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Abstract 
 
Brain imaging with diffusion-weighted MRI (dMRI) is sensitive to microstructural white matter 
changes associated with brain aging and neurodegeneration. In its third phase, the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI3) is collecting data across multiple sites and scanners using different 
dMRI acquisition protocols, to better understand disease effects. It is vital to understand when data can 
be pooled across scanners, and how the choice of dMRI protocol affects the sensitivity of extracted 
measures to differences in clinical impairment. Here, we analyzed ADNI3 data from 317 participants 
(mean age: 75.4±7.9 years; 143 men/174 women), who were each scanned at one of 47 sites with one 
of six dMRI protocols using scanners from three different manufacturers. We computed four standard 
diffusion tensor imaging (DTI) indices including fractional anisotropy (FADTI) and mean, radial, and 
axial diffusivity, and one FA index based on the tensor distribution function (FATDF), in 24 bilaterally 
averaged white matter regions of interest. We found that protocol differences significantly affected 
dMRI indices, in particular FADTI. We ranked the diffusion indices for their strength of association with 
four clinical assessments. In addition to diagnosis, we evaluated cognitive impairment as indexed by 
three commonly used screening tools for detecting dementia and Alzheimer’s disease: the Alzheimer’s 
Disease Assessment Scale (ADAS-cog), the Mini-Mental State Examination (MMSE), and the Clinical 
Dementia Rating scale sum-of-boxes (CDR-sob). Using a nested random-effects model to account for 
protocol and site, we found that across all dMRI indices and clinical measures, the hippocampal-
cingulum and fornix (crus) / stria terminalis regions most consistently showed strong associations with 
clinical impairment. Overall, the greatest effect sizes were detected in the hippocampal-cingulum and 
uncinate fasciculus for associations between axial or mean diffusivity and CDR-sob. FATDF detected 
robust widespread associations with clinical measures, while FADTI was the weakest of the five indices 
for detecting associations. Ultimately, we were able to successfully pool dMRI data from multiple 
acquisition protocols from ADNI3 and detect consistent and robust associations with clinical 
impairment and age.  
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1 Introduction 
 
Alzheimer’s disease (AD) is the most common type of dementia, affecting approximately 10% of the 
population over age 65 (Alzheimer’s Association, 2018). As life expectancy increases, there is an ever-
increasing need for sensitive biomarkers of AD - to better understand the disease, and to serve as 
surrogate markers of disease burden for use in treatment and prevention trials. The Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) is an ongoing large-scale, multi-center, longitudinal study designed to 
improve methods for clinical trials by identifying brain imaging, clinical, cognitive, and molecular 
biomarkers of AD and aging. Now in its third phase (ADNI3), ADNI continues to incorporate newer 
technologies as they become established (Jack et al., 2015); data from ADNI, collected at participating 
sites across the U.S. and Canada, is publicly available and has been used in a diverse range of 
publications (Veitch et al., 2018). 
 
ADNI’s second phase (ADNI2) introduced, to the initiative, the use of diffusion-weighted MRI (dMRI) 
as an additional approach for tracking AD progression (Jack et al., 2015). dMRI has since been used in 
numerous studies to understand the effects of AD on white matter (WM) microstructure and brain 
connectivity (Daianu et al., 2013a,b; Nir et al., 2013; Prasad et al., 2013). Some of these approaches 
assess dMRI indices in normal appearing WM (Giulietti et al., 2018), while others use tractography 
and graph-theoretic analysis to study abnormalities in structural brain networks (Nir et al., 2015; Hu et 
al., 2016; Maggipinto et al., 2017; Sulaimany et al., 2017; Powell et al., 2018; Sanchez-Rodriguez et 
al., 2018). In aggregate, these studies point to WM abnormalities in AD, which may play a key role in 
early pathogenesis and diagnosis (Sachdev et al., 2013). 
 
ADNI2 acquired dMRI data with one acquisition protocol from approximately one third of enrolled 
participants at the subset of ADNI sites that used 3 tesla General Electric (GE) scanners. To ensure that 
dMRI could be collected from all enrolled participants, ADNI3 developed new dMRI protocols for all 
GE, Siemens and Philips scanners used across ADNI sites. Now, data is being acquired with seven 
different dMRI acquisition protocols (see methods for details; 
http://adni.loni.usc.edu/methods/documents/mri-protocols/). ADNI3 began in October 2016, and has 
already acquired data from over 300 participants. dMRI spatial resolution was improved between 
ADNI2 and ADNI3 by reducing the voxel size from 2.7x2.7x2.7 mm to 2.0x2.0x2.0 mm. While voxel 
size (i.e., spatial resolution) remains consistent across all seven ADNI3 protocols, angular resolution 
(the number of gradient directions) varies across protocols to accommodate scanner restrictions and to 
ensure that the multi-modal scanning session is completed in under 60 minutes. Although many large-
scale multi-site DTI studies have obtained consistent results even when acquisition protocols across 
sites are not harmonized in advance (Jahanshad et al., 2013; Kochunov et al., 2014; Acheson et al., 
2017; Kelly et al., 2018), differences in dMRI acquisition parameters, including vendor, voxel size, and 
angular resolution, are known to affect derived dMRI measures (Alexander et al., 2001; Cercignani et 
al., 2003; Zhan et al., 2010; Zhu et al., 2011). As a result, improved harmonization of multi-site 
diffusion data is of great interest (Grech-Sollars et al., 2015; Pohl et al., 2016; Palacios et al., 2017). 
For example, ComBat - originally developed to model and remove batch effects from genomic 
microarray data (Johnson et al., 2007) - was one of the most effective methods for harmonizing DTI 
measures in a recent comparison of such techniques (Fortin et al., 2017). 
 
Here we tested whether standard diffusion tensor imaging (DTI)-derived anisotropy and diffusivity 
indices, calculated from multiple imaging protocols in ADNI3, can be pooled and harmonized to show 
robust associations with age and four clinical assessments. In addition to diagnosis, cognitive 
impairment was assessed with three commonly used screening tools for detecting dementia and 
Alzheimer’s disease: the Alzheimer’s Disease Assessment Scale (ADAS-cog; Rosen et al., 1984), the 
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Mini-Mental State Examination (MMSE; Folstein et al., 1975), and the Clinical Dementia Rating scale 
sum-of-boxes (CDR-sob; Berg, 1988). For the rest of the paper we refer to these tools as “cognitive 
measures”. In addition to standard DTI indices - the fractional anisotropy (FADTI), mean diffusivity 
(MDDTI), radial diffusivity (RDDTI), and axial diffusivity (AxDDTI) - we also evaluated a modified 
measure of FA, derived from the tensor distribution function (FATDF; Leow et al., 2009) which can be 
more sensitive to neurodegenerative disease-related WM abnormalities than FADTI across high- and 
low-angular resolution dMRI (Nir et al., 2017). The TDF model addresses well-established limitations 
of the standard single-tensor diffusion model - which cannot resolve complex profiles of WM 
architecture such as crossing or mixing fibers, present in up to 90% of WM voxels (Tournier et al., 
2004; Descoteaux et al., 2007, 2009; Jeurissen et al., 2013).  
 
In 24 WM regions of interest (ROIs), we ranked these five anisotropy and diffusivity indices, in terms 
of their strength of association with key clinical measures, to identify dMRI indices that may help 
understand and track AD progression. We hypothesized that the diffusion indices from ADNI2 (Nir et 
al., 2013, 2017) would still be associated with clinical measures of disease burden in ADNI3 - despite 
the variation in protocols. We hypothesized that when data were pooled across ADNI3 protocols: (1) 
higher diffusivity and lower anisotropy in the temporal lobe white matter would be most sensitive to 
cognitive impairment, with highest effect sizes for associations with CDR-sob, and (2) FATDF would 
detect associations with clinical impairment with higher effect sizes than FADTI. 
 
2 Methods 
 
2.1 ADNI participants 
 
Baseline MRI, DTI, diagnosis, demographics, and cognitive measures were downloaded from the 
ADNI database (https://ida.loni.usc.edu/). This analysis was performed when data collection for 
ADNI3 was still ongoing (May 2018), and reflects the data available on April 30, 2018. Of the 381 
participants scanned to date, 55 were excluded after quality assurance: this included ensuring complete 
clinical and demographic information, and image-level quality control (removing scans with severe 
motion, missing volumes, or corrupt files). To ensure sufficient statistical power to assess differences 
in data collected with different protocols, we evaluated only those protocols with complete available 
data for at least 10 participants at the time of download; we did not assess protocol GE36, for which 
scans from 9 of 12 participants passed quality assurance. Details on excluded participants are outlined 
in Supplementary Table 1.  
 
317 remaining participants - from 47 scanning sites - were included in the analysis (mean age: 75.4±7.9 
yrs; 143 men, 174 women; Table 1): 211 were elderly cognitively normal controls (CN; mean age: 
74.5±7.3 yrs; 84 men, 127 women), 84 were diagnosed with mild cognitive impairment (MCI); mean 
age: 76.3±8.1 yrs; 48 men, 36 women), and 22 were diagnosed with Alzheimer’s disease (AD; mean 
age: 80.6±10.5 yrs; 11 men, 11 women). We note that two of the ADNI2 diagnostic categories - CN 
and Significant Memory Concern (SMC) - were combined and identified as CN in ADNI3. ADNI2’s 
early and late MCI categories were combined and identified as MCI in ADNI3. 
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Table 1. Demographic and clinical measures for participants in ADNI3, subdivided by dMRI protocol. 
We report the average age, MMSE, CDR-sob, and ADAS-cog measures, and their standard deviations. 

Protocols Demographics 
Clinical Assessments 

Diagnosis Cognitive Measures+ 
Name Total N Sites  Age (yrs) Male  CN MCI AD MMSE* CDR-sob* ADAS-cog* 
GE54 65 8 76.7 ± 7.3 32 (49.2%) 45 16 4 28.50 ± 3.26 0.78 ± 1.81 11.75 ± 6.81 
P33 24 3 78.1 ± 7.1 13 (54.2%) 17 4 3 28.75 ± 2.03 1.31 ± 2.84 13.32 ± 6.76 
P36 19 4 75.3 ± 6.6 7 (36.8%) 12 7 0 28.21 ± 2.39 0.76 ± 1.35 12.63 ± 5.12 
S31 36 9 72.8 ± 8.6 15 (41.7%) 21 10 5 28.31 ± 2.77 0.79 ± 1.35 11.54 ± 5.25 
S55 153 18 75.0 ± 8.4 66 (43.1%) 100 43 10 27.94 ± 3.28 0.95 ± 2.05 11.96 ± 5.65 
S127 20 5 75.3 ± 5.4 10 (50.0%) 16 4 0 28.80 ± 1.70 0.33 ± 0.75 10.27 ± 2.83 

TOTAL 317 47 75.4 ± 7.9 143 (45.1%) 211 84 22 28.23 ± 3.01 0.87 ± 1.91 11.89 ± 5.78 
*Data not available for all participants: MMSE N=315; CDR-sob N=316 and ADAS-cog N=278. 
+We recognize the limitations of these assessments as proxy measures of specific cognitive abilities (Balsis et al., 2015). 
 
2.2 Clinical assessments 
 
In addition to diagnosis, we indexed cognitive impairment using total scores from commonly used 
screening tools for detecting dementia and AD (Table 1): the Alzheimer’s Disease Assessment Scale 
13 (ADAS-cog), the Mini-Mental State Examination (MMSE), and the Clinical Dementia Rating scale 
sum-of-boxes (CDR-sob). We refer to these tools as “cognitive measures”, but recognize the limitations 
of these assessments as proxy measures of specific cognitive abilities (Balsis et al., 2015). The ADAS-
cog is frequently used in pharmaceutical trials, with scores ranging from 0-70; higher scores represent 
more severe cognitive dysfunction (Rosen et al., 1984). MMSE is more often used by clinicians and 
researchers in assessing cognitive aging. Scores for MMSE range from 0-30; lower scores typically 
indicate greater cognitive dysfunction (Folstein et al., 1975). CDR-sob is used primarily in clinical 
trials and in clinical practice for evaluating disease severity including the mild and early symptomatic 
stages of dementia. It is calculated based on the sum of severity ratings in six domains (‘boxes’) - 
memory, orientation, judgment and problem solving, community affairs, home and hobbies, and 
personal care. Scores range from 0 (no dementia) to 3 (severe dementia; Rosen et al., 1984). These 
evaluations are among the measures used in diagnosing ADNI participants. Not all cognitive measures 
were available for every participant (MMSE, N=315; CDR-sob, N=316, and ADAS-cog, N=278; 
Supplementary Table 2 lists these by protocol).  
 
2.3 Diffusion MRI acquisition protocols 
 
ADNI3 incorporated dMRI protocols for 3 tesla Siemens, Philips, and GE scanners. ADNI2, the first 
phase of ADNI to include diffusion MRI, only prescribed dMRI protocols for GE scanners. The 
available scanners span a wide range of software capabilities, such as support (or the lack of it) for 
custom diffusion gradient tables and/or simultaneous multi-slice acceleration. Including additional 
scanners while staying in a 7-10 minute scan duration resulted in data acquired with seven different 
acquisition protocols - of which six had sufficient sample sizes to be evaluated here. Protocols varied 
in the number of diffusion weighted imaging (DWI) directions (i.e., angular resolution), and the number 
of non-diffusion sensitized gradients (b0 images), which serve as a reference to assess diffusion-related 
decay of the MR signal. Voxel size across all ADNI3 protocols was 2.0x2.0x2.0 mm3 and 2.7x2.7x2.7 
mm3 in ADNI2. Table 2 summarizes the different protocols.  
 
There is currently one multi-shell multiband protocol for Siemens Advanced Prisma scanners (S127). 
As ADNI3 is still in its early stages, GE and Philips protocols for multi-shell acquisition have not yet 
been finalized, so only 20 multi-shell scans were available for analysis at the time of writing. Here our 
goal was to evaluate single-shell dMRI indices across protocols, so we used a subsample of the 127 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 24, 2018. ; https://doi.org/10.1101/476721doi: bioRxiv preprint 

https://doi.org/10.1101/476721
http://creativecommons.org/licenses/by-nd/4.0/


 6 

DWI volumes from the S127 multi-shell protocol to include only 13 b=0 and 48 b=1000 s/mm2 DWI 
volumes (removing 6  b=500 s/mm2 and 60 b=2000 s/mm2 volumes). 
 
The Philips Basic Widebore R3 protocol (P36) included three b=2 s/mm2 volumes and one b=0 s/mm2, 
because Philips scanners cannot acquire more than one b=0 s/mm2. The Philips Basic Widebore (P33) 
was not a prescribed protocol, but rather acquired from Philips sites with a software version less than 
5.0 that could not acquire the b=2 s/mm2 volumes. 
 
Table 2. ADNI diffusion MRI acquisition protocols 

 Name Scanner Protocol b0 
Volumes 

DWI  
Volumes 

Total 
Volumes 

Time 

(min)  
Total 

N 

A
D

N
I3

 

GE36 GE Basic Widebore 25x 4 b=0 s/mm2 32 b=1000 s/mm2 36 9:52 -- 
GE54 GE Basic 25x  6 b=0 s/mm2 48 b=1000 s/mm2 54 7:09 65 
P33 Philips Basic Widebore  1 b=0 s/mm2 32 b=1000 s/mm2 33 7:32 24 

P36 Philips Basic Widebore R3 1 b=0 s/mm2 
3 b=2 s/mm2 32 b=1000 s/mm2 36 6:54 19 

P54 Philips Basic R5 1 b=0 s/mm2 
5 b=2 s/mm2 48 b=1000 s/mm2 54 8:05 -- 

S31 Siemens Basic VB17 1 b=0 s/mm2 30 b=1000 s/mm2 31 7:02 36 

S55 Siemens Basic Skyra E11 & 
Prisma D13 7 b=0 s/mm2 48 b=1000 s/mm2 55 9:18 153 

S127 Siemens Advanced Prisma 
VE11C 

13 b=0 
s/mm2 48 b=1000 s/mm2 61 7:25* 20 

A
D

N
I2

 

G46 GE 
Discovery MR750 

& MR750w,  
Signa HDx  & HDxt 

5 b=0 s/mm2 41 b=1000 s/mm2 46 7:00-
10:00 59 

 *reflects the time to acquire the full multi-shell protocol (127 volumes), not the single-shell subset 
 
2.4 dMRI preprocessing and scalar indices 
 
All DWI were preprocessed using the ADNI2 diffusion tensor imaging (DTI) analysis protocol as in 
Nir et al., (2013). Briefly, we corrected for head motion and eddy current distortion, removed extra-
cerebral tissue, and registered each participant’s DWI to the respective T1-weighted brain to correct 
for echo planar imaging (EPI) distortion. Details of the preprocessing steps may be found here: 
https://adni.bitbucket.io/reference/docs/DTIROI/DTI-ADNI_Methods-Thompson-Oct2012.pdf. All 
DWI and T1-weighted images were visually checked for quality assurance. 
 
Scalar dMRI indices were derived from two reconstruction models: the single tensor model (DTI; 
Basser et al., 1994) and the tensor distribution function (TDF; Leow et al., 2009). From the single tensor 
model, FADTI, AxDDTI, MDDTI, and RDDTI scalar maps were generated. In contrast to the single tensor 
model, the TDF represents the diffusion profile as a probabilistic mixture of tensors that optimally 
explain the observed DWI data, allowing for the reconstruction of multiple underlying fibers per voxel, 
together with a distribution of weights, from which the TDF-derived form of FA (FATDF) was calculated 
(Nir et al., 2017). 
 
2.5 White matter tract atlas ROI summary measures 
 
Images were processed as reported previously (Nir et al., 2013). Briefly, the FA image from the Johns 
Hopkins University single subject Eve atlas (JHU-DTI-SS; 
http://cmrm.med.jhmi.edu/cmrm/atlas/human_data/file/AtlasExplanation2.htm) was registered to each 
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participant’s corrected FA image using an inverse consistent mutual information based registration 
(Leow et al., 2007); the transformation was then applied to the atlas WM parcellation map (WMPM) 
ROI labels (as shown in Figure 7; Mori et al., 2008) using nearest neighbor interpolation. Mean 
anisotropy and diffusivity indices were extracted from 24 WM ROIs total (Table 3): 22 ROIs averaged 
bilaterally, the full corpus callosum, and a summary across all ROIs (full WM). 
 
Table 3. The following 24 ROIs from the JHU atlas (Mori et al., 2008) were analyzed. 
 

CST Corticospinal tract SLF Superior longitudinal fasciculus 
CP  Cerebral peduncle SFO Superior fronto-occipital fasciculus 
ALIC Anterior limb of internal capsule IFO Inferior fronto-occipital fasciculus 
PLIC Posterior limb of internal capsule SS Sagittal stratum 
RLIC Retrolenticular part of internal capsule EC External capsule 
PTR Posterior thalamic radiation UNC Uncinate fasciculus 
ACR Anterior corona radiata GCC Genu of corpus callosum 
SCR Superior corona radiata BCC Body of corpus callosum 
PCR Posterior corona radiata SCC Splenium of corpus callosum 
CGC Cingulum (cingulate gyrus) CC Full corpus callosum 
CGH Cingulum (hippocampal bundle) TAP Tapetum 
Fx/ST Fornix (crus) / stria terminalis Full WM Full white matter 

 
 
2.6 Comparing the ADNI2 and ADNI3 protocols in cognitively normal participants 
 
2.6.1 Sample sizes for the ADNI2 and ADNI3 cognitively normal participants 
 
We evaluated the six ADNI3 protocols and the ADNI2 protocol using scans from cognitively normal 
(CN) participants only. Of 85 CN participants in ADNI2 with dMRI, 30 rolled over to ADNI3. To 
avoid duplication, and boost the number of scans available for each protocol, we did not include all 
these roll-over participants in the ADNI3 group. 26 CN roll-over participants were included in the 
ADNI3 group. Four CN roll-over participants were scanned with the S55 protocol, and due to the larger 
sample size already available for that protocol (N=156), we included these four in the ADNI2 group.  In 
total, 59 out of 85 ADNI2 CN participants were included in the ADNI2 group and the remaining 26 
were kept in the ADNI3 group for a total of 207 ADNI3 CN participants (see Supplementary Table 3 
for CN demographics by ADNI phase and protocol). 
 
2.6.2 Assessing age effects  
 
In CN participants, multivariate random-effects linear regressions were used to assess whether to assess 
whether WM dMRI indices from each ADNI protocol individually were associated with age, 
controlling for sex and age*sex interactions as fixed variables, and acquisition site as a random variable. 
dMRI indices for the CN group were subsequently pooled across ADNI3 protocols (N=207), or ADNI3 
and ADNI2 protocols (N=266) and tested for associations with age using an analogous model, but with 
protocol and acquisition site as nested random variables (e.g., 8 sites used protocol GE54, and 3 sites 
used protocol P33, so the acquisition site grouping variable is nested within the protocol grouping 
variable). We used the false discovery rate (FDR) procedure to correct for multiple comparisons (q = 
0.05; Benjamini and Hochberg, 1995) across the 24 ROIs assessed for each dMRI index. Regions that 
survive a more stringent Bonferroni correction at an alpha of 0.05 (p ≤  0.05/24=0.0021) are also shown 
in the Supplements. 
 
 
2.6.3 Effect of protocol on dMRI indices 
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In CN participants, we tested for significant differences in dMRI indices between the seven ADNI 
protocols using analyses of covariance (ANCOVAs), adjusting for age, sex, and age*sex interactions 
as fixed variables and acquisition site as a random variable. For each dMRI index, we used FDR to 
correct for multiple comparisons across the 24 ROIs assessed. Pairwise tests were performed to directly 
compare protocols. In total, there were 504 tests per dMRI index: 24 ROIs * 21 pairs of protocol 
comparisons (protocol 1 vs 2, protocol 1 vs 3, etc). As before, we used FDR to account for multiple 
comparisons.  
 
2.6.4 dMRI harmonization with ComBat 
 
ComBat uses an empirical Bayes framework to reduce unwanted variation in multi-site data due to 
differences in acquisition protocol, while preserving the desired biological variation in the data (Fortin 
et al., 2017). In the CN participants from ADNI2 and ADNI3, we ran ComBat on each of the dMRI 
indices, including age, sex, age*sex, and information from all 24 ROIs to inform the statistical 
properties of the protocol effects. Random-effects regressions tested for dMRI microstructural 
associations with age, covarying for sex and age*sex as fixed variables and site as a random variable; 
ANCOVAs and pairwise tests of dMRI differences between protocols were repeated for the harmonized 
ROI data. 
 
2.7  Clinical assessments and their relation to pooled ADNI3 diffusion indices 
 
Multivariate random-effects linear regressions were used to test associations between 5 dMRI indices 
in each of the 24 WM ROIs and the three cognitive measures (ADAS, MMSE, CDR-sob), and with 
diagnosis. Due to the limited available sample size for AD participants (N=22), and their uneven 
distribution across the acquisition protocols tested here, we compared only groups of people with CN 
and MCI diagnoses. Age, sex, and age*sex interactions were controlled for as fixed effects, and the 
protocol and acquisition site were modeled as nested random variables. FDR was again used to correct 
for 24 ROI tests (q = 0.05; Benjamini and Hochberg, 1995), in addition to Bonferroni corrections (p 
≤  0.05/24=0.0021) available in the Supplements. Effect sizes for associations were determined using 
the d-value standardized coefficient (Rosenthal and Rosnow, 1991): 
 

𝒅 =
(𝟐 ∗ 𝑻𝒗𝒂𝒍𝒖𝒆)

-𝑫𝒆𝒈𝒓𝒆𝒆𝒔	𝒐𝒇	𝑭𝒓𝒆𝒆𝒅𝒐𝒎
 

 
3 Results 
 
3.1 ADNI2 and ADNI3 protocols in cognitively normal participants 
 
3.1.1 Age effects in cognitively normal participants from ADNI2 and ADNI3 protocols 
 
When data were pooled across ADNI2 and ADNI3, significant associations with age were detected 
throughout the WM. Figure 1a shows effect sizes for ROIs significantly associated with age after FDR 
multiple comparisons correction (tabulated results and more stringent Bonferroni thresholds are shown 
in Supplementary Table 4). Lower FATDF and higher diffusivity indices were significantly associated 
with older age in all 24 ROIs. For FADTI, 22 ROIs were significantly associated with age. The largest 
effect size was detected with FATDF in the Fornix (crus) / stria terminalis (Fx/ST; d = -1.459; p = 
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5.07x10-21). The Fx/ST, corpus callosum genu (GCC) and full WM consistently showed one of the 10 
largest effect sizes across dMRI indices. 
 
The mean ages of the CN participants assessed in the two phases of ADNI were significantly different 
(p = 0.049; ADNI2 mean age: 72.4±6.6 yrs; ADNI3 mean age: 74.5±7.4 yrs; demographics in 
Supplementary Table 3). Pairwise tests comparing the mean age of CN participants scanned with each 
protocol also showed significant differences between those scanned with S31 and two other protocols: 
GE54 and S31 (p = 0.026); P33 and S31 (p = 0.0037). Due to differences in age and sample size 
between protocols and phases, effect sizes could not be directly compared (Button et al., 2013), but the 
directions of associations with age were largely consistent for ADNI2 and ADNI3 phases separately, 
and each ADNI3 protocol (Figures 1-2). Each ADNI protocol showed directionally consistent 
associations in more than 89% of tests (24 ROIs * 5 dMRI indices), except for P36 which was consistent 
in 81%, but had the smallest sample size (N=12; Figure 2b; Supplementary Tables 5-11). FATDF and 
all three diffusivity indices were consistent in ≥ 96% of tests (24 ROIs * 8 protocols/phases), while 
FADTI was only consistent in 88% of tests. Most of the associations detected in the unexpected direction 
for each protocol were driven by FADTI. None of the associations in the unexpected direction were 
significant after multiple comparisons correction, and only 2 had a p ≤  0.05. 
 
Figure 2 shows consistent associations in the full WM by protocol. As demographic and sample size 
variability between protocols affect detected effect sizes, we also evaluated full WM dMRI associations 
with age in an age- and sex-matched subset of 12 participants from each protocol (total N=84; 
demographics in Supplementary Table 3); a comparison of the effect sizes between protocols suggests 
that the protocols with greatest total number of diffusion-weighted (b=1000 s/mm2) and non-diffusion 
sensitized (b0) gradients may detect larger effects (S127 followed by S55; Supplementary Figure 1).  
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Figure 1. (A) For each dMRI index, the absolute values of effect sizes (d-value) are plotted for regional 
WM microstructural associations with age when all ADNI3 dMRI data are pooled, adjusting for any 
site or protocol effects. For each test, we note the number of significant ROIs, as indicated by filled 
shapes, and the corresponding FDR significance p-value threshold (q = 0.05). See Supplementary 
Table 4 for complete tabulated results. (B) Here, we plot the residuals of diffusivity and anisotropy 
indices in the full WM (y-axis) against age (x-axis) after regressing out the effects of sex in CN 
participants from each protocol separately. Individual level residuals from each protocol are plotted 
with a different color. Despite protocol differences, age effects are evident across protocols. 
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Figure 2. (A) Effect sizes (d-value) for each ADNI protocol and phase show the direction of dMRI 
associations with age in the full WM are consistent. Due to differences in age and sample size between 
protocols and phases, effect sizes could not be directly compared. (B) For each protocol and phase, the 
number of ROIs (out of 24), that show the expected association direction, regardless of significance, 
are reported for each dMRI index, revealing consistent associations across tests, except for protocol 
P36 which has the smallest sample size, and FADTI, which shows the smallest effect sizes and fewest 
significant associations across protocols when pooled. 
 
3.1.2 Effect of protocol on dMRI indices from cognitively normal controls 
 
The influence of dMRI acquisition protocol on mean values of the diffusion indices is evident in 
boxplots of dMRI indices in the full WM for each protocol. When modeling the mean full WM values 
for each diffusion index, the residuals of the statistical model become closer to 0 after fitting the effect 
of protocol and site (nested as a random variable with age, sex, and age*sex interactions as fixed effects) 
than when we plot the residuals of just age, sex, and age*sex interactions (Figure 3). 
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ANCOVAs and pairwise tests for each ROI suggest there are significant differences between protocols 
for all 5 dMRI indices across most ROIs (Figure 4). ANCOVAs revealed significant protocol 
differences for 22 ROIs for FADTI and FATDF, with the highest overall effect size detected in the anterior 
limb of the internal capsule (ALIC) and the external capsule (EC) for FADTI (ALIC: d = 0.648; EC: d 
= 0.652). AxDDTI had the smallest effect size, overall, in the splenium of the corpus callosum (SCC; d 
= 0.106), and only 13 ROIs showed significant AxDDTI differences between protocols.  
 
In pairwise analyses, AxDDTI was the most stable index across protocols, as significant protocol 
differences were detected in only 20.6% of pairwise tests (24 ROIs * 21 pairwise tests), compared to 
FADTI, the most variable index, which showed significant protocol differences in 81.9% of tests (Figure 
4b). ADNI2 was the most divergent protocol across dMRI indices, showing differences in 36.3% of 
tests.  
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Figure 3. Full WM mean (A)  AxDDTI, MDDTI, and RDDTI , and (B) FADTI and FATDF residuals for each 
protocol after fitting effects of age, sex, and age*sex interactions are plotted here in the top rows (red). 
Protocol has an effect on anisotropy and diffusivity measures. The lower panels (blue) show residuals 
after additionally fitting protocol and site as nested random-effects, after which the residuals across 
protocols are closer to 0.  
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Figure 4. (A) d-values from the ANCOVAs assessing differences in dMRI indices between protocols, 
for each of the 24 ROIs; FADTI shows the greatest significant differences (largest d-values; dark red) 
between protocols and AxDDTI the fewest (dark green). (B) We report the number of times each 
protocol and each dMRI index showed significant differences in pairwise tests between protocols (out 
of 504 tests per index and 720 tests per protocol); AxDDTI was the most stable dMRI index across 
protocols, while FADTI was the least stable.  
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3.1.3 Diffusion MRI harmonization with ComBat 
 
After using ComBat to harmonize dMRI indices across protocols, ANCOVAs revealed that significant 
protocol differences in dMRI indices were all but eliminated across ROIs (Supplementary Figure 2a); 
significant protocol differences were detected only in the CST, for each of the dMRI indices. The 
number of pairwise tests for which each protocol showed significant differences in dMRI indices 
decreased by 93.8% with ComBat (Supplementary Figure 2b).  
 
After harmonization, we still detected significant associations between age and dMRI indices from 
ADNI2 and ADNI3 pooled in the same number of ROIs (Supplementary Table 12). ComBat 
correction did not significantly change effect sizes, while correcting for effects of protocol 
(Supplementary Figure 3). In Figure 5 we show effect sizes before and after harmonization with 
ComBat in the Full WM, Fx/ST, and GCC, the three ROIs that consistently showed one of the 10 largest 
effect sizes for associations with age across all five diffusion indices (for changes by protocol see 
Supplementary Figures 4-6). As harmonization with ComBat did not improve or change results found 
with random-effect linear regressions, we proceeded to test clinical associations without applying a 
ComBat transformation.  
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Figure 5. Beta-values and error bars representing standard error from the association between each 
diffusion index and age in CN participants, before and after ComBat harmonization. We show the three 
ROIs that consistently showed one of the 10 largest effect sizes for associations with age across all five 
diffusion indices (see Supplementary Figure 3 for all ROIs). Compared to pre-ComBat analyses, 
effect sizes are marginally different across indices, but still within the standard error. 
 
3.2 Cognitive measure associations with pooled ADNI3 dMRI indices 
 
Pooling data across ADNI3, we detected significant associations between all three cognitive measures 
and regional dMRI indices throughout the WM. Greater cognitive impairment was associated with 
lower anisotropy and higher diffusivity. Figure 6a-c shows effect sizes for ROIs significantly 
associated with each cognitive measure after FDR multiple comparisons correction (for tabulated 
results and more stringent Bonferroni corrections, please see Supplementary Tables 13-15). Across 
tests (5 dMRI indices * 3 cognitive measures), the hippocampal-cingulum (CGH), fornix (crus) / stria 
terminalis region (Fx/ST), and the full WM consistently showed one of the 10 largest effect sizes (see 
Supplementary Figures 7-9 for associations with indices in the CGH, Fx/ST, and full WM, by 
protocol). In 14 of 15 tests, the CGH consistently showed one of the top two largest effect sizes (CGH 
FADTI association with CDR-sob was the third largest), along with the uncinate fasciculus (UNC), 
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which was top two in 12 of 15 tests (while significant, cognitive associations with UNC FADTI never 
showed one of the largest effect sizes). 
 
FADTI showed significant associations in the fewest ROIs: 55 out of 72 tests (76.4%; 24 ROIs * 3 
cognitive measures) were significant. FATDF showed more widespread associations with cognitive 
measures throughout WM ROIs: 69 out of 72 tests (94.4%; 24 ROIs * 3 cognitive measures) were 
significant. Effect sizes were consistently lower for FADTI than for the other dMRI indices, across all 3 
cognitive measures; the largest FADTI effect size was consistently found in the Fx/ST, followed by the 
CGH or the GCC. The strongest FADTI association was in the Fx/ST with CDR-sob (d = -0.681, p = 
7.01x10-8). Compared to FADTI, FATDF showed larger effect sizes; across cognitive tests, the strongest 
FATDF associations were detected in the uncinate fasciculus (UNC) with CDR-sob (d = -1.244; p = 
1.39x10-20), followed by the CGH (d = -1.213; p = 8.86x10-20). CDR-sob effect sizes for FADTI and 
FATDF in the CGH, UNC, Fx/ST, and full WM are depicted by protocol in Supplementary Figure 10, 
revealing consistently larger effect sizes for FATDF across protocols. 
 
Cognitive associations with all of the diffusivity indices were widespread: significant associations were 
detected in 207 out of 216 tests (95.8%; 24 ROIs * 3 cognitive measures * 3 diffusivity indices). 
Regional measures of AxDDTI consistently showed the largest effect sizes across all cognitive measures 
(CDR-sob and the UNC: d = 1.344, p = 3.13x10-23; MMSE and the CGH: d = -1.178, p = 7.87x10-19; 
ADAS-cog and the UNC: d = 1.048, p = 1.09x10-13). 
 
Of the three cognitive measures, CDR-sob associations showed the largest effect sizes across dMRI 
indices (in the UNC followed by the CGH for all indices except FADTI); the largest effect sizes across 
all tests were detected with AxDDTI (UNC: d = 1.344) and MDDTI (UNC: d = 1.342, p = 3.47x10-23). 
Figure 7 shows the distribution of the effect sizes for CDR-sob throughout the brain. Temporal lobe 
regions (UNC, CGH, IFO, SS) frequently showed greatest effect sizes (for ADAS-cog and MMSE 
figures, see Supplementary Figures 11-12). Effect size was not correlated with ROI size 
(Supplementary Figure 13), consistent with prior studies of other disorders (Kelly et al., 2018). 
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Figure 6. For each dMRI index, the absolute values of effect sizes (d-value) are plotted for regional 
WM microstructural associations with clinical measures. Lower anisotropy and higher diffusivity were 
significantly associated with (A) higher CDR-sob, (B) lower MMSE, (C) higher ADAS-cog, and (D) 
an MCI diagnosis, when all ADNI3 dMRI data are pooled, adjusting for any site or protocol effects. 
For each test, we note the number of significant ROIs, as indicated by filled shapes, and the 
corresponding FDR significance p-value threshold (q = 0.05). See Supplementary Tables 13-16 for 
complete tabulated results. 
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Figure 7. Effect size (absolute d-value) maps of WM regions that show significant associations with 
CDR-sob - the cognitive measure with the largest effect sizes - reveal widespread associations 
throughout the WM, with particularly strong associations in the temporal lobes (SS, IFO, UNC, and 
CGH; light green regions show the largest effect sizes). As expected, positive associations were 
detected between CDR-sob and (A) AxDDTI (FDR critical threshold p = 1.78x10-4) (B) MDDTI (FDR 
critical threshold p = 3.64x10-4) and (C) RDDTI (FDR critical threshold p = 6.92x10-3); higher diffusivity 
was associated with greater cognitive impairment. Lower (D) FADTI (FDR critical threshold p = 0.025) 
and (E) FATDF (FDR critical threshold p = 7.73x10-3) were also associated with greater impairment, 
but FADTI associations were detected in fewer regions with weaker effect sizes compared to FATDF. 
 
3.3 CN vs MCI diagnosis associations with pooled ADNI3 dMRI indices 
 
For each diffusion index, Figure 6d shows the significant regional effect sizes for differences between 
CN and MCI participants. Widespread diffusivity differences were detected, with significantly higher 
diffusivity in MCI participants in 21 out of 24 ROIs (Supplementary Table 16 and Supplementary 
Figure 14). Only three regions showed significantly lower FADTI in MCI participants – Fx/ST (d =  
-0.460; p = 3.89x10-4), CGH (d = -0.410; p = 1.53x10-3), and the posterior thalamic radiation (PTR; d 
= 0.367; p = 4.55x10-3). On the other hand, FATDF was significant in 20 out of 24 ROIs, similar to 
diffusivity indices. FATDF and diffusivity indices in the CGH showed the largest effect sizes (AxDDTI d 
= 0.681; p = 2.26x10-7, MDDTI d = 0.700; p = 1.15x10-7; RDDTI d = 0.679; p = 2.41x10-7; FATDF d = 
-0.622; p = 2.00x10-6). 
 
For all three cognitive measures, and in the comparison between CN and MCI participants, the CGH 
and Fx/ST were the only regions that survived multiple comparisons correction across all dMRI indices. 
The Fx/ST always had the largest effect size in FADTI tests. The UNC showed either the first or second 
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largest effect size (alternating with CGH) across diffusivity indices and FATDF tests, but was significant 
only for cognitive measure associations with FADTI (i.e., 3 of 4 clinical tests). 
 
4 Discussion 
 
This study has three main findings: (1) When data were pooled from the six available diffusion MRI 
protocols used in ADNI3, anisotropy and diffusivity indices showed robust associations with MCI 
diagnosis, and with three common cognitive measures: MMSE, ADAS-cog, and CDR-sob; (2) When 
using a higher-order diffusion model, the tensor distribution function (TDF), the derived measure of 
anisotropy (FATDF) showed stronger and more widespread associations with clinical impairment than 
the standard DTI anisotropy measure (FADTI); (3) Despite significant differences in protocols, for each 
dMRI index, we were able to detect consistent associations with clinical measures in ADNI3 
participants, and age in ADNI2 and ADNI3 CN participants. 
 
Accumulation of amyloid plaques and neurofibrillary tangles (NFT) in the brain (Braak & Braak, 1991; 
Braak & Braak 1996; Frank et al., 2003, Shaw et al., 2007) can directly impact WM (Lee et al., 2004; 
Roth et al., 2005), promoting myelin degeneration and axonal loss (Braak and Braak 1996; Kneynsberg 
et al., 2017). While many factors drive anisotropy and diffusivity measures from DTI, higher anisotropy 
values may indicate, in part, more coherent intact axons, while lower anisotropy and higher diffusivity 
may reflect factors such as axonal injury and demyelination, among other factors (Beaulieu et al., 2002; 
Song et al., 2003; Song et al., 2005; Harsan et al., 2006; Le Bihan and Johansen-Berg 2012; Kantarci 
et al., 2017; Moore et al., 2018). In this paper, lower anisotropy values and higher diffusivity values 
were correlated with clinical impairment, most strongly in the hippocampal-cingulum and uncinate 
fasciculus. Along with the full WM, reflecting global WM effects, the largest effect sizes were most 
frequently detected in the hippocampal-cingulum and fornix (crus) / stria terminalis, WM bundles 
connecting hippocampal and parahippocampal regions to the rest of the brain, consistent with patterns 
of AD pathology. The histopathological validity of these findings has been supported, specifically in a 
recent study that compared NFT stages in autopsy material along with ante-mortem MRI. Elevated 
MDDTI and lower FADTI significantly correlated with higher postmortem NFT stage, particularly in the 
crus of the fornix, the ventral cingulum tracts, the precuneus, and entorhinal WM (Kantarci et al., 2017). 
  
The participants recruited for ADNI3 tend to be younger and healthier, on average, than those in 
ADNI2, as they were recruited with the intention of studying the transition from CN to mild AD (Jack 
et al., 2015). With few AD patients enrolled so far in ADNI3, the primary focus of this paper was to 
assess three cognitive assessments (ADAS-cog, CDR-sob, and MMSE), and to compare CN to MCI 
participants. MCI is now the focus of intense research, as it is essential to find ways to clinically 
categorize the transitional stages between normal aging and AD to evaluate targeted treatments, as 
pathophysiological mechanisms may differ or change throughout the course of AD (Mueller et al., 
2005).  As in our prior analysis of ADNI2 (Nir et al., 2013), FADTI was the least sensitive DTI measure. 
In ADNI3, AxDDTI and MDDTI showed the largest effect sizes. Lower FADTI and higher MDDTI are most 
frequently reported in studies of AD (Kavcic et al., 2008; Clerx et al., 2012; Nir et al., 2013; Maggipinto 
et al., 2017; Mayo et al., 2017), but AxDDTI may be more sensitive to unspecific microscopic cellular 
loss earlier in the disease (O’Dwyer et al., 2011), perhaps making it more sensitive in the healthier 
participants of the ADNI3 dataset. Similarly, in ADNI2, AxDDTI was the most sensitive to differences 
between CN and MCI diagnoses (Nir et al., 2013). 
 
Among the three cognitive assessments, CDR-sob showed the strongest correlations with dMRI 
indices, in line with prior ADNI brain imaging studies (Hua et al., 2009; Nir et al., 2013). The largest 
of these effects were found in temporal WM tracts including the hippocampal-cingulum, uncinate 
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fasciculus, sagittal stratum, and inferior fronto-occipital fasciculus.  These are all regions that show 
early degenerative changes in MCI and AD (Mielke et al., 2009; Nir et al., 2013; Maggipinto et al., 
2017; Powell et al., 2018). While associations with clinical impairment were detected throughout the 
WM, the region that most frequently showed the lowest effect sizes and was significant in only 3 of the 
20 clinical tests, was the corticospinal tract (CST). However, the CST ROI from the JHU WMPM atlas 
is limited to a small region in the inferior portion of the brain and has been shown to be the least reliable 
and reproducible ROI (Jahanshad et al., 2013; Acheson et al., 2017), suggesting alternate approaches, 
such as tractography-based evaluations (Jin et al., 2017), or the use of the probabilistic JHU atlas (Hua 
et al., 2008), may be more appropriate for studying the CST.  Our analysis focused on white matter 
microstructure, but future work assessing tract geometry and properties of anatomical brain networks 
using tractography may reveal more detailed information. The validation and harmonization of 
tractography methods and derived network metrics is a vast field of research with active ongoing work 
(Maier-Hein et al., 2017).  
  
DTI is widely recognized as a useful tool for studying neurodegenerative disorders such as AD (Oishi 
et al., 2011; Müller and Kassubek, 2013; Abhinav et al., 2014; Acosta-Cabronero et al., 2014; 
Maggipinto et al., 2017). However, at the spatial resolutions now used, a single voxel typically captures 
partial volumes of different tissue compartments, e.g., the intra- and extra-cellular compartments, the 
vascular compartment, the CSF and myelin; each affects water diffusion and the MR signal. The DTI 
model cannot differentiate these components or even crossing fibers (Tuch et al., 2002; Jbabdi et al., 
2010), which are estimated to occur in up to 90% of WM voxels at the typical dMRI resolution 
(Descoteaux et al., 2009; Jeurissen et al., 2013). In healthy tissue with crossing fibers, the DTI model 
may show low FA. FADTI may paradoxically appear to increase in regions where crossing fibers 
deteriorate in neurodegenerative diseases such as AD (Douaud et al., 2011). FATDF addresses this 
limitation even in low angular resolution data (Nir et al., 2017). Here, compared to FADTI, FATDF 
showed more widespread associations with cognitive measures and diagnosis throughout WM ROIs: 
FATDF was significant in 89 of the 96 tests (92.7%; 24 regions in 4 clinical tests), while FADTI was 
only significant in 58 (60.4%). The greatest difference was seen for diagnostic associations (CN vs 
MCI): FATDF was significant in 20 out of 24 ROIs while FADTI was only significant in 3.  FATDF 
also showed stronger effect sizes across the protocols, suggesting that tensor limitations have likely 
confounded previous diffusion studies of cognitive decline that have found little or no effects with FA 
(Acosta-Cabronero et al., 2010).  Recently proposed biophysical models of brain tissue may help to 
relate diffusion signals directly to underlying microstructure and different tissue compartments (Harms 
et al., 2017). We may be able to further disentangle questions of orientation coherence (dispersing and 
‘kissing’ fibers), fiber diameter, fiber density, membrane permeability, and myelination, which all 
influence classic anisotropy and diffusivity measures derived from DTI.  Several AD studies have 
already used multi-shell protocols to compute diffusion indices from models that do not assume mono-
exponential decay, such as diffusion kurtosis imaging (DKI; Jensen et al., 2005; Chen et al., 2017; 
Cheng et al., 2018; Wang et al., 2018), and multi-compartment models such as neurite orientation 
dispersion and density imaging (NODDI; Zhang et al., 2012; Colgan et al., 2016; Slattery et al., 2017; 
Parker et al., 2018). To date, approximately 20 participants in ADNI have been scanned with multi-
shell diffusion protocols; in a future report, we will relate these measures to those examined here.  
 
Large-scale, multi-site neuroimaging studies can increase the power of statistical analyses and establish 
greater confidence and generalizability for findings. Most multi-site neuroimaging studies are 
susceptible to variability across sites. Variability in dMRI studies is due in part to heterogeneity in 
acquisition protocols, scanning parameters, and scanner manufacturers (Zhu et al., 2009; Zhu et al., 
2011; Zhu et al., 2018). Anisotropy and diffusivity maps are affected by angular and spatial resolution 
(Alexander et al., 2001; Kim et al., 2006; Zhan et al., 2010), the number of DWI directions (Giannelli 
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et al., 2009), and the number of acquired b-values (Correia et al., 2009). All five dMRI indices were 
significantly different between protocols; AxDDTI was the most stable index, while FADTI was the least 
stable, reflective of their performance in detecting associations with cognitive measures. ADNI2 was 
the most divergent protocol across dMRI indices, perhaps due to the larger voxel size in ADNI2 (2.7 
mm versus 2.0 mm isotropic voxels used in ADNI3). This is consistent with the notion that DTI 
measures vary with voxel size due to partial voluming (Zhan et al., 2013). Despite differences in 
protocols, the directions of associations were consistent across protocols. 
 
ADNI3 extends dMRI acquisitions across scanner manufacturers and platforms to maximize the 
number of participants scanned with dMRI; this makes it necessary to account for site-related 
heterogeneities and confounds in analytical models where data are pooled. Multi-site dMRI studies are 
becoming increasingly common, and new data harmonization methods to adjust for site and acquisition 
protocol are being developed and tested. A thorough investigation of dMRI harmonization methods is 
now possible with ADNI3, one of the few publically available multi-site datasets acquired with multiple 
protocols. As regional dMRI measures are available for download as part of the ADNI database, we 
highlight two ways that the data may be pooled across sites: 1) performing statistical analyses with 
nested random-effects models to account for site and acquisition protocol differences, and 2) 
harmonizing the derived regional measures before aggregating the data across sites. In a preliminary 
analysis, we showed that one harmonization method performed on these regional measures, ComBat, 
reduced cross-site differences in dMRI indices, while preserving biological relationships with age in 
CN controls. The only region where differences remained after ComBat, was the CST, the ROI with 
the weakest associations with clinical measures, and previously identified as least reliable (Acheson et 
al., 2017). In Fortin et al. (2017), compared to other harmonization methods, ComBat  increased the 
number of voxels where significant associations between age and FADTI or MDDTI were detected. Here, 
the number of significant ROIs and the magnitude of effect sizes were comparable for ComBat and 
nested random-effects model approaches. This discrepancy between our findings and that of Fortin et 
al, may be due to differences between studies: 1) ADNI3 includes more sites and protocols, 2) the 
number of ROIs is far less than the number of participants, and 3) the age effects in the elderly 
populations tested here are stronger than the effects tested in adolescents in Fortin et al. When effects 
are more readily detected, one harmonization approach may not be more advantageous than others.  In 
addition to exploring additional harmonization techniques, future work should evaluate voxel-wise 
ComBat approaches and the effects of harmonization beyond CN participants (i.e., across the entire 
ADNI cohort). 
 
In addition to ComBat, a number of harmonization approaches have recently been proposed at various 
stages of analysis (Tax et al., 2018; Zhu et al., 2018). Site differences can be accounted for at the time 
of overall group inference, such as with the random-effects regression level correction used here, or by 
using a meta-analysis approach in lieu of pooling data (Thompson et al., 2014). The data may also be 
transformed prior to multi-site group-level statistics. Some methods, such as ComBat and RAVEL, use 
the distribution of derived features, such as diffusivity and anisotropy measures (Fortin et al., 2016, 
2017). Alternatively, several proposed methods use information from the raw image to adjust for 
acquisition variability (Zhu et al., 2018). For example, Kochunov et al. (2018) calculated the signal to 
noise ratio for each protocol and include it in their regression models. Mirzaalian et al. (2018) use 
voxel-wise spherical harmonic residual networks to derive local correction parameters. Finding the best 
method to harmonize dMRI data is an active topic at ‘hackathons’ and technical challenges; in 2017 
and 2018, the International Conference on Medical Image Computing and Computer Assisted 
Intervention (MICCAI) hosted a computational diffusion MRI challenge to explore approaches for data 
harmonization. With so many available approaches, the preliminary random-effects regression and 
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ComBat results from this paper serve as a first step towards future work establishing robust approaches 
for combining data in ADNI3 and other multi-site studies. 
 
The current study is limited in that the sample sizes, and sample demographics, available for each 
protocol vary, complicating direct comparison of the protocols (Button et al., 2013). A matched 
comparison might be possible if a group of participants or a phantom were scanned using every 
protocol. Even so, separating protocol differences from differences in scanner manufacturer is difficult. 
We also could not directly compare all diagnostic groups in ADNI3, as few participants with AD were 
scanned. 
 
A more complete picture of brain changes in aging and AD would include imaging metrics from other 
modalities, such as perfusion imaging, resting state functional MRI (Wang et al., 2017), and radiotracer 
methods such as FDG-PET (Popuri et al., 2018), or amyloid- and tau-sensitive PET (Grothe et al., 2017; 
Phillips et al., 2018). Genetic and other ‘omics’ data could be analyzed as well, and may help to predict 
diagnostic classification and brain aging, when combined with other neuroimaging markers (Ding et 
al., 2018; Kauppi et al., 2018). While these data are all being collected as part of ADNI3 and other 
studies of brain aging, our focus here was on the variety of available dMRI measures, calculated using 
different protocols. With this in mind, the optimal dMRI indices to include in a multimodal study may 
be those that contribute the greatest independent information beyond that available from anatomical 
MRI and other standard imaging modalities. Multivariate methods - such as machine learning (Zhou et 
al., 2017; Wang et al., 2018) and even deep learning (Liu et al., 2017) - may also help to extract and 
capitalize on features that predict clinical decline beyond those studied here. 
 
In addition to providing a roadmap for the new ADNI3 dMRI data, these preliminary analyses show 
that despite differences in the updated dMRI protocols, diffusion indices can be pooled to detect white 
matter microstructural differences associated with aging and Alzheimer’s disease. 
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