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Abstract 8 

The regular firing pattern exhibited by medial entorhinal (mEC) grid cells of locomoting rodents is 9 

hypothesized to provide spatial metric information relevant for navigation. The development of virtual reality 10 

(VR) for head-fixed mice confers a number of experimental advantages and has become increasingly popular 11 

as a method for investigating spatially-selective cells. Recent experiments using 1D VR linear tracks have 12 

shown that some mEC cells have multiple fields in virtual space, analogous to grid cells on real linear tracks. 13 

We recorded from the mEC as mice traversed virtual tracks featuring regularly spaced repetitive cues and 14 

identified a population of cells with multiple firing fields, resembling the regular firing of grid cells. However, 15 

further analyses indicated that many of these were not, in fact, grid cells because: 1) When recorded in the 16 

open field they did not display discrete firing fields with six-fold symmetry; 2) In different VR environments 17 

their firing fields were found to match the spatial frequency of repetitive environmental cues. In contrast, cells 18 

identified as grid cells based on their open field firing patterns did not exhibit cue locking. In light of these 19 

results we highlight the importance of controlling the periodicity of the visual cues in VR and the necessity of 20 

identifying grid cells from real open field environments in order to correctly characterise spatially modulated 21 

neurons in VR experiments. 22 
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 2 

Introduction 23 

Since their discovery, the striking regularity of grid cell firing patterns has been proposed to play a role in 24 

encoding travelled distances and are widely held to be a core component of a circuit necessary for the 25 

integration of self-motion cues – ‘path integration’ (Burak and Fiete, 2009; Burgess, 2008; Hafting et al., 2005; 26 

McNaughton et al., 2006; Winter et al., 2015). Equally, the influence of the sensory environment on grid cell 27 

firing is also well established. In rodents, manipulations made to familiar spatial cues result in commensurate 28 

changes to grid-patterns (Hafting et al., 2005; Barry et al., 2007; Stensola et al., 2012), in geometrically 29 

polarised environments firing is distorted (Krupic et al., 2015; Stensola et al., 2015; Krupic et al., 2018), and in 30 

darkness their spatially periodic activity can break down completely (Chen et al., 2016; Pérez-Escobar et al., 31 

2016).  32 

Hence, it appears that while grid cell activity is shaped by self-motion information (Winter et al., 2015), 33 

sensory access to landmarks is necessary to maintain stable spatial firing (Campbell et al., 2018; Hardcastle et 34 

al., 2015; Muessig et al., 2015). Further, the relative efficacy of these two sources of information (‘self-motion’ 35 

vs ‘landmark’) appears to change dynamically with experience. For example, when rats first explored a pair of 36 

visually identical enclosures connected by a corridor, grid cell firing in the enclosures was highly similar, 37 

suggesting a dominance of landmark-based information. However, with prolonged experience, grid-patterns 38 

disambiguated the two sides, forming a single global representation of the space, consistent with increasing 39 

emphasis being placed on self-motion cues (Carpenter et al., 2015). Similarly, computational work has also 40 

highlighted the necessity of landmark information as a means to reset accumulated errors in path integration 41 

networks (Banino et al., 2018; Burgess and Burgess, 2014). However, the mechanisms by which this reset 42 

occurs and by which the relative importance of different information sources can be modulated remains 43 

unclear.  44 

Rodent virtual reality (VR) provides a powerful and increasingly popular experimental tool capable of 45 

manipulating the characteristics of an animal’s environment, thus offering an ideal means to address such 46 

issues (Thurley and Ayaz, 2017). Indeed, a number of studies have examined the responses of neurons 47 

recorded from the entorhinal and hippocampal networks in both 1D (Harvey et al., 2009; Dombeck et al., 2010; 48 

Domnisoru et al., 2013; Schmidt-Hieber and Häusser, 2013; Campbell et al., 2018) and 2D (Aronov and Tank, 49 

2014; Chen et al., 2018). However, many cell types in these brain regions (e.g. grid cells, boundary vector cells 50 

and, to a certain extent, place cells) are typically identified from their open field firing patterns recorded during 51 

real environment foraging tasks. As such, it can be challenging to positively identify a neuron recorded solely 52 

from a 1D VR recording. 53 

 Therefore, to better understand how landmark and path integration information interact we 54 

recorded mEC grid cells as head-fixed mice ran through three distinct 1D VR environments, each consisting of 55 
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different sets of regularly repetitive spatial cues. Our rationale was to explore the effects of repetitive spatial 56 

cues on grid and non-grid cell activity. Subsequently cells were classified as grid or non-grid cells based on 57 

their activity recorded during foraging in real 2D environments. In the case of grid cells, we found no evidence 58 

that grid-patterns were reset to a constant phase by each cue occurrence, thus pointing to a strong influence 59 

of path integration cues. However, we identified a population of non-grid neurons that did exhibit pronounced 60 

cue-locking, firing with a constant spatial relationship to each cue occurrence. In the repetitive environments 61 

used here, these cells appeared to have strongly periodic spatial firing and were erroneously categorised as 62 

grid cells by a measure previously used to identify grid cells under such circumstances (Domnisoru et al., 2013). 63 

We highlight the importance that 2D recordings play in the positive identification of spatial cell types that, like 64 

grid cells, are defined by their functional properties. Moreover, the presence of a class of neurons in mEC 65 

responding solely to visual landmark cues is novel and raises several questions regarding their contribution to 66 

the cognitive spatial network which we aim to answer with future experiments. 67 
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Results 68 

In total, 690 unique superficial mEC neurons were recorded from 4 male C57BL/6 mice during the 69 

course of 12 experimental sessions. At the end of each recording session tetrodes were advanced by a 70 

minimum of 50m to avoid sampling of the same cells. Post-hoc examination of histology confirmed tetrode 71 

track location in superficial layers of left mEC. 72 

In each session, mice initially foraged in a real world (RW) 2D environment for randomly thrown drops 73 

of soya milk (SMA, Wysoy), and after a minimum break of 10 minutes were head-fixed and left in darkness for 74 

about 5 minutes before a virtual reality (VR) session commenced (Supp. Fig 6).  75 

In each session, animals ran in three different 1D VR environments (A, B, and C), performing traversals 76 

for liquid reward delivered at a fixed goal location near the end of the track before being teleported back to 77 

the start of the track. Each environment was comprised of repeated segments containing a number of visual 78 

cues (Supp. Fig 2). Trials in each environment were a minimum of 20 minutes duration.  79 

In total 15 grid cells from 2 animals were identified based on spatial firing in the RW open field 80 

(gridness score vs. 95th percentile of a shuffled distribution, mean grid score of identified cells = 0.58 ± 0.07, 81 

see Methods). Visual inspection confirmed that on the VR linear tracks these grid cells exhibited multiple 82 

spatially localised firing fields (Figure 1A) having similar firing rates between VR and RW (mean firing rate: 83 

RW = 1.3 ± 0.2 Hz, VR = 1.1 ± 0.4 Hz, Wilcoxon signed ranked test: P = 0.07; peak firing rate: RW = 5.4 ± 1.6 Hz, 84 

VR = 4.7 ± 1.5 Hz, Wilcoxon signed ranked test: P = 0.08) but reduced stability in VR compared to RW (first vs 85 

second half correlation: RW = 0.48 ± 0.05, VR = 0.07 ± 0.03, Wilcoxon signed ranked test: P = 0.0005).  86 

Surprisingly, based on their activity in VR, relatively few of these cells were positively identified as grid 87 

cells. Specifically, using a method for grid cell categorisation developed for VR environments less repetitive 88 

than the ones used here (Domnisoru et al., 2013),  in environment A, 2 of 15 cells were correctly classified as 89 

grid cells, in B  5 out of 15, and in C 3 of 15. These proportions which were not dissimilar to that of the whole 90 

ensemble of mEC cells: A = 106/690, binomial test: P = 0.99, B = 145/690, binomial test: P = 0.17, C = 108/690: 91 

binomial test: P = 0.45. Equally, the same criteria classified 74 of the 690 (10.7%) mEC neurons as grid cells 92 

based on their 1D VR activity, only 2 of which were also classified as grid cells based on their RW open field 93 

activity (gridness > 95th of shuffle) (Figure 1B; grid score = -0.11 ± 0.03, stability = 0.17 ± 0.03, spatial 94 

information = 0.34 ± 0.05). Taken together, these numbers highlight the difficulty – and in particular high false 95 

positive rate – inherent in the identification of grid cell firing from 1D spatial data.  96 

Next, we examined the extent to which grid cell activity was modulated by proximity to landmark cues 97 

in the VR. For each cell we calculated the mean spatial autocorrelogram (SAC) across trials in each VR 98 

environment and then detected the dominant spatial frequency - the highest peak in the 20-180 cm range 99 

(Figure 1C). The number of grid cells exhibiting ‘cue-locking’ in the VR environments – having a dominant 100 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 24, 2018. ; https://doi.org/10.1101/477620doi: bioRxiv preprint 

https://doi.org/10.1101/477620
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 5 

spatial frequency matching that of the cues (see Methods) - was no greater than expected by chance (Figure 101 

1D; A = 3/15, binomial test: P = 0.41; B = 1/15, binomial test: P = 0.14; C = 2/15, binomial test: P = 0.38). Indeed, 102 

11 grid cells were not cue-locked in any of the VR environment, 2 were cue-locked in a single environment and 103 

2 were cue-locked in 2 environments, with none of the grid cells being cue-locked in all three environments. 104 

Thus, grid cells – identified from the open field – showed no obvious tendency to be reset or modulated by 105 

the repetitive visual cues. 106 

 107 

 108 

Figure 1. Spatially periodic activity in real (RW) and virtual (VR) environments, a subset of non-grid mEC cells 109 
show cue-locking in VR environments.  110 

A, Spatial activity from two example grid cells – identified based on RW recordings (right) – in each of the three 111 
VR environment (left). Repeating cues are indicated as coloured bars in the background of the VR plots. Cells 112 
are colour coded such that the title on RW ratemaps matches line colour on the VR plots. B, Similar to A, spatial 113 
activity from two cells which were (incorrectly) classified as grids cells based on VR activity (left) but not based 114 
on RW open field activity (right). Despite the regularity of their firing patterns in VR, these cells showed no 115 
clear grid-like firing in RW and only limited spatial responses. C, Cue-locking in grid cells (n=15, identified from 116 
RW) was investigated using spatial auto-correlograms (SACs). Plots show mean (black line) ± SEM (light green 117 
shade area) SACs across cells (left y-axis). Note the lack of periodicity corresponding to the frequency of cues 118 
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in the VR environments (indicated by grey and orange bands). The overlaid color-coded dots represent the 119 
dominant spatial frequency in the 20-180cm range detected from the SAC of each grid cell – the distribution 120 
of these points is indicated by the red line (right y-axis). D, Proportion of grid cells exhibiting cue-locking 121 
(yellow) and no cue-locking (blue) in each VR environment (left) and proportion showing cue-locking in 122 
multiple VR environments (right).   123 

Next, we examined the spatial activity of all non-grid mEC neurons in VR (n = 675). To classify these 124 

neurons we developed a method analogous to a 1D version of the widely used gridness metric derived from 125 

the mean SAC (Sargolini et al., 2006). Briefly, cells with a maximum peak in the mean SAC exceeding the 95th 126 

percentile of single-cell shuffled distribution in at least two of the three VR environments were considered to 127 

exhibit significant spatially periodic activity. Our analysis detected 56 such cells, significantly more than 128 

expected by chance (chance = 5/675, binomial test, P < 0.0001). Inspection of the 1D ratemaps of these cells 129 

revealed pronounced and regular modulation of their spatial activity across VR environments, whereas their 130 

firing patterns in RW indicated that these neurons were unlikely to be un-detected grid cells (Figure 2, Supp. 131 

Fig. 3).  132 

Examination of their spatial firing in RW open field showed that these cells exhibited weakly spatial 133 

activity (0.22 ± 0.04 bits/spike) and no evidence of six-fold symmetry (0/56 cells exhibited significant grid 134 

scores vs. 95th percentile of a shuffled distribution, grid score = -0.13 ± 0.03, spatial stability = 0.14 ± 0.03, 135 

Figure 2, ). However, a large portion of these cells (27/56 = 47%) passed criteria for grid cell inclusion based 136 

on previously used methods to detect grid cells on 1D VR linear tracks (Domnisoru et al., 2013). 137 
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 138 

 139 

 140 

Figure 2 A sub-population of non-grid cells exhibit pronounced spatial periodicity in 1D VR environments 141 

Examples of co-recorded non-grid periodic cells from 2 animals (A, 10 cells from mouse m3504: B, 5 cells from 142 
mouse 3193) shown as ratemaps in both VR (top row) and RW (bottom rows). In VR, the firing rate of cells is 143 
plotted against position in each environment (A-C) with the periodicity of repeating cues indicated in the 144 
background (grey and pink). In RW the ratemaps of the same color-coded cells in VR are shown together with 145 
mean and peak firing rate, grid score, stability, and spatial information. Despite the regularity of the firing 146 
pattern patterns in VR, these cells neither showed clear grid-like firing pattern nor spatial firing of any kind in 147 
RW. 148 

 149 

To better characterize the nature of these non-grid periodic cells we focused on the relationship 150 

between the visual cues in VR and their regular firing patterns. We observed that within each VR environment 151 

the mean SAC was remarkably alike across cells, having a similar spatial frequency (Figure 3). However, the 152 
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periodicity of their activity differed between environments, and in most cases coincided with the underlying 153 

spatial frequency of the repetitive cues in those environments (Figure 3A). To quantify this observation, we 154 

repeated the analysis conducted to identify modulation of grid cells by visual cues - detecting the spatial 155 

frequency of each cell from the peak in the mean SAC and comparing that with the spatial frequency of cues 156 

in each environment (Figure 3B)– finding that these cells were strongly ‘cue-locked’ (proportion cue-locked 157 

cells: environment A = 28/56, binomial test: P < 0.0001; B = 34/56, P = < 0.0001; C = 43/56, P < 0.0001). 158 

Moreover, only 7/56 of the periodic cells were not cue-locked in at least one of the three environments, with 159 

16/56 being cue-locked in 1 environment, 27/56 in 2 environments and 6/56 in all 3 environments (Figure 3C).  160 

  161 

Figure 3 Spatial frequency of the periodic non-grid cells 162 

Within VR environments, periodic non-grid cells exhibited regular firing at the same spatial frequency as the 163 
underlying repetitive visual cues, unlike grid cells which showed weaker spatial periodicity of varying 164 
frequencies. A, SAC of all non-grid periodic cells across VR environments. Note the clear peaks centred on the 165 
spatial frequency of the repeating cues of each environment (grey block). B, Mean (black line) ± S.E.M. (light 166 
green shaded area) of the SAC (left y-axis) across cells within each environment showing clear coincidence 167 
with the frequency of the repetitive cues (grey block). Coloured dots indicate the dominant spatial frequency 168 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 24, 2018. ; https://doi.org/10.1101/477620doi: bioRxiv preprint 

https://doi.org/10.1101/477620
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 9 

of each cell (colour matches lines in A) and were used to compute the kernel density estimate (red line, right 169 
y-axis). C, Histograms showing (left) percentages of non-cue locked (blue) and cue-locked (yellow) periodic 170 
cells within each VR environment. Right, Histograms showing percentages of periodic cells exhibiting cue 171 
locking in multiple environments. Most cells (>85 %) displayed cue-locking in at least one VR environments. 172 

 173 

Together, these results suggest that the regular firing pattern exhibited by these periodic cells was 174 

strongly modulated by the repeating visual cues rather than reflecting an internally-generated path integration 175 

signal like the one hypothesized for grid cells. In support of this notion, the proportion of periodic cells 176 

exhibiting cue-locking was significantly higher than the proportion of cue locked grid cells in environments B 177 

and C (χ2 = 10.62, P = 0.0011; χ2 = 20.5, P < 0.0001) though not A (χ2 = 3.71, P = 0.054). 178 

 179 

Having identified a subset of non-grid cells exhibiting strong cue modulation, we next examined how 180 

their spatial responses were distributed relative to visual cues. Since the VR environments were composed of 181 

repeating linear segments, we calculated for each cell its mean rate map over the repeating unit. Visualised in 182 

this way it was clear that the spatial periodic firing of different cue locked cells had variable phases relative to 183 

the visual cues (Figure 4A). Moreover, when rate maps were sorted according to the location of their peak 184 

activity it was apparent that there was no strong tendency for firing to cluster at specific phases of the 185 

repeated segments (Figure 4B; Rayleigh test for peak density: VR environment A: P = 0.99, B: P = 0.99, C: P = 186 

0.88). Finally, we examined if the relative phases at which non-periodic cells were active was conserved across 187 

environments. To test this, we focused on environments A and B which had the simplest patterns of repetitive 188 

visual cues, and cross-correlated the stacked rate maps from both environments sorted by peak location in A 189 

(Figure 4C).  The resulting cross-correlation exhibited a single predominant peak (r = 0.25) which exceeded the 190 

values obtained by randomly shuffling the order of the cells before cross-correlating (n shuffles = 1000, peak 191 

from shuffle r = 0.014 ± 0.002, one-sample t-test, t999 = -101.1, P < 0.0001). Taken together these results 192 

indicate that although non-grid periodic cells are strongly modulated by environmental cues there is a 193 
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tendency for the relative phase at which cells fire to be preserved across environments.194 

  195 

 196 

Figure 4 Non-grid periodic cells were strongly modulated by the frequency of the repetitive segments in 197 
each VR but were not clustered at specific phases within each segment. A, Rate maps for each color-coded 198 
cell across VR environments showing mean firing rate as function of location within the repeating segment. 199 
Note the differences in the peak firing rate and location of the spatial tuning curves across cells. B, Ratemaps 200 
of all cue-locked cells sorted according to location of peak firing. For comparison across environments location 201 
within each repeated segment has been converted to a phase (radians). Note the sequence of firing within 202 
each environment with no strong preference for any particular phase. C, Ratemaps from environments A (Left) 203 
and B* (Middle) sorted according to the order of their peaks in A. (Right) Cross-correlation between A and B* 204 
shows a significant peak (vs 1000 shuffles, purple line also indicates shuffle confidence interval), suggesting a 205 
tendency for the relative phase of ratemaps to be preserved between environment A and B.  206 
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Discussion 207 

The core finding presented here is the report of a distinct population of non-grid neurons in rodent mEC 208 

characterised by robust modulation of their firing rate by visual cues presented in linear VR environments – 209 

‘cue-locked’ cells. Indeed, despite the fact that the visual features differed substantially, the majority of 210 

neurons not only exhibited strong cue locking in multiple environments but also showed a marked tendency 211 

to preserve the relative sequence of their firing fields.  212 

 213 

 The observation of these cells leads to two main considerations, one with respect to how experiments are 214 

conducted in VR and one on the nature of these cells. As previously mentioned, VR has become an increasingly 215 

popular tool used to study spatial cognition and its neural basis (Chen et al., 2013; Dombeck et al., 2010; 216 

Domnisoru et al., 2013; Harvey et al., 2009; Campbell et al., 2018; Thurley and Ayaz, 2017). In particular, 217 

several studies of head-fixed mice on VR linear tracks have considered mEC neurons with multiple similarly 218 

sized firing fields to be  analogous to grid cells (Campbell et al., 2018; Domnisoru et al., 2013; Schmidt-Hieber 219 

and Häusser, 2014). Clearly in linear VR environments without regularly repeating elements cue-locked cells 220 

would be expected to generate fewer repetitive fields. Nevertheless, our observation that these cells retain 221 

their firing characteristics across environments suggests they would be expected to form multiple fields under 222 

many conditions - leading them to be identified as grid cells. Importantly, these findings do not contradict 223 

conclusions drawn from previous VR grid cell studies. Indeed, many publications using 1D VR grid cell 224 

recordings relied on 2D RW environments for grid cell classification (Campbell et al., 2018; Domnisoru et al., 225 

2013). Moreover, although the 1D VR environments used by Domnisoru et al., 2013 incorporated regularly 226 

repeating cues these were constrained to sub-sections of the track. Under such circumstances it is unlikely 227 

that cue-locking cells would be confounded with grid cells. Never-the-less, it still appears that the most reliable 228 

means of detecting grid cells is via their characteristic six-fold symmetric firing pattern visualised in a 2D 229 

environment either real or virtual (Chen et al., 2018; Hafting et al., 2005), though even then the expected false 230 

positive error rate is non-negligible (Barry and Burgess, 2017). 231 

  232 

In this study, VR environments consisted of long linear tracks (10m) composed of repetitive cues distributed 233 

at differing frequencies (67, 100 and 133 cm) . As a consequence, the spatial activity of cue-locked cells was 234 

remarkably regular (Figure 3, Supp. Fig 4-5), allowing them to be identified by the strength of their periodicity. 235 

Conversely, although we observed that mEC grid cells – identified from open field trials – exhibited multiple 236 

firing fields in VR, we found no evidence for cue-locking, corroborating the widely held view that grid cells are 237 

strongly modulated by self-motion information (Burgess, 2008; Campbell et al., 2018; Carpenter et al., 2015; 238 

Hafting et al., 2005; Winter et al., 2015). In contrast, we found a population of cells showing stable regular 239 
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firing pattern during VR navigation in register with the available spatial cues. Superficially the visual pattern of 240 

the simplest environment (A) resembles drifting sine gratings. However, sensory-motor feedback between the 241 

animal’s movement and the visual scene coupled with the spatial perspective and optic flow provided by other 242 

textures, suggests that the cells were responding in the context of VR navigation. In light of these 243 

considerations, we propose that the striking regular firing pattern exhibited by these cells was predominantly 244 

related to visual cues, and hence we consider them to be “cue-locked”. We note that these cells’ spatial fields 245 

were not limited to the immediate proximity of cues but spread across the range of possible phases within 246 

each repeated environmental segment (Figure 4, Supp. Fig 4-5) in a way that resembled the sequential firing 247 

of an ensemble of grid cells from the same module (Barry et al., 2007; Stensola et al., 2012; Yoon et al., 2016). 248 

Interestingly, our results suggest that such sequential firing pattern was conserved at least between two VR 249 

environments (A and B, Figure 4), suggesting that cue-locking cells may encode relative distances from the 250 

cues. 251 

 252 

What might be the identity of the cue-locked cells? One possible interpretation is that these neurons are 253 

boundary vector cells (BVCs) (Barry et al., 2006; Hartley et al., 2000; Lever et al., 2009) or border cells (Solstad 254 

et al., 2008) responding to visual cues that are perceived as a boundary. However, the lack of clear spatial 255 

modulation in the open field trials renders this unlikely as BVC firing fields in the open field are typically 256 

expected to be unitary and elongated – a simple function of the animals allocentric location relative to 257 

environmental boundaries (Hartley et al., 2000; Lever et al., 2009).  Without further evidence it is hard to draw 258 

solid conclusions. Still it seems plausible that these cells respond to visual features of intermediate complexity 259 

and may likely be modulated by the egocentric location of the cue relative to the animal. Although open field 260 

recording enclosures often include only a small number of controlled cues like a cue card, it is likely they also 261 

include a large number of uncontrolled cues which are unintentionally present. Due to their nature it is 262 

necessarily hard to quantify the prevalence and efficacy of such uncontrolled cues. These considerations 263 

would account for their relatively simple firing characteristics in the VR  in which sensory information is well 264 

controlled and behavioral confounds are reduced in contrast to a more complex activity during open field 265 

foraging.   266 

 267 

Therefore, it falls to future work to further characterise the activity of these cells and the factors they respond 268 

to. On one hand it is obvious that the highly simplified and well controlled environments provided by VR have 269 

a role in this endeavour but equally less constrained open field recordings combined with careful behavioural 270 

tracking will also be important. 271 
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