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Abstract 
A species of pufferfish builds fascinating circular nests on the sea floor to attract mates. This project 

simulates the nest building behavior in a cellular automaton using the Morphognosis model. The model 

features hierarchical spatial and temporal contexts that output motor responses from sensory inputs. By 

considering the biological neural network of the pufferfish as a black box, decomposing only its external 

behavior, an artificial counterpart can be generated.  In this way a complex biological system producing 

a behavior can be filtered into a system containing only functions that are essential to reproduce the 

behavior. The derived system not only has intrinsic value as an artificial entity but also might help to 

ascertain how the biological system produces the behavior. 

Keywords: Pufferfish nest building, Morphognosis, cellular automaton, artificial neural network, 

computational biology. 

Introduction 
A species of pufferfish creates an astounding circular nest structure on the sea floor near Japan, as 

shown in Figure 1. The nest is built by the male for the purpose of attracting a female for mating. The 

nest contains a central smooth area surrounded by radial furrows and is about 2 meters in diameter. 

The 12 centimeter long pufferfish sculpts the furrows by sweeping sediments with its fins as its travels 

back and forth lengthwise along each furrow. The female lays her eggs in the fine sediments in the 

central area which are then fertilized by the male (Kawase et al., 2013). 
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Figure 1 – Pufferfish (left), and nest (right). 

How does a pufferfish, whose brain contains approximately 10 million neurons, instinctively construct 

such a complex structure? Nature is rife with such interesting animal exploits. Termites build and 

maintain complex nests by coordinating the efforts of a massive number of individuals. Spiders build 

complex webs. Birds construct elaborate nests. Honey bees coordinate foraging through a body 

language signaling system. These organisms are all related to humans to some degree. Considering 

nature’s propensity for extending and repurposing capabilities, unlocking the secrets of animal 

intelligence is a worthy step toward understanding the underpinnings of human intelligence. 

Evolution is a trial-and-error tinkerer that makes extremely complex life forms. Even the well-known tiny 

nematode worm, C. elegans, with only approximately 1000 cells, 302 of which are neurons, remains a 

daunting subject for researchers. On an even smaller scale, geneticists are beginning to entertain the 

notion that most traits are the result of contributions from a great deal of the genome (Boyle et al., 

2017). 

One proposal to extract essential information from nature’s witch’s brew of complexity is the “radical 

reimplementation” approach (Lehman and Stanley, 2014). The idea is to discover general principles by 

intentionally diverging from nature in features that might be incidental or artefactual. If the core 

behavior is preserved after diverging, then the reimplemented features can be excluded from general 

principles. As an example, consider the case for discovering principles of flight from examination of bird 

wings. In the biological implementation, flapping wings are universal; yet in the artificial realm, fixed 

wings are the norm. It is the aerodynamics of wings that is common to both. 

In simpler creatures reverse engineering is sometimes feasible. For example, the navigation skills of 

honey bees are of value to drone technology. Fortunately, it appears that the modular nature of the 

honey bee brain can be leveraged to replicate this skill (Nott, 2018). 

Another approach is to consider a biological system as a black box and decompose its behavior into 

components that model the behavior in an artificial implementation. The expectation is that the artificial 
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system will be less complex than the biological one, capturing only what is essential to recreate the 

behavior, and possibly more amenable to analysis. For artificial intelligence, which is more concerned 

with function over form, this can be an end in itself. Yet even for biologists, the artificial system may 

offer hints as to how the biological system performs. 

An example of this approach addresses a need to distinguish mutant strains of C. elegans nematode 

worms based on movement variations (Li et al., 2017). An artificial neural network (ANN) was trained to 

closely emulate recorded worm trajectories. Although the network was not directly trained to perform 

classification, neuron responses within the network were found to perform well as mutant strain 

classifiers. 

This project simulates pufferfish nest building behavior in a cellular automaton using the Morphognosis 

model. The model features hierarchical spatial and temporal contexts that output motor responses from 

sensory inputs. Through a black box decomposition of nest building behavior into space-time rules, an 

artificial pufferfish is embodied an ANN. This process is depicted in Figure 2. 

 

Figure 2 – Behavior decomposition and artificial neural network reconstitution. 

Description 

Morphognosis 
The brain, a complex structure resulting from millions of years of evolution, can be viewed as a solution 

to problems posed by an environment existing in space and time. Internal spatial and temporal 

representations allow an organism to navigate and manipulate the environment. Neurological research 

has confirmed that animals have specific structures that process spatial and temporal information 

(Hainmüller and Bartos, 2018; Lieff, 2015; Vorhees and Williams, 2014). 

These concepts are embodied in a model called Morphognosis (morpho = shape and gnosis = 

knowledge). In addition to a number of early prototype tasks (Portegys, 2017), Morphognosis has also 

modeled the locomotion and foraging of the C. elegans nematode worm (Portegys, 2018).  

The basic structure of Morphognosis is a pyramid of event recordings called a morphognostic. At the 

apex of the pyramid are the most recent and nearby events. Receding from the apex are less recent and 
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possibly more distant events. A morphognostic can thus be viewed as a structure of progressively larger 

nested chunks of space-time knowledge that form a hierarchy of contexts. Scaling is accomplished by 

aggregating event information. This means that more recent and nearby events are recorded in greater 

precision than events more distant in space and time. A set of morphognostics forms long-term 

memories that are learned by exposure to the environment. A morphognostic associated with an action 

constitutes a rule called a metamorph. 

Building an internal spatial and temporal model of the environment allows an organism to navigate and 

manipulate the environment. Its basic structure is a pyramid of event recordings called a morphognostic, 

as shown in Figure 3. At the apex of the pyramid are the most recent and nearby events. Receding from 

the apex are less recent and possibly more distant events. Figure 4 is an example of a morphognostic 

implemented in a cellular automaton as a nested set of 3x3 neighborhoods and aggregated histograms 

of cell state densities. 

 

Figure 3 – Morphognostic event pyramid 

 

 

Figure 4 – Cellular automaton implementation of Morphognosis. 
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Pufferfish nest building 
The pufferfish constructs its nest by first smoothing out a central area through the action of its fins. It 

then typically creates 28 radial furrows or spokes emanating from the central area by moving back and 

forth along them. A furrow has a set of dips and rises, produced by the pufferfish lingering in specific 

portions of the furrow while its fins disperse sediments outward. The result is shown in Figure 1. 

 A cellular automaton (CA) (Toffoli and Margolus, 1987) is used as a platform for the nest building. A CA 

is a grid of cells that contain state values. CAs are ideal for investigating systems that have parallel local 

production rules that output actions as a function of local cell states. For the pufferfish project, cells 

contain a surface elevation value. The surface is given a random initial set of elevations to simulate sea 

floor irregularities. 

The pufferfish occupies a single cell and has an orientation of north, south, east and west. It can sense 

the elevations of three cells in front of it: left, center, and right. It can also sense its previous response. A 

set of sensor values constitutes an event. These are its responses: wait, forward, turn left, turn right, 

smooth sensed surface cells, raise and lower surface at current location. 

The metamorph production rules are generated by recording the activity of an “autopilot” pufferfish. 

The autopilot performs a simple reenactment of the natural pufferfish’s nest building activity: smooth 

the central area, then sequentially create the radial furrows by raising and lowering the surface 

appropriately. The software allows a number of parameterized variations, including the size of the 

central area and the number and length of the furrows. As the autopilot proceeds, 

morphognostic/response pairs are encoded into metamorphs. Once the nest is built, the environment is 

reset and the pufferfish runs entirely on its metamorph productions. 

For successful nest building, the Morphognosis parameters are set to: 

NUM_NEIGHBORHOODS=4 

NEIGHBORHOOD_INITIAL_DIMENSION=3 

NEIGHBORHOOD_DIMENSION_STRIDE=0 

NEIGHBORHOOD_DIMENSION_MULTIPLIER=3 

EPOCH_INTERVAL_STRIDE=1 

EPOCH_INTERVAL_MULTIPLIER=3 

This means that spatially there are 4 nested neighborhoods that span cell extents of 3x3, 9x9, 27x27, 

and 81x81. Temporally, the neighborhoods contain event information of 0/1, 1/3, 4/9, and 13/27, where 

each pair is an epoch/duration. So for example, the second neighborhood contain event information 

within a 9x9 set of cells that occurred between times 1 and 3. 

A neural network can be trained from the metamorphs by flattening them into a dataset of sensory 

features association with a response. The neural network compresses the production rules for faster 

execution. It also can be used to generalize: a number of cell surface elevation variations can be trained 

together that allows the nest to be built regardless of initial surface elevation configurations. 
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A manual control of the pufferfish is also provided. This allow a user to acquire a set of metamorphs that 

capture an arbitrary sequence of events. 

As shown in Figure 5, a dashboard allows a user to observe the sensors and response of the simulated 

pufferfish, select the driver: autopilot, metamorph ruleset, or manual, and display the current 

morphognostic. 

 

Figure 5 – Pufferfish dashboard. 

The Java code is available at: https://github.com/morphognosis/Pufferfish. The software is prebuilt and 

requires only unpacking and a single click to run. 

Results 
Using the procedure described above, the pufferfish is capable of building nests of various sizes and 

shapes. Figure 6 shows such a nest on a 21x21 grid. There are 28 radial furrows which overlap due to the 

cellular grid, and each furrow replicates the down-up-down-up elevation sculpting of the sediments that 

exists in the actual nest. To build the nest, 903 metamorph rules were acquired. 
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Figure 6 – Constructed nest with pufferfish in center. 

A nest building video is available at: https://www.youtube.com/watch?v=xOAtLROZma4 

The H2Oai machine learning toolkit (https://www.h2o.ai) was used to train a deep learning neural 

network that successfully learns nest building activity. A typical network has two hidden layers of 200 

neurons with a rectified linear activation function. 500 epochs was typically sufficient. In the sample 

statistics shown in Figure 7, a training dataset of 5 runs under random initial elevation configurations 

and a test dataset with a different elevation configuration were used.  Shown are a graph of training and 

test errors approaching 0 over time and the test validation confusion matrix. 
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Figure 7 – Deep learning neural network statistics 

Conclusion 
Building on the replication of C. elegans locomotion and foraging, the pufferfish nest building task 

represented a further challenge for the Morphognosis model. The result is set of metamorph rules and 

trained ANN that accomplish the task. 

In summary, Morphognosis features: 

1. A method for integrating knowledge of events occurring in space and time dimensions in scalable 

complexity. 

2. Nested hierarchies of contexts that provide global-to-local mediating influences.  

3. A means of expressing the behavioral interplay of responses and sensory events. 

Positive results on the nest building task prompts future investigation. Possible next tasks include: 

• Web building. Can a space-time memories of building one or more training webs allow one to be 

built in a quasi-novel environment? 

• Food foraging social signaling. Bees retain memories of foraging food sources that they 

communicate to other bees through instinctive dancing. Can this task be cast into the model? 
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