly approaches which have featured in human virome studies. Assemblers were 26 

assessed using four independent virome datasets, namely; simulated reads, two mock communities, 27 

viromes spiked with a known phage and human gut viromes.  28 

Results 29 

Assembly performance varied significantly across all test datasets, with SPAdes (meta) performing 30 

consistently well. Performance of MIRA and VICUNA varied, highlighting the importance of using a 31 

range of datasets when comparing assembly programs. It was also found that while some assemblers 32 

addressed the challenges of virome data better than others, all assemblers had limitations. Low read 33 

coverage and genomic repeats resulted in assemblies with poor genome recovery, high degrees of 34 

fragmentation and low accuracy contigs across all assemblers. These limitations must be considered 35 

when setting thresholds for downstream analysis and when drawing conclusions from virome data. 36 

Keywords 37 

Virome, viral, assembly, metagenome, benchmark, comparison, bacteriophage, phage 38 
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Background 40 

The rapid evolution of metagenomics and high throughput sequencing technologies has revolutionised 41 

the study of microbial communities, giving new insights into the role and identity of the uncultivated 42 

microbes which account for the majority of metagenomic sequences (Solden, Lloyd et al. 2016). 43 

However, the majority of microbial sequencing efforts have focused on the characterisation of 44 

prokaryotic microbes. Viral metagenomes (viromes) are dominated by novel sequences, often with up 45 

to 90% of sequences sharing little to no homology to reference databases (Aggarwala, Liang et al. 46 

2017).  Bacteriophage, the most abundant members of viral communities, play a key role in the 47 

shaping the composition of microbial communities and facilitate horizontal gene transfer (Paul 2008). 48 

Viromes have been shown to play a role in global geochemical cycles (Breitbart 2011) and have been 49 

studied in varied ecosystems including the ocean (Hurwitz and Sullivan 2013). Viromes of the human 50 

body are of particular interest, where they have been linked to disease status (Norman, Handley et al. 51 

2015), maintaining human health (Manrique, Bolduc et al. 2016) and shaping the gut microbiome in 52 

early life (Lim, Zhou et al. 2015, McCann, Ryan et al. 2018).  Due to the predominance of 53 

uncharacterised viral sequences “viral dark matter”; (Roux, Hallam et al. 2015), and the lack of a 54 

universal marker gene, virome studies rely on database independent analysis methods and depend 55 

heavily on de novo assembly to resolve viral genomes from metagenomic sequencing reads.  56 

Metagenomic assemblers typically use de Bruijn graph (DBG) approaches to address the 57 

complexity and size of metagenomic datasets in an accurate and efficient manner. Microbial 58 

metagenomes pose significant challenges to DBG assembly when compared to single genome 59 

assemblies often complicating the DBG and leading to fragmentation and/or misassembly (Olson, 60 

Treangen et al. 2017). These challenges include uneven sequencing coverage of organisms within the 61 

metagenome, the presence of conserved regions across different species, repeat regions within 62 

genomes and the introduction of false k-mers by both closely related genomes at differing abundances 63 

and sequencing errors at high read coverage. This hampers the use of coverage statistics to resolve 64 

repeat regions between and within genomes (Olson, Treangen et al. 2017). 65 
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A wide array of metagenomic assembly programs have been employed, each addressing 66 

aspects of metagenomic challenges to varying degrees. However, many of these programs have been 67 

designed and optimised for bacterial metagenomes, which share many assembly challenges of 68 

viromes but to a lesser degree. Virome data is characterised by high proportions of repeat regions 69 

within viral genomes (Minot, Grunberg et al. 2012), hypervariable genomic regions associated with 70 

host interaction (Warwick-Dugdale, Solonenko et al. 2018) and high mutation rates which lead to 71 

increased metagenomic complexity and strain variation (Roux, Emerson et al. 2017). Low DNA 72 

yields also limit read coverage and often require a multiple displacement amplification (MDA) step 73 

which has been shown to preferentially amplify small single stranded DNA viruses (Kim and Bae 74 

2011). Extremes in read coverage caused by MDA bias and dominant viral taxa such as crAssphage, 75 

which can make up large proportions of human gut viromes (Dutilh, Cassman et al. 2014), sequester 76 

sequencing resources and result in insufficient coverage of low abundance viruses. These challenges 77 

result in fragmented virome assemblies (García-López, Vázquez-Castellanos et al. 2015), limiting 78 

their use in downstream analysis. Despite benchmarks of bacterial metagenomes having highlighted 79 

failings and benefits of particular assembly programs, many poorly performing assemblers have 80 

featured in virome studies (Foulongne, Sauvage et al. 2012, Hannigan, Meisel et al. 2015, Guo, Hua et 81 

al. 2017). 82 

 Accurate comparison of metagenomic assemblers is complicated by the unknown 83 

composition of metagenomic datasets and the limited applicability of general assembly statistics such 84 

as N50 (Deng, Naccache et al. 2015, Vollmers, Wiegand et al. 2017).  To address this, the accuracy 85 

and efficacy of metagenomic assembly programs is often evaluated using simulated datasets and 86 

mock communities of known composition. Although these simulated datasets are undergoing constant 87 

improvements (Sczyrba, Hofmann et al. 2017, Fritz, Hofmann et al. 2018), they have focused 88 

primarily on bacterial metagenomes and remain limited in their ability to accurately replicate the 89 

challenges of true metagenomes. While some virome-specific assembly benchmarks have been 90 

performed, many have been limited to a small number of assemblers, 454 data or subsections of 91 

virome studies and have exclusively used simulated data (Aguirre de Cárcer, Angly et al. 2014, Smits, 92 
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Bodewes et al. 2014, Vázquez-Castellanos, García-López et al. 2014, García-López, Vázquez-93 

Castellanos et al. 2015, Hesse, van Heusden et al. 2017, Roux, Emerson et al. 2017). 94 

Here we expand upon previous studies and present a detailed investigation of assembly 95 

software for virome analysis which compares all those previously used in human virome studies to 96 

date, as well as other popular or more recently published assemblers (Table 1). We compare assembly 97 

efficacy and accuracy using simulated viromes, mock viral communities and human gut viromes 98 

spiked with a known exogenous bacteriophage. Furthermore we confirm these findings using human 99 

virome data from published datasets and assess computational parameters such as runtime and RAM 100 

usage. We also investigate in detail the impact of sequencing coverage and genomic repeats on 101 

assembly performance and highlight important considerations for future virome studies. Together 102 

these data comprise most comprehensive virome assembly benchmark to date.  103 

Link Versio
n used 

Reference 

ABySS (k-
mer 63) http://www.bcgsc.ca/downloads/abyss/ v2.0.2 (Simpson, Wong et al. 2009) 

ABySS (k-
mer 127) http://www.bcgsc.ca/downloads/abyss/ v2.0.2 (Simpson, Wong et al. 2009) 

CLC https://www.qiagenbioinformatics.com/products/cl
c-assembly-cell/ v5.0.5 https://www.qiagenbioinformatics.co

m/ 

Geneious https://www.geneious.com/features/assembly-
mapping/ 

(Kearse, Moir et al. 2012) 

IDBA UD https://i.cs.hku.hk/~alse/hkubrg/projects/idba_ud v1.1.1 (Peng, Leung et al. 2012) 

MEGAHIT https://github.com/voutcn/megahit V1.1.1-
2 (Li, Luo et al. 2016) 

MetaVelvet https://metavelvet.dna.bio.keio.ac.jp/ V1.2.0
2 

(Namiki, Hachiya et al. 2012) 

MIRA http://www.chevreux.org/mira_downloads.html V4.0.2 (García-López, Vázquez-Castellanos 
et al. 2015) 

Ray Meta http://denovoassembler.sourceforge.net/ V2.3.0 (Boisvert, Raymond et al. 2012) 

SOAPdenovo
2 http://soap.genomics.org.cn/soapdenovo.html v2.04 (Luo, Liu et al. 2012) 

SPAdes http://cab.spbu.ru/software/spades/ V3.10.
0 (Bankevich, Nurk et al. 2012) 

SPAdes meta http://cab.spbu.ru/software/spades/ (variation of 
SPAdes applied with flag) 

V3.10.
0 (Nurk, Meleshko et al. 2017) 

SPAdes sc http://cab.spbu.ru/software/spades/ (variation of 
SPAdes applied with flag) 

V3.10.
0 (Bankevich, Nurk et al. 2012) 

SPAdes sc 
careful 

http://cab.spbu.ru/software/spades/ (variation of 
SPAdes applied with flag) 

V3.10.
0 (Bankevich, Nurk et al. 2012) 

Velvet https://www.ebi.ac.uk/~zerbino/velvet/ V1.2.1
0  (Zerbino and Birney 2008) 

VICUNA https://github.com/broadinstitute/mvicuna V1.3 (Vázquez-Castellanos, García-López 
et al. 2014) 

Table 1: A list of assemblers used in this study 104 
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Results 105 

Simulated virome dataset 106 

The ability to accurately recover each of the 572 members of a published simulated community 107 

(Hesse, van Heusden et al. 2017) and the degree of fragmentation, was assessed by aligning the 108 

resulting contigs from each assembler to the reference genomes (Fig. 1). MetaVelvet was not included 109 

in this analysis as it failed to reach completion after seven days. Approximately half of the genomes in 110 

the community featured an average recovered genome fraction less than 75% and exhibited higher 111 

degrees of fragmentation (>10 contigs per genome on average) across all assemblers. For 87 of the 112 

572 genomes there was an average recovered genome fraction of less than 20% across all assemblers 113 

(the low recovered genome fraction of VICUNA was excluded as an outlier). Of these genomes, 84 114 

were present at low abundance (lowest 40% of all abundances normalised to genome length). The 115 

remaining three genomes were present at higher normalised abundances (50 – 80th percentile) but 116 

featured the some of the highest proportions of genomic repeats (70th-90th percentile). 117 

  Normalised genome abundance within the community had a strong positive correlation with 118 

recovered genome fraction across all assemblers (Supplementary Table 1, Additional file 5) and was 119 

verified using a linear model (Supplementary Table 2, Additional file 5), with the exception of 120 

SOAPdenovo2, which was negative.  Normalised abundance also correlated negatively with the 121 

degree of fragmentation (number of contigs) across all assemblers except Velvet which was positively 122 

correlated and Geneious which was not significant (Supplementary Table1, Additional file 5). None 123 

of the genomes in the lower 30th percentile of normalised abundance featured an average recovered 124 

genome fraction greater than 75%, further exemplifying the impact of low sequencing coverage. 125 

However high abundance did not consistently improve genome recovery and of the 172 genomes in 126 

the top 30% of normalised abundance, 20 featured an average genome fraction below 50%. The 127 

distance of the log transformed (due to extremes in values) normalised abundances from the mean was 128 

negatively correlated with recovered genome fraction across all assemblers (correlation coefficient: -129 

0.42, p-value < 2.2e-16). Of 171 genomes in the 40th – 60th percentile of normalised abundance 29 130 

featured an average genome fraction below 50%. This indicates factors other than abundance may 131 
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hamper genome recovery. MIRA and Geneious both recovered a greater fraction of low abundance 132 

genomes with fewer contigs than other assemblers. However, MIRA assemblies of 13 of the most 133 

abundant genomes in the community (highest 10%) exhibited the highest degree of fragmentation in 134 

the study, generating between 401 and 2983 contigs per genome. 135 

The proportion of inverted repeats, palindromic repeats, tandem repeats and a total proportion 136 

of genomic repeats was calculated for each genome. The total percentage of repeat regions predicted 137 

in each genome was positively correlated with the degree of fragmentation observed in each assembly 138 

across all assemblers with the exception of Ray Meta (Supplementary Table 3, Additional file 5), and 139 

negatively correlated with recovered genome fraction across all assemblers except ABySS (k-mer 140 

63/127), Geneious, and SOAPdenovo2. When this relationship between repeat regions and the 141 

recovered genome fraction was assessed using a linear model, correlations were significant for  CLC, 142 

MIRA, Ray Meta, Velvet, and all parameters of SPAdes (Supplementary Table 2, Additional file 5). 143 

Both the proportion of repeat regions in a genome and the relative abundance of that genome 144 

contribute to the variation in recovered genome fraction, though each explain a separate aspect of this 145 

variation. No interaction was found between these two metrics. 146 

VICUNA, Ray Meta, SOAPdenovo2, Geneious, ABySS (both k-mer sizes) and Velvet 147 

recovered under 50% of the total genome fraction (all genomes in the community). VICUNA 148 

produced just four contigs in total with high levels of mismatches (174 per 100kb on average) which 149 

could possibly linked to the format of the artificial reads as this was not observed in real sequencing 150 

data.  The five assemblers which recovered the highest genome fraction overall were SPAdes 151 

(default), MEGAHIT, SPAdes (single cell), SPAdes (single cell + careful) and CLC. All assemblers 152 

achieving a minimum average genome fraction of 50% were subjected to a ranking system 153 

(Supplementary Table 4, Additional file 5). To compare both recovery and fragmentation assemblers 154 

were ordered from best to worst based on genome recovery and number of aligned contigs. The 155 

average rank resulted in Spades (default) performing best, recovering 72.2% overall genome 156 

sequences with 8230 contigs. The remaining top five assemblers of this combined rank were SPAdes 157 

(meta) 68.2% with 7419 contigs, SPAdes (single cell) 68.9% with 9506 contigs, CLC 68.6% with 158 
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9152 contigs and MEGAHIT 69.6% with 10083 contigs. The number of assemblies which recovered 159 

greater than 90% of the target genome in one single contig was compared (Fig 2). SPAdes (default) 160 

performed best, recovering 210, SPAdes (meta), SPAdes (single cell + careful), CLC, and SPAdes 161 

(single cell) each recovered 179, 168, 162 and 160 genomes respectively. 162 

The accuracy of assemblies was assessed by calculating the average count of indels, 163 

mismatches, and misassemblies per 100kb across all genomes.  These counts were normalised to the 164 

number of genomes each assembler recovered with a minimum genome fraction of 50%. These were 165 

ranked according to their performance in all three metrics (Supplementary Table 4, Additional file 5), 166 

with assemblies from Velvet having the lowest overall counts followed by ABySS, IDBA UD, 167 

MEGAHIT and Ray Meta. With the exception of Ray Meta and SOAPdenovo2, the number of 168 

mismatches per 100kb was negatively correlated with both genome abundance and recovered genome 169 

fraction across all assemblers (Supplementary Table 1, Additional file 5).  170 

 The rate of false positive (no alignment to reference genomes) and false negative (recovered 171 

genome fraction of 0%) contigs assembled allowed for the determination of sensitivity. A number of 172 

assemblers had a sensitivity greater than 97%, however each returned greater than 7,000 contigs, 173 

inferring a high degree of fragmentation (Table 2). MIRA assembled (partial or complete) 559 of the 174 

genomes with a false positive count of just four. However, this was achieved from more than 27,000 175 

contigs. ABySS (both k-mer sizes), Geneious, Ray Meta and Velvet returned very few false positives 176 

but failed to detect many of the genomes present. SPAdes (meta) performed best with 558 of the 572 177 

genomes detected and only five false positives resulting from 7419 contigs. 178 

False 
Positives 

False 
Negative 

True 
Positives 

No. of contigs 
returned* 

Sensitivity 

ABSS (k-mer 63) 0 111 461 7957 80.59 
ABySS (k-mer 
127) 

1 123 449 7732 78.50 

CLC 34 5 567 9152 99.13 
Geneious 9 190 382 958 66.78 
IDBA UD 25 9 563 8999 98.43 
MEGAHIT 21 8 564 10083 98.60 
MetaVelvet N/A N/A N/A N/A N/A 
MIRA 4 13 559 27600 97.73 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 27, 2018. ; https://doi.org/10.1101/479105doi: bioRxiv preprint 

https://doi.org/10.1101/479105
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ray Meta 0 213 359 4224 62.76 
SOAPdenovo2 536 116 456 11548 79.72 
SPAdes 29 3 569 8230 99.48 
SPAdes meta 5 14 558 7419 97.55 
SPAdes sc 38 7 565 9506 98.78 
SPAdes sc careful 40 6 566 9724 98.95 
Velvet 1 65 507 6343 88.64 
VICUNA 0 558 14 4 2.45 

*572 in community
Table 2: The number of false positive, false negative contigs generated by each assembler for the 179 

Simulated community, together with the sensitivity rates 180 

181 

Mock community dataset 182 

Two mock viral communities were used to investigate the impact of high and low abundance ssDNA 183 

viruses on assembly performance. Mock A (Table 3a) contained 12 viral genomes, 10 of which were 184 

at equal abundance (9.82% of the total community) and two ssDNA genomes (NC_001330 and 185 

NC_001422) at low abundance (0.92%). Analysis of this community showed that although some 186 

assemblers, namely CLC, Geneious, SPAdes (single cell) and VICUNA, detected all 12 genomes, this 187 

was at the expense of a large number of false positives (1143, 53, 1513 and 4969 respectively). Velvet 188 

and MetaVelvet generated no false positives, but failed to assemble three genomes, while ABySS (for 189 

both k-mers) generated a large number of false positives and failed to assemble four and six genomes, 190 

respectively. IDBA UD and Ray Meta outperformed the other assemblers with an equal number of 191 

contigs to genomes (12), followed by MEGAHIT, SPAdes (default) and SPAdes (meta) with 13, 14 192 

and 14. Mock B (Table 3b) also contained 12 genomes but with a higher abundance of ssDNA 193 

genomes NC_001330 and NC_001422 (32.47%). VICUNA assemblies of Mock B improved upon 194 

those from Mock A as no false positives were generated, while the false positive rate in the MIRA 195 

assembler increased to 94 from none in Mock A. IDBA UD performed best followed by SPAdes 196 

(default), Ray Meta, MEGAHT and SPAdes (meta) based on sensitivity and number of contigs, while 197 

ABySS (both k-mer sizes) and SOAPdenovo2 had the lowest sensitivity. Despite being a relatively 198 

simple community consisting of 12 members, not all assemblers were able to recover all members 199 
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(Supplementary Table 5-6, Additional file 5). A greater number of assemblers (six) failed to assemble 200 

all members of Mock B than Mock A (four). ABySS(k-mer 63), ABySS(k-mer 127), Velvet and 201 

MetaVelvet failed to assemble 6, 4, 3 and 3 genomes respectively, in Mock A and 6, 4 ,1 and 1 202 

genomes, respectively in Mock B. In addition, MIRA and SOAPdenovo2 failed to assemble 1 and 2 203 

genomes respectively in Mock B.  204 

A) 
False 
Positives 

False 
Negative 

True 
Positive 

No. of contigs 
returned* 

Sensitivity 

ABySS (k-mer 63) 52 4 8 61 66.67 
ABySS (k-mer 
127) 

50 6 6 56 50.00 

CLC 1143 0 12 1299 100.00 
Geneious 53 0 12 65 100.00 
IDBA UD 0 0 12 12 100.00 
MEGAHIT 0 0 12 13 100.00 
MetaVelvet 0 3 9 26 75.00 
MIRA 0 0 12 89 100.00 
Ray Meta 0 0 12 12 100.00 
SOAPdenovo2 2 0 12 23 100.00 
SPAdes 0 0 12 14 100.00 
SPAdes meta 0 0 12 14 100.00 
SPAdes sc 1513 0 12 1527 100.00 
SPAdes sc careful 0 0 12 15 100.00 
Velvet 0 3 9 26 75.00 
VICUNA 4969 0 12 5385 100.00 

*12 in community
205 

B) 
False 
Positives 

False 
Negative 

True 
Positives 

No. of contigs 
returned* 

Sensitivity 

ABySS (k-mer 63) 60 4 8 69 66.67 
ABySS (k-mer 
127) 

132 6 6 139 50.00 

CLC 450 0 12 505 100.00 
Geneious 14 0 12 30 100.00 
IDBA UD 0 0 12 12 100.00 
MEGAHIT 0 0 12 14 100.00 
MetaVelvet 0 1 11 24 91.67 
MIRA 94 1 11 157 91.67 
Ray Meta 0 0 12 13 100.00 
SOAPdenovo2 2 2 10 27 83.33 
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SPAdes 0 0 12 13 100.00 
SPAdes meta 0 0 12 14 100.00 
SPAdes sc 593 0 12 607 100.00 
SPAdes sc careful 0 0 12 14 100.00 
Velvet 0 1 11 24 91.67 
VICUNA 0 0 12 15 100.00 

*12 in community
Table 3: The number of false positive, false negative contigs generated by each assembler for a) Mock 206 

community A and b) Mock community B) along with the sensitivity rates for each 207 

 All but three VICUNA assemblies in Mock A exhibited a high level of fragmentation, 208 

generating 34.7 ± 35 (mean ± standard deviation) contigs per genome. Fragmentation was also seen in 209 

MIRA assemblies to a lesser degree with 7.4 ± 10 (mean ± standard deviation) contigs per genome on 210 

average. There was a high rate of fragmentation in CLC with one community member generating 144 211 

contigs for genome KF302035. Average recovered genome fraction of 85.4 ± 6.4 % was skewed by 212 

ABySS (k-mer 63), ABySS (k-mer 127), Velvet, MetaVelvet, SOAPdenovo2, and VICUNA which 213 

recovered on average 49.5%, 66.6%, 73.8%, 73.8%, 29.7% and 76.6%, respectively. All other 214 

assemblers recovered over 99% of each genome in the community (Supplementary Figure 1, 215 

Additional file 6).  216 

Closer inspection of the two ssDNA genomes present at lower relative abundance highlighted 217 

significant differences in the average number of indels across all assemblies of the NC_001330 and 218 

NC_001422 genomes versus other members of the community (p-value = 0.037). These genomes 219 

exhibited an average of 41.7 ± 18.5 and 9.4 ± 20.4 indels per 100kb, while all other genomes featured 220 

an average of 7.8 ± 18.9 indels per 100kb. The low abundant ssDNA genomes NC_001330 and 221 

NC_001422 also featured the highest average mismatches per 100kb at 148.7 ± 3 and 302.5 ± 10.7, 222 

respectively (Supplementary Figure 1, Additional file 6).   223 

The degree of fragmentation observed by VICUNA and MIRA in Mock B was lower than in Mock A 224 

with a mean of 1.3 ± 0.89 and 5.3 ± 7.7 contigs per genome, respectively. CLC fragmented genome 225 

KF302035 in Mock B (44 contigs), but to a lesser degree than Mock A (144 contigs). MEGAHIT, 226 

which recovered at least 98% of all genomes in Mock A, also recovered over 98% of all genomes in 227 
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Mock B except for the ssDNA genome NC_001422, of which 56.5% was recovered in two contigs. 228 

The majority of assemblies exhibited 147.9 ± 0 and 297 ± 1 mismatches per 100kb for NC_001330 229 

and NC_001422 (high abundance ssDNA), respectively, identical values to those measured in Mock 230 

A. Velvet and MetaVelvet were exceptions with 184.2 and 860.2 for genome NC_001422 and 231 

NC_001330. A similar pattern of high values across a narrow range was also observed with the 232 

number of indels, with 49.3 to 32.9 present in all assemblies NC_001330. Genome NC_001422 233 

featured 18.57 indels across all SPAdes assemblies (all parameters) and 860.2 across both Velvet and 234 

Metavelvet assemblies. All other assemblers which successfully recovered this genome did not feature 235 

any indels (Supplementary Figure 1, Additional file 6). 236 

Q33 237 

Five assemblers failed to generate contigs which met alignment thresholds and were subsequently 238 

excluded from further analysis - namely ABySS (k-mer 63), ABySS (k-mer 127), SOAPdenovo2, 239 

Velvet and MetaVelvet. All remaining assemblers recovered over 90% of the spiked Q33 genome 240 

with the exception of MIRA (8.5%). Six assemblers recovered over 99% of the Q33 genome in a 241 

single contig - SPAdes (meta) 99.74%, MEGAHIT (99.6%), VICUNA (99.6%), Ray meta (99.6%), 242 

CLC (99.5%) and Geneious (99.1) (Fig. 3). However, only MEGAHIT assembled the Q33 genome 243 

with a contig equal in length to the genome itself. SPAdes (meta) and CLC generated assemblies 244 

shorter than the reference genome by 86 and 141 bases. VICUNA (723), Geneious (1765), and Ray 245 

Meta (9884) each generated assemblies longer than the reference genome. SPAdes (default) SPAdes 246 

(single cell), IDBA UD and SPAdes (single cell + careful) each assembled Q33 in 2, 3, 4, 5 and 5 247 

contigs, respectively. Ray Meta and VICUNA assemblies had the lowest number of mismatches and 248 

indels per 100kb, however Ray Meta exhibited the highest rate of misassemblies (2 relocations, 1 249 

inversion). All assemblers featured a minimum of one local misassembly with the exception of 250 

SPAdes (meta) did not feature any. The six best assemblies of the Q33 genome and the genome itself 251 

are syntenic (although occasionally on the reverse strand) and the start and end point were not 252 

conserved (Fig .3). 253 

Read depth analysis (Time and RAM) 254 
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Assemblers were compared for practicality by measuring the time to reach completion and maximum 255 

RAM usage via four published healthy human gut viromes (Manrique, Bolduc et al. 2016) and various 256 

sequencing depths . It must be noted that all assembly tasks were allocated five threads, however 257 

specifying the number of threads did not change the number of threads used by certain programs. 258 

MetaVelvet was not included in this analysis as it failed to reach completion after running for seven 259 

days. CLC and Geneious were performed on a desktop computer and therefore excluded from time 260 

and RAM analysis. Run time is dependent upon the number of reads and this is largely linear in scale 261 

with more reads leading to an increased assembly time (Fig. 4a). MIRA and Vicuna (Fig. 4a insert) 262 

were the slowest with MIRA taking over 15 times longer than the other software to assemble 3.5 263 

million reads.  SOAPdenovo2 had the shortest completion time followed by IBDA UD and Velvet. 264 

Most assemblers were consistent across samples (observed via error bars) with the exception of 265 

MIRA and Ray Meta. MIRA, Vicuna and Velvet (Fig. 4b insert) had the highest max RAM usage 266 

while the lowest was Ray Meta, IDBA UD and SPAdes (meta) (Fig. 4b). The majority of assemblers 267 

observed a linear scale pattern similar to that of run time.  268 

Read depth analysis N50 and Longest contig length 269 

For both the N50 (Fig. 4c) and the longest contig length (Fig. 4d), there was a large amount of 270 

variation between samples for the majority of assemblers. The longest contig length showed a large 271 

increase at the final sequencing depth. Particular assemblers, namely SPAdes (default), SPAdes 272 

(meta), MEGAHIT and ABySS (k-mer 127), produced longer contigs as the sequence depth was 273 

increased.  274 

Discussion 275 

Many bacterial metagenomic assembly comparisons have highlighted that the choice of assembler has 276 

a significant impact on downstream analysis and the accuracy of the reconstructed metagenome 277 

(Mavromatis, Ivanova et al. 2007, Lindgreen, Adair et al. 2016, Greenwald, Klitgord et al. 2017, 278 

Vollmers, Wiegand et al. 2017). We have found this also to be true for viral metagenomes, where 279 

accurate and complete assembly are of particular importance given the lack of viral representation in 280 
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reference databases. Virome studies depend heavily on the assembly step and possess many features 281 

which are challenging to successful assembly. In this study we compared the performance of those 282 

assemblers used to date in human viral metagenomics studies using datasets of known and unknown 283 

composition and varying complexity. These included a Q33 spiked virome, mock virome 284 

communities, a simulated virome and the “Healthy human gut phageome” (Manrique, Bolduc et al. 285 

2016). Each dataset provided unique attributes allowing for comparison of assembly performance on a 286 

number of levels. The combination of artificial and real viromes used in this study allows for the 287 

comparison of various aspects of assembly performance across a range of datasets rather than 288 

depending on simulated viromes alone, as is commonly carried out in assembly comparisons 289 

(Mavromatis, Ivanova et al. 2007, Fritz, Hofmann et al. 2018) .  290 

The Simulated dataset featured 572 viral genomes at various relative abundances as published 291 

by Vázquez-Castellanos and colleagues (Vázquez-Castellanos, García-López et al. 2014). Fragmented 292 

assemblies of individual genomes within microbial communities hamper downstream analysis and 293 

limit the conclusions which can be drawn from metagenomic data such as taxonomic and functional 294 

profiles (Florea, Souvorov et al. 2011). Consequently, the percentage genome recovery and degree of 295 

fragmentation was assessed across each assembler, with SPAdes (default, meta and single cell) each 296 

performing well. VICUNA performed very poorly, recovering only four contigs with high numbers of 297 

mismatches and misassemblies, despite having performed well with other datasets and being designed 298 

to address challenges of heterogeneous viral populations (Yang, Charlebois et al. 2012). This failure 299 

may reflect the computational challenges relating to the format of the simulated reads, as benchmarks 300 

carried out within the VICUNA study itself only include actual sequencing reads (Yang, Charlebois et 301 

al. 2012). However, similar poor performance has been previously observed in virome assembly 302 

comparison using VICUNA and 454 reads (Vázquez-Castellanos, García-López et al. 2014). For 303 

those assemblers which could recover greater than 90% of the reference genome in a single contig, 304 

SPAdes (default) outperformed SPAdes (meta). This may be explained by a lack of strain variants in 305 

the dataset and the fact that SPAdes (meta) was optimised to combine strain variants of each species 306 

to form consensus sequences. 307 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 27, 2018. ; https://doi.org/10.1101/479105doi: bioRxiv preprint 

https://doi.org/10.1101/479105
http://creativecommons.org/licenses/by-nc-nd/4.0/


 A subset of genomes were poorly recovered (<20% genome fraction) by nearly all 308 

assemblers. This observation indicates that there are challenging aspects of viral genomes and 309 

metagenomes which cannot be overcome with current assembly strategies. The strong positive 310 

correlations between the relative abundance and genome fraction suggest that a low abundance 311 

threshold applies to virome assembly, below which assemblies will consist of small fractions of the 312 

viral genome, and in most cases be highly fragmented.  This detrimental impact of low coverage has 313 

been well established in previous assembly comparison studies (García-López, Vázquez-Castellanos 314 

et al. 2015, Roux, Emerson et al. 2017, Fritz, Hofmann et al. 2018). Highly abundant genomes also 315 

caused similar recovery and fragmentation issues across all assemblers, which is of particular 316 

importance due to the prevalence of extremely high abundance genomes in viral data (crAssphage, 317 

certain ssDNA viruses). As both abundance extremes are common in virome data, their impact must 318 

be considered when designing virome studies (i.e. sequencing depth). As relative abundance alone did 319 

not fully explain the variation in genome fraction recovered, the role of genomic repeats (a well-320 

established assembly challenge (Acuña-Amador, Primot et al. 2018) was also investigated. However, 321 

genomic repeats could explain the variation in genome fraction recovered to a lesser degree than 322 

relative abundance, suggesting other factors contribute to poor genome recovery. 323 

 Compositional differences between final assemblies and viromes themselves must be taken 324 

into account when drawing conclusions about virome composition and setting parameters for 325 

downstream analysis. Challenges such as genomic content and strain variation are not currently 326 

addressed in human virome assembly strategies and impact the reconstruction of certain members of a 327 

virome. Hybrid sequencing, which uses both long and short reads to resolve genomic regions 328 

associated with poor assembly (Warwick-Dugdale, Solonenko et al. 2018) is a promising new 329 

technology which could address current virome assembly challenges. Extraction methods which may 330 

reduce the bias introduced by MDA steps include using Swift Biosciences 1S Plus kit (Roux, 331 

Solonenko et al. 2016) and/or increasing overall sequencing depth to improve coverage of lowly 332 

abundant viral genomes (in conjunction with an assembler which is less sensitive to high coverage 333 

sequences). 334 
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 Performance of some assemblers in this study was hampered by high coverage datasets 335 

(namely overlap consensus assemblers). VICUNA assemblies exhibited the highest degree of 336 

fragmentation of all assemblers with Mock A, despite having resolved both high abundance ssDNA 337 

genomes of Mock B to a single contig. MIRA also exhibited a high degree of fragmentation with high 338 

abundance genomes in both simulated and mock datasets. However, MIRA was least affected by low 339 

abundance reads, recovering a greater genome fraction of low abundance genomes than other 340 

assemblers with fewer contigs. Assembly challenges of high coverage sequences in viromes may 341 

potentially be addressed by sub-setting reads similar to the assembly approach used by 342 

SLICEMBLER (Mirebrahim, Close et al. 2015). 343 

Multi-assembler approaches such as the use of Geneious to generate consensus sequences from 344 

separate assemblers have been developed (Koren, Treangen et al. 2014, Schürch, Schipper et al. 2014, 345 

Deng, Naccache et al. 2015) but have not been included in human virome studies using short reads. 346 

MIRA assemblies of the Q33 genome and some low abundance genomes in the Simulated dataset 347 

were improved using Geneious, resolving greater genome fractions with fewer contigs (despite 348 

Geneious recovering a lower genome fraction of the Simulated dataset overall). It is possible that 349 

using these approaches could address issues facing each assembler, i.e. combine the assemblies of 350 

SPAdes (meta) which performs well across all 4 datasets but struggles to recover low abundant 351 

genomes, with MIRA assemblies which are less affected by low abundance but has difficulty 352 

resolving genomes of higher abundance. Comparison of multi-assembler approaches and 353 

combinations of various assemblers was not within the scope of this study, but should not be ruled out 354 

as a potential method of improving virome assembly in cases where composition could be assessed 355 

and obvious assembly challenges were known to be present. 356 

Across all analysis methods in this study, SPAdes (meta) performed consistently well and 357 

would be our recommendation. It performed best in the Simulated data based on false positives, true 358 

positives and false negatives, best assembled the Q33 genome (recovery, fragmentation, 359 

misassemblies and genome size) and performed well with both mock communities in recovering all 360 

members accurately in one or two contigs. SPAdes (meta) RAM usage was low and did not increase 361 
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to the same degree as other assemblers with increasing sequencing depth. This recommendation is in 362 

agreement with previous comparisons (Vollmers, Wiegand et al. 2017) which also suggested using 363 

SPAdes (meta) due to its ability to accurately assemble members of bacterial metagenomes. SPAdes 364 

(meta) is less able to accurately reconstruct micro-diversity as it generates a consensus assembly of 365 

“strain–contigs” in a metagenome, which means it is better equipped to address the high mutation 366 

rates observed in virome data (Nurk, Meleshko et al. 2017). This recommendation is also concurrent 367 

with a previous study (Roux, Emerson et al. 2017) which found IDBA UD, MEGAHIT and SPAdes 368 

(meta) to perform equally well when assessed using 14 simulated viromes. However, we found that 369 

SPAdes (meta) outperformed IDBA UD and MEGAHIT in the Q33 spiked dataset, RAM usage in 370 

relation to increasing sequencing depth, and in its ability to recover members of the Simulated virome 371 

in a single contig.  This recommendation contradicts two previous assembly comparisons which found 372 

CLC (Hesse, van Heusden et al. 2017) and Velvet (White, Wang et al. 2017) to be best suited to 373 

virome data. However, SPAdes (meta) was not included in either study. Though SPAdes (meta) was 374 

out performed by MIRA in the assembly of low abundance genomes in the Simulated dataset, MIRA 375 

has limited application to large datasets. MEGAHIT also performed well across all datasets 376 

performing well in relation to recovery, fragmentation and accuracy, but encountered some recovery 377 

issues in mock datasets and minor accuracy issues with the Q33 genome. 378 

The higher levels of accuracy (low mismatch indel and misassembly counts) of assemblers 379 

which performed poorly in other metrics namely (velvet and ABySS (k-mer 63), highlights the trade-380 

off between accuracy and contiguity observed in previous assembly studies (Gritsenko, Nijkamp et al. 381 

2012, Lin and Liao 2013). However, both IDBA-UD and MEGAHIT performed well for accuracy, 382 

genome recovery and fragmentation. These assemblers may be worth considering if strain level detail 383 

is of particular importance. The mock A and B datasets were used to assess the impact of 384 

amplification bias on assembly performance.  All ssDNA assemblies featured an equal minimum 385 

number of mismatches across both Mock A and B. This may be caused by challenges in the genomes 386 

themselves hampering accurate assembly, but is more likely to reflect strain variation between 387 
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genome sequence featured in the original publication and the genome of the phage used in the 388 

community itself. 389 

The Q33 spiked virome consisted of pooled reads from three healthy human faecal samples, 390 

each of which having been spiked with 107 PFU ml-1 of lactococcal phage Q33 prior to virome 391 

extraction. This allowed for assembly comparison of one abundant member of a challenging viral 392 

community. Despite the high relative abundance of the Q33 genome, only 6 assemblers could recover 393 

over 90% of the genome in a single contig, of these SPAdes (meta) and MEGAHIT reconstructed the 394 

Q33 genome accurately without the introduction foreign or chimeric DNA. It was also noted that the 395 

genome synteny was conserved across these six assemblies. This may reflect circularization of the 396 

linear Q33 genome during DNA extraction as the presence of cos sites has been previously predicted 397 

(Mahony, Martel et al. 2013). 398 

 The longest contigs of each assembler were only detected at the highest sequencing depths 399 

and varied across assemblers, which may indicate that high coverage is necessary to recover the 400 

largest viral genomes in a community. However, it is also possible that these long contigs may reflect 401 

misassemblies and duplication events caused by read errors at high sequencing depths which must be 402 

considered when analysing high coverage data. At almost all sequencing depths Geneious, Vicuna, 403 

Ray Meta and ABySS (k-mer 127) exhibited the highest N50 values, despite performing poorly in 404 

other metrics. This further highlights the limitation of using N50 alone as a metric of metagenomic 405 

assembly (Vollmers, Wiegand et al. 2017). 406 

 A further important consideration when performing any metagenomic assembly is 407 

practicality; size of dataset, computational resources, bioinformatic resources, and how much hands-408 

on time is required from the end user. Both CLC and Geneious are available as a GUI (albeit requiring 409 

a licence fee) which widens their audience to researchers with limited command-line experience (CLC 410 

can also be run using the windows command line). However, this limits their practicality for large 411 

scale virome studies as they are limited to the computational power of desktop computers and are not 412 

suited to the assembly of large numbers of samples. Despite the limitations of computational power, 413 

CLC performed well in all datasets in terms of genome recovery and fragmentation. Of the freely 414 
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available open source assemblers, MIRA and VICUNA are the least efficient in terms of RAM usage 415 

and assembly time, reflecting limitations of the overlap consensus approach to assembly. This limits 416 

their applicability to large virome datasets, and further increases the time required to carry out the 417 

Geneious assembly approach which requires the output of both assemblers. Despite the long runtime, 418 

VICUNA did not adhere to the number of cores specified, instead using all available cores.  All other 419 

assemblers had a similar time requirements (with the exception of SOAPdenovo2 which performed 420 

poorly across all datasets). Of the assemblers which consistently performed well in terms of accuracy, 421 

genome fraction recovered and fragmentation, SPAdes (meta) was most efficient in terms of RAM 422 

usage, which did not increase to the same degree as other assemblers with increasing sequencing 423 

depth. MIRA stood out in terms of impracticality by generating by far the largest intermediate files of 424 

any assembler, requiring several gigabytes of storage space for intermediate files. 425 

The combination of results from four datasets facilitates accurate comparison of assemblers as 426 

the limitations of each individual dataset vary.  Application of Phi29 MDA to amplify virome DNA to 427 

sufficient quantities for sequencing can introduce significant bias and skew the original composition 428 

of the virome, making quantitative viromics difficult (Kim and Bae 2011, Roux, Solonenko et al. 429 

2016). As a result, it is likely that true diversity of viral metagenomes is not being accurately captured 430 

using current virome extraction methods. However, as these procedures move away from steps known 431 

to introduce bias, greater diversity will be observed. In this sense, the level of complexity of the Q33 432 

dataset, which pooled three independent human viromes, provides a useful testbed for metagenomic 433 

assemblers in future virome studies as extraction methods improve. Additionally, Q33 was not present 434 

in the viromes prior to spiking, assemblers were not challenged by the presence of native strain 435 

variations of Q33 genome.  In this study, assemblers were compared without individual optimisation 436 

to the specific dataset. Feasibility dictates that, this “straight out of the box” approach to assembly is 437 

used by almost all metagenomic assembly comparisons. Additionally, as the true composition of 438 

metagenomes is unknown, any impact of parameter optimisation must be estimated from general 439 

assembly statistics such as N50 and longest contig which have been highlighted to be of limited 440 

usefulness (Aguirre de Cárcer, Angly et al. 2014, Vollmers, Wiegand et al. 2017). 441 
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Conclusions 442 

Of all assembly programs used in human virome studies, SPAdes (meta) addressed the challenges of 443 

virome data most effectively. However, all assemblers have limitations and are hampered by aspects 444 

of virome data. Low read coverage and high genomic repeats lead to assemblies with low recovered 445 

genome fraction and a higher degree of fragmentation, with the assemblies themselves being less 446 

accurate. This pattern was seen across all assemblers used in this study.  447 

 As assembler choice has significant implications for virome composition and the conclusions 448 

which can be drawn from a dataset, assemblers which performed poorly in this study (i.e. low genome 449 

recovery or accuracy and high degree of fragmentation) highlight a potential untapped resource in the 450 

sequence data of previously conducted virome studies. It is highly likely that many viral sequences 451 

were poorly assembled and reanalysis using a more effective assembler may yield new insights. 452 

Design of future virome studies should carefully consider the impact of sequencing depth, as extremes 453 

in read coverage will prevent the assembly and detection of viral genomes at both high and low 454 

abundance. 455 

 456 

Methods 457 

Each assembler with the exception of Geneious and CLC was run as per manual with default 458 

parameters (unless stated) using a Lenovo x3650 M5 server with an intel Xeon processor E5-2690 v3 459 

and 512Gb RAM . Geneious assembly approach mirrored that used in (Manrique, Bolduc et al. 2016) 460 

by generating consensus sequences from the assemblies of both MIRA and Vicuna. CLC and 461 

Geneious were run on a 64-bit windows 10 computer with an i5-4690 CPU and 16 GB of RAM.  462 

Data sources 463 

Sequencing reads from mock communities A and B featured in (Roux, Solonenko et al. 2016), 464 

Simulated Virome dataset featured in (Hesse, van Heusden et al. 2017),  reads used to compare the 465 

impact of sequencing depth on time and RAM usage featured in (Manrique, Bolduc et al. 2016) and 466 
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human viromes spiked with 107 PFU of Lactococcal phage Q33 (Mahony, Martel et al. 2013) and 467 

originated from (Shkoporov, Ryan et al. 2018) . 468 

Read Pre-processing 469 

Raw read quality was assessed with FastQC v0.11.5 and sequencing adapters were removed with 470 

cutadapt v1.9.1 (Martin 2011) for the mock, Spiked and healthy gut virome data sets. Trimming and 471 

filtering was carried out with Trimmomatic v0.36 (Bolger, Lohse et al. 2014)  using parameters 472 

specific to each dataset. A sliding window size of 4 with a minimum Phred score of 30 and a 473 

minimum length of 60bp was used with reads from both mock communities. The leading 15bp and 474 

trailing 60bp were removed from “Healthy human gut phageome” reads and a sliding window of 4bp 475 

with a minimum phred score of 20 was applied. The leading 10bp and trailing 100bp were removed 476 

from the Q33 spiked virome reads and a sliding window size of 4bp with a minimum Phred score of 477 

30. Filtered reads were through a minimum length filter of 60bp. 478 

Analysis methods 479 

Quality filtered reads from the Q33 spiked dataset consisted of 3 individual viromes which were 480 

pooled and subsequently assembled. Contigs were aligned to the published Q33 using Blastn with an 481 

e-value cut-off of 1e-20. Top hit alignments to the Q33 genome with a minimum alignment length of 482 

800 bases and which shared 95% identity were included in further analysis using QUAST (v. 4.4) 483 

(Gurevich, Saveliev et al. 2013) with “--unique mapping” flag. Further comparison and visualisation 484 

of Q33 assemblies was carried out using Mauve (v. 20150226, build 10) (Darling, Mau et al. 2010). 485 

Alignment and comparison of assemblies from mock and simulated data sets to reference 486 

genomes was carried using MetaQUAST (v. 4.4) (Mikheenko, Saveliev et al. 2015) with “--unique 487 

mapping” flag. Correlations were carried out using Spearman method and plots were generated using 488 

the package ggplot2 (v 3.0.0) package in R (v.3.4.3).  These correlations were validated using a linear 489 

model in R base library. For data which was not normally distributed, log transformation was carried 490 

out. 491 
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Reads from the “healthy human gut phageome” were analysed to compare the overall 492 

assembler efficiency and the impact of sequencing depth. Reads were randomly subset in pairs (both 493 

the forward and reverse read of a pair were retained) to different depths using an in-house python 494 

script. Samples were subset in increments of 300,000 reads to their respective maximum depth (2.7, 495 

3.5, 3 and 3.3 million reads). The shell script time script, location /usr/bin/time, was utilised to 496 

measure the maximum RAM and length of time for each assembly to reach completion. All 497 

assemblers were run using 5 threads where possible with the exception of CLC, Geneious, Ray Meta, 498 

Velvet and Vicuna. Ray Meta and Velvet were run with 10, 1 thread(s) respectively. Ray Meta failed 499 

to run with 5 while Velvet ran with 1 core despite 5 being allocated. Vicuna was also allocated 5 500 

threads however used upwards of 20. MetaVelvet was run, but after 7 days had failed to reach 501 

completion and was therefore removed from the subsequent analysis of these metrics. Contig statistics 502 

and filtering (contigs greater than 1kb retained) were performed using the assembly-stats script from 503 

the Pathogen Informatics group at the Wellcome Sanger Institute (https://github.com/sanger-504 

pathogens/assembly-stats).  505 

Figure Legends 506 

Figure 1: Relationship between percentage of each genome recovered (genome fraction), the number 507 

of contigs required for each combination of genome and assembler and the abundance and proportion 508 

of repeats for each genome. (A and B) Genomes are ordered by their average genome fraction across 509 

all assemblers from high to low along the x-axis. (A main) Relative abundance, normalized by 510 

genome length is plotted along y-axis with upper limit of 0.75% and colour of bars determined by 511 

proportion of repeat regions in each genome. Blue bars represent genomes with a high proportion of 512 

genomic repeats (4th quartile of all genomes), red represents all other genomes below this quartile. (A 513 

insert) Expanded view of (A) without an upper limit of y value. (B) Percentage genome recovered is 514 

plotted along the y axis. Points are coloured by assembler with shape of the point is denoting number 515 

of contigs generated by each assembler for each genome.  516 

Figure 2: Number of contigs each assembler recovered to a minimum genome fraction of 90% in a 517 

single contig. 518 
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Figure 3: Mauve output of the Q33 reference genome (top) along with of the six assemblers which 519 

recovered >99% of the genome with a single contig. Assembly regions outside of locally collinear 520 

blocks which do not share homology to the reference genome are highlighted by a black outline. 521 

Reverse complement of assemblies in the opposite orientation to the reference were plotted for 522 

visualisation purposes (VICUNA, CLC, Geneious) 523 

Figure 4: (A) Time, measured in seconds, for each assembly to reach completion successfully for each 524 

read subset,  (B) the maximum RAM, measured in MB, used for each assembly for each read subset, 525 

(C) mean N50 length and (D) mean contig length for 4 samples for each assembly across the read 526 

subsets after filtering contigs less than 1000 bases. Points represent the mean time for the 4 samples 527 

while error bars are the standard error.  528 

Abbreviations/Glossary 529 

The following terms; Genome fraction, N50, number of contigs, misassemblies, local misassemblies,   530 

are defined by QUAST (Mikheenko, Saveliev et al. 2015) 531 

Genome fraction “is the total number of aligned bases in the reference, divided by the genome size. A 532 

base in the reference genome is counted as aligned if there is at least one contig with at least one 533 

alignment to this base. Contigs from repeat regions may map to multiple places, and thus may be 534 

counted multiple times in this quantity.” 535 

N50 “is the contig length such that using longer or equal length contigs produces half (50%) of the 536 

bases of the assembly. Usually there is no value that produces exactly 50%, so the technical definition 537 

is the maximum length x such that using contigs of length at least x accounts for at least 50% of the 538 

total assembly length.” 539 

Number of contigs “is the total number of contigs in the assembly that have size greater than or equal 540 

to 0 bp.” 541 

Misassemblies “is the number of positions in the assembled contigs where the left flanking sequence 542 

aligns over 1 kbp away from the right flanking sequence on the reference (relocation) or they overlap 543 
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on more than 1 kbp (relocation) or flanking sequences align on different strands (inversion) or 544 

different chromosomes (translocation).” 545 

Local misassemblies “A local misassembly has two or more distinct alignments covering the 546 

breakpoint, the gap between left and right flanking sequences is less than 1 kbp and the left and right 547 

flanking sequences both are on the same strand of the same chromosome of the reference genome.” 548 

Data sources 549 

Sequencing reads from mock communities A and B: 550 

http://datacommons.cyverse.org/browse/iplant/home/shared/iVirus/DNA_Viromes_library_compariso551 

n .  552 

Simulated virome reads: 553 

https://figshare.com/articles/Simulated_virome_datasest_for_assembly_and_annotation_tests/515116554 

3 .  555 

Reads used to compare the impact of sequencing depth on time and RAM usage from the NCBI SRA; 556 

http://www.ncbi.nlm.nih.gov/sra under the accession numbers SAMN04415496 to SAMN04415499  557 

Human viromes spiked with 107 PFU of Lactococcal phage Q33 phage  558 

http://www.ncbi.nlm.nih.gov/sra under the accession numbers SRX3240741, SRX3240716, 559 

SRX3240715 560 
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 S. Table 1: Spearman correlation values from the relationships of indel, mismatch and misassembly 741 
counts, recovered genome fraction, abundance and total proportion of genomic repeats within the 742 
Simulated virome. *GF – Recovered genome fraction  743 
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Supplementary Table 2: Linear modelling correlation values comparing recovered genome fraction, 745 

total proportion of genomic repeats and abundance for the Simulated virome. 746 
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Supplementary Table 3: Spearman correlation values from the relationships of inverted, tandem, 748 

palindromic and total repeats, abundance and the number of contigs generated by each assembler for 749 

the Simulated virome. 750 

Additional file 5. (xls) 751 

Supplementary Table 4: (A) Ranking table comparing recovered genome fraction and contig numbers 752 

for assemblers which recovered at least 50% of the total genome fraction. (B) Ranking table of indel, 753 

mismatch and misassembly counts per 100kb, normalised to the number of genomes recovered to at 754 

least 50%.   755 
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Supplementary Table 5: Number of aligned and unaligned contigs generated by each assembler for 757 

Mock Community A. 758 
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Supplementary Table 6: Number of aligned and unaligned contigs generated by each assembler for 760 

Mock Community B. 761 

Additional file 6. Supplementary Figure 1. Analysis of recovered genome fraction and indel/mismatch 762 

counts for Mock communities A and B. Triangles represent N/A values for mismatches and indels 763 
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