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Abstract 

 

Single-nucleus RNA-Seq (snRNA-seq) 

enables the interrogation of cellular states in 

complex tissues that are challenging to 

dissociate, including frozen clinical samples. 

This opens the way, in principle, to large 

studies, such as those required for human 

genetics, clinical trials, or precise cell atlases 

of large organs. However, such applications 

are currently limited by batch effects, 

sequential processing, and costs. To address 

these challenges, we present an approach for 

multiplexing snRNA-seq, using sample-

barcoded antibodies against the nuclear pore 

complex to uniquely label nuclei from 

distinct samples. Comparing human brain 

cortex samples profiled in multiplex with or 

without hashing antibodies, we demonstrate 

that nucleus hashing does not significantly 

alter the recovered transcriptome profiles. 

We further developed demuxEM, a novel 

computational tool that robustly detects inter-

sample nucleus multiplets and assigns 

singlets to their samples of origin by antibody 

barcodes, and validated its accuracy using 

gender-specific gene expression, species-

mixing and natural genetic variation. Nucleus 

hashing significantly reduces cost per 

nucleus, recovering up to about 5 times as 

many single nuclei per microfluidc channel. 

Our approach provides a robust technique for 

diverse studies including tissue atlases of 

isogenic model organisms or from a single 

larger human organ, multiple biopsies or 

longitudinal samples of one donor, and large-

scale perturbation screens. 

 

Introduction 

Single-nucleus RNA-seq (snRNA-Seq) has 

become an instrumental method for 

interrogating cell types, states, and function 

in complex tissues that cannot easily be 

dissociated (1-3). This includes tissues rich in 

cell types such as neurons, adipocytes and 

skeletal muscle cells, archived frozen clinical 

materials, and tissues that must be frozen to 

register into specific coordinates. Moreover, 

the ability to handle minute frozen specimens 

(4) has made snRNA-seq a compelling option 

for large scale studies from tissue atlases (5, 

6), to longitudinal clinical trials and human 

genetics. However, to maximize the success 

of such studies there is a crucial need to 

minimize batch effects, reduce costs, and 

streamline the preparation of large numbers 

of samples.  

For single cell analysis, these goals have 

recently been elegantly achieved by 

multiplexing samples prior to processing, 

which are barcoded either through natural 
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genetic variation (7), chemical labeling (8, 9) 

or DNA-tagged antibodies (“cell hashing”) 

(10). These methods have improved technical 

inter-sample variability by early pooling, 

lower the cost per sample by overloading 

cells per microfluidic run — due to an 

increased ability to detect and discard co-

encapsulated “cell multiplets” sharing the 

same bead barcode — and reduce the number 

of parallel processing steps in large studies. 

Here, we follow on these studies by 

developing a sample multiplexing method for 

nuclei (“nucleus hashing”), using DNA-

barcoded antibodies targeting the nuclear 

pore complex. Unlike methods leveraging 

natural genetic variation (7), barcoded 

antibodies allow pooling of isogenic samples, 

such as from isogenic mouse models, 

multiple specimens from the same human 

donor, or tissues sampled and preserved from 

a given donor over time.  

Results 

We isolated nuclei from fresh-frozen murine 

or human cortical tissues, stained them with 

antibodies carrying a sample-specific DNA 

barcode, and pooled samples prior to droplet 

encapsulation for single-nucleus RNA-Seq 

(snRNA-Seq) (Figure 1a). The DNA 

barcodes contain a polyA tail, thus acting as 

artificial transcripts that register the same 

bead barcode as nuclear transcripts, coupling 

the transcription profile to the sample of 

origin.  

The additional antibody labeling step in our 

protocol did not alter the quality of 

transcriptional profiling compared to non-

hashed snRNA-seq, in a side-by-side 

comparison of a hashed (antibody labeled) vs. 

non-hashed pool of cortex nuclei derived 

from eight human donors (Supplementary 

Table 1). We combined the expression 

profiles from both hashed and non-hashed 

datasets, followed by clustering and post-hoc 

annotation with legacy cell type-specific 

signatures (Figure 1b), recovering all cell 

types previously reported for such samples 

(1) (Methods). Both hashed and non-hashed 

nuclei were similarly represented across the 

recovered cell types (Figure 1c), with an 

adjusted mutual information score of 0.0048 

between cell types and experimental 

conditions (Figure 1d, Methods), with only 

slight differences, such as a weak enrichment 

of glutamatergic neurons in the hashed 

sample, and similar cell type-specific 

numbers of recovered genes (Figure 1e). 

Each cell type had nuclei from all 8 donors 

(Figure 1f) with only slightly differing 

frequencies (Figure 1g), as expected for a 
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diverse donor cohort (1) (Supplementary 

Table 1). Notably, modifying the staining 

and washing buffers for nucleus hashing 

(Methods) compared to those used in cell 

hashing (10) improved the transcriptional 

similarity with the non-hashed control 

(Supplementary Figure 1a), and achieved a 

similar number of genes expressed per 

nucleus as the non-hashed control 

(Supplementary Figure 1b), whereas a PBS 

based buffer (used in cell hashing (10)) 

generally had poorer performance 

(Supplementary Figure 1c). We thus 

performed all experiments with these novel 

staining and washing buffers, except those 

with mouse samples. Collectively, these 

findings indicate that hashing preserves 

library quality and cell type distributions.  

To probabilistically assign each nucleus to its 

sample barcode, we developed DemuxEM, 

an Expectation-Maximization-based tool 

(Figure 2a). For each nucleus, DemuxEM 

takes as input a vector of hashtag Unique 

Molecular Identifiers (UMIs) from that 

nucleus (Figure 2a, left). The input vector is 

a mixture of signal hashtag UMIs, which 

reflect the nucleus’ sample of origin, and 

background hashtag UMIs, which likely 

reflect ambient sample barcodes. Hashtag 

UMIs from the background have different 

probabilities of matching each of the sample 

barcodes. DemuxEM estimates this 

background distribution of sample barcodes 

based on hashtag UMIs in empty droplets, 

which are likely to only contain background 

hashtag UMIs. With this background 

distribution as a reference, DemuxEM uses 

an Expectation-Maximization (EM) 

algorithm to estimate the fraction of hashtag 

UMIs from the background in the given 

droplet and then infer the signal hashtag 

UMIs by deducting the estimated background 

UMIs from the input vector. Once the signal 

has been identified, DemuxEM determines if 

this droplet encapsulated a single nucleus or 

a multiplet. For bead barcodes with low 

signal hashtag UMIs (e.g., < 10 hashtag 

UMIs), DemuxEM cannot determine the 

origin of the nucleus and marks it as 

‘unassigned’ (Methods).  

To assess our confidence in calling the 

sample origin of hashed nuclei by their 

sample barcodes, we next applied DemuxEM 

to pooled nuclei of male and female isogenic 

mice or of human and mouse, such that the 

single nucleus transcriptomes provided an 

orthogonal measure of the sample of origin. 

First, we multiplexed nuclei isolated from 

two isogenic C57BL/6J mouse cortices, 4 

technical replicates from each of a female and 
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male mouse (Methods). For DemuxEM-

identified singlets, there was a 94.8% 

agreement between DemuxEM-assigned 

sample hashtag identities and the expression 

level of Xist, a transcript predominantly 

expressed in females (Figure 2b). Next, we 

multiplexed 8 cortex samples, 4 from mouse 

and 4 from human (Supplementary Table 

1), comparing DemuxEM assignment as 

human or mouse singlets to their position in 

a “species-mixing plot” based on their 

number of RNA UMIs mapping to the human 

or mouse transcriptome (Methods, Figure 

2c). Overall, nuclei assigned by DemuxEM 

as human or mouse singlets (Figure 2c, red 

and blue, respectively) express 

predominantly human or mouse reads, 

respectively (Figure 2c, alignment along the 

Y and X axis). DemuxEM-predicted 

multiplets occur both on the species-specific 

axes for intra-species multiplets (Figure 2c, 

green (mouse) and purple (human)) and off-

axes for inter-species multiplets (Figure 2c, 

fuchsia).  

We further leveraged the hashtags to address 

the sources of ambient hashtags in a pool of 

samples. In general, nuclei dissociated from 

tissue samples may be at risk of having higher 

levels of ambient hashtags compared to 

single-cell hashing, because the cytoplasm is 

disrupted during lysis and nonspecific 

antibody binding to cytosolic content or 

tissue derived debris could contribute to the 

background. Inspection of sample-specific 

contribution to the hashtag background 

distribution showed that one of the human 

samples (S24, Supplementary Table 1) 

contributed disproportionally to the 

background (Figure 2d), suggesting that this 

sample might have been of lower quality. 

This donor sample (S24) indeed had the 

lowest RNA integrity number (RIN) and the 

highest post mortem interval (PMI) of all 

subjects in the study (Supplementary Table 

1) The ability to identify which samples 

contribute to the background is an additional 

benefit of sample hashing, and can help 

determine quality parameters for sample 

inclusion.  

Next, we validated our hashtag based 

demultiplexing with Demuxlet (7), an 

approach based on natural genetic variation. 

We observed excellent agreement between 

the two methods for the 8 human cortex 

samples (Figure 2e): on average, 98.1% of 

the nuclei identified by Demuxlet as single 

nuclei from a given donor are similarly 

identified by DemuxEM (Figure 2e). 

Moreover, demultiplexing based on the 

hashtag data enables the identification of 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2018. ; https://doi.org/10.1101/476036doi: bioRxiv preprint 

https://doi.org/10.1101/476036
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

more singlets per donor when using either 

DemuxEM or Seurat, a package that includes 

single-cell hashing analysis (11) (Figure 

2e,f, Supplementary Table 2).  

DemuxEM also offers a better estimation of 

the multiplet rate. The multiplet rate per 10X 

microfluidic channel when loading 7,000 

cells is expected to be ~3.1% (12). When 

pooling 8 samples with equal proportions, 

there are 56 possible inter-sample doublet 

configurations and 8 possible intra-sample 

ones (the proportion of higher order 

multiplets is much lower), such that 87.5% 

(56/64) of the doublets are expected to 

contain nuclei from multiple samples, which 

can be identified by our hashing strategy. 

Since we loaded 7,000 nuclei, we expect a 

detectable multiplet rate of at least 2.7% (3.1 

* 87.5%). DemuxEM, Seurat, and Demuxlet 

predicted multiplet rates of 2.8%, 6.5%, and 

20.6%, respectively (Supplementary Table 

2).  

This ability to more accurately detect 

droplets that encapsulated multiple inter-

sample nuclei allowed us to load a higher 

concentration of nuclei for a given 

undetectable multiplet rate, thereby 

significantly lowering the cost per nucleus. 

To assess how ‘over-loading’ a higher 

concentration of nuclei affects library quality 

and cell type distributions, we hashed and 

pooled another 8 human cortex samples 

(Supplementary Table 1) and loaded a 10X 

channel with 14 µl of either ~500 nuclei/µl, 

1,500 nuclei/µl, 3,000 nuclei/µl or 4,500 

nuclei/µl. When sequencing these libraries at 

similar depth per nucleus, we recovered 

similar numbers of expressed genes per 

nucleus for the different cell types (Figure 

2g,h). Moreover, nuclei from each loading 

concentration had similar transcriptional 

states (Figure 2i) and maintained the same 

relative cell type frequencies (Figure 2j). As 

expected, the proportion of multiplets 

increases with increased loading density 

(Supplementary Figure 2). Notably, 

nucleus multiplets do not typically show 

higher numbers of RNA UMIs compared to 

singlets (Supplementary Figure 2), in 

contrast to cell-hashing (10). The lowest 

overall cost per nucleus (including nucleus-

hashing antibodies, 10X library preparation 

and sequencing) was achieved for loading 

14µl of 3,000 nuclei/µl, resulting in the 

detection of 13,578 single nuclei in a single 

10X channel with an overall ~56% cost per 

nucleus reduction in our pricing structure, 

compared to the non-hashed loading density 

of 500 nuclei/µl (Methods, Supplementary 

Table 3), albeit with some increase in 

background signal. Notably, these cost 
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savings can also be achieved by splitting an 

individual sample into multiple hashed 

samples, when a larger number of nuclei per 

sample is required, while still benefitting 

from the reduced cost and reduced batch 

effects. 

 

Discussion 

Nucleus hashing is a principled method for 

multiplexing single nuclei. It reduces batch 

effects and costs and helps streamline large 

experimental studies. DemuxEM is a novel 

computational tool that enables accurate 

multiplet detection, nucleus identity 

assignment, and identification of the sources 

of ambient hashtag contamination. As nuclei, 

rather than cells, become the starting point of 

many additional methods – especially in 

epigenomics – it is likely that hashing can be 

extended to other single nucleus genomics 

assays. Together, nucleus hashing and 

DemuxEM allow us to reliably interrogate 

cell types, cellular states, and functional 

processes in complex and archived tissues at 

a much larger scale than previously possible. 
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Figure Legends 

Figure 1. Nuclei multiplexing using DNA-

barcoded antibodies targeting the nuclear 

pore complex. a. Experimental workflow. 

Nuclei are isolated from frozen tissues and 

stained with DNA-barcoded antibodies 

targeting the nuclear pore complex 

(MAb414, Biolegend). The DNA barcode 

encodes a unique sequence representing each 

tissue sample, enabling sequence-based 

identification of each nucleus after pooling 

and profiling the different samples. b-e. 

Multiplexed and non-multiplexed samples of 

human cortex from 8 postmortem donors 

yield comparable results. b. t-stochastic 

neighborhood embedding (tSNE) of single 

nucleus profiles (dots) colored by either cell 

type (b) or by type of protocol (c). Non-

hashed control sample (blue) and hashed 

sample (orange) show similar patterns. d. 

Cell type frequencies observed for hashed 

(orange) and non-hashed control (blue) 

samples. The adjusted mutual information 

(AMI) is shown in the top left. e. 

Distributions of the number of expressed 

genes (y axis, left) in each cell type (x axis) in 

b, for nuclei from hashed (orange) and non-

hashed control (blue) samples. f-g. Hashed 

single nuclei from all donors are similarly 

represented across cell type clusters. f. tSNE 

as in b colored by donor. g. Observed 

frequencies (y axis) of each cell type (x axis) 

per donor (color). The adjusted mutual 

information (AMI) is shown in the top left. 

Figure 2. Accurate sample assignment by 

DemuxEM allows efficient overloading of 

hashed samples. a. Sample assignment by 

DemuxEM. DemuxEM takes as input for 

each nucleus a count vector of hashtag 

UMIs (left) and estimates them as a sum of a 

background hashtag UMI vector in that 

nucleus (right, grey histograms) and a signal 

sample assignment hashtag UMI vector 

(right, color histograms). Shown are 

schematic examples: singlet assignment 

(top), multiplet detection (middle), and 

unassigned (bottom). b. Validation of 

DemuxEM assignment by gender mixing in 

isogenic mice. Distribution of Xist 

expression (y axis, log(TP100K+1)) from 8 

mouse-derived cortex samples (samples 1-4 

female, samples 5-8 male) that were pooled 

and demultiplexed. There is 94.8% 

agreement between DemuxEM-assigned 

sample hashtag identities and Xist 

expression among DemuxEM-detected 

singlets. c,d. DemuxEM assignments in 

species mixing of human and mouse cortex 

nuclei. c. Species mixing plot. Each nucleus 

(dot) is plotted by the number of RNA UMIs 
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aligned to pre-mRNA mouse mm10 (x axis) 

and human GRCh38 (y axis) references 

(Methods), and colored by its DemuxEM-

predicted hashtag sample identities for 

singlet human (red), singlet mouse (blue) or 

different multiplets (intra-species: green 

(mouse) and purple (human); inter-species: 

fuchsia). S24 singlets (chartreuse) and 

multiplets (orange) are colored separately 

due to its large contribution to ambient 

hashtags. d. Distribution of ambient 

hashtags matching the sample DNA barcode 

(x-axis) in the pool of 8 samples. DemuxEM 

identified S24 as a disproportionate 

contributor to the hashtag background 

distribution. e,f. Validation of hashtag-based 

assignment of nuclei by natural genetic 

variation. Shown is the number of nuclei 

classified as sample singlet, multiplets or 

unassigned (rows, columns) by either natural 

genetic variation (columns) with Demuxlet 

(7), or based on hashtag UMIs (rows), with 

DemuxEM (e) or Seurat (11) (f). 98.1% of 

nuclei identified by Demuxlet as singlets 

from a given donor are similarly identified 

by DemuxEM, and hashtag-based 

classification recovers more singlets than by 

natural variation. g-j. Nucleus hashing 

allows over-loading to reduce experimental 

costs. g. tSNE of combined data of 8 hashed 

human cortex samples profiled by snRNA-

Seq at loading concentrations of 500, 1,500, 

3,000 or 4,500 nuclei/µl. Single nucleus 

profiles (dots) are colored by cell type. h. 

Comparable distributions of the number of 

expressed genes (y axis) in each cell type (x 

axis) in g, for nuclei from each loading 

density. i. tSNE of single nucleus profiles 

(dots) as in g, colored by loading 

concentration. j. Comparable frequencies (y 

axis) across cell types in g (x axis) observed 

for different loading concentrations. 
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Supplementary Figure Legends 

Supplementary Figure 1. Buffer 

optimization for multiplexing. a. tSNE of 

single nucleus profiles from non-hashed 

control, PBS-based (PBS-SB) and ST-based 

staining buffer (ST-SB) colored by either cell 

type (left) or protocol (right). Nuclei stained 

with ST-SB buffer (green) largely overlap 

with the non-hashing control nuclei (blue), 

whereas PBS-stained nuclei (orange) show 

some separation within the clusters. b,c. 

Decreased number of expressed genes 

detected when using PBS-SB. Distribution of 

number of expressed genes (y axis) across 

cell types (x axis) for nuclei stained with ST-

SB (b, orange) or PBS-SB (c, orange) 

compared to the non-hashing control (blue). 

Except for microglia, ST-SB performs better 

across cell types.  

Supplementary Figure 2. Nuclei multiplets 

do not necessarily have a larger number of 

RNA UMIs. Distribution of number of bead 

barcodes (y axis) for beads with different 

numbers of detected UMIs (x axis), for 

singlets (blue), multiplets (orange) and 

unassigned droplets (green), in 8 hashed 

human cortex samples loaded at 

concentrations of 500, 1,500, 3,000 or 4,500 

nuclei/µl. Although the multiplet rate rises 

with increasing loading concentrations, we 

observe similar RNA UMI count 

distributions for multiplets and singlets, a 

feature not observed for single-cell hashing 

(10). 

Data availability 

All mouse data will be available from the 

Gene Expression Omnibus and the Single 

Cell Portal: 

https://portals.broadinstitute.org/single_cell . 

Processed human expression data will be 

available from the Gene Expression Omnibus 

and in the Single Cell Portal: 

https://portals.broadinstitute.org/single_cell. 

Raw human sequencing data will be 

available in the Broad DUOS system: 

https://duos.broadinstitute.org/#/home. 

DemuxEM will be released as part of the 

scCloud for single cell analysis, available at 

https://github.com/klarman-cell-

observatory/KCO   

Whole Genome Sequencing data for the 

human samples can be obtained through the 

AMP-AD Knowledge Portal that is supported 

by the National Institute of Aging 

(https://www.synapse.org/#!Synapse:syn258

0853/wiki/409840).  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2018. ; https://doi.org/10.1101/476036doi: bioRxiv preprint 

https://doi.org/10.1101/476036
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

Acknowledgments 

We thank Dr. David Bennett at RUSH 

University for the use of samples from the 

Religious Order Study (ROS) and the 

Memory and Aging Project (MAP). We 

thank Leslie Gaffney, Anna Hupalowska and 

Jennifer Rood for help with figure and paper 

preparation. This work was supported by the 

NIH BRAIN Initiative grant U19MH114821 

and the Klarman Cell Observatory. The 

ROSMAP sample collection and data used in 

this manuscript were supported by U01 

AG046152, RF1 AG057473, and RF1 

AG015819. 

Author Contributions 

J.T.G. and A.R. conceived the study and 

designed experiments. B.L., and A.R devised 

analyses and B.L. developed computational 

methods. B.L., J.T.G. and A.R analyzed the 

data. X.Z and B.Y validated and provided 

hashing antibodies. J.T.G., C.M., N.V.W, 

E.D, A.K and J.W. conducted the 

experiments. L.N, J.W, J.T.G and D.D. 

carried out Illumina library preparation. 

O.R.R. and A.R. supervised work. J.T.G, 

B.L. and A.R. wrote the paper with input 

from all the authors. 

Materials and Methods 

Human samples. The study was conducted 

under IRB approval L91020181. We used 

frozen brain tissue from the dorsolateral 

prefrontal cortex (DLPFC) banked by two 

prospective studies of aging: the Religious 

Order Study (ROS) and the Memory and 

Aging Project (MAP), which recruit non-

demented older individuals (age >65) (13). 

We selected samples for which Whole 

Genome Sequencing data was already 

available (14). We selected 10 males and 10 

females (Supplementary Table 1).  

 

Mice. All mouse work was performed in 

accordance with the Institutional Animal 

Care and Use Committees (IACUC) and 

relevant guidelines at the Broad Institute and 

MIT, with protocol 0122-10-16. Adult 

female and male C57BL/6J mice, obtained 

from the Jackson Laboratory (Bar Harbor, 

ME), were housed under specific-pathogen-

free (SPF) conditions at the Broad Institute, 

MIT animal facilities. 

  

Mouse tissue collection. Brains from 

C57BL/6J mice were obtained and split 

vertically along the sagittal midline. The 

cerebral cortices were separated and excess 

white matter was removed. Cortices were 

separated into microcentrifuge tubes and 
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frozen on dry ice. Frozen tissue was stored at 

−80 °C. 

 

Nuclei isolation, antibody tagging, and 

snRNA-seq. A fully detailed, step-by-step 

protocol, is described in as the Protocol 

below. Briefly, we thawed and minced tissue, 

dounced it in lysis buffer, filtered the lysate, 

and resuspended it in staining buffer. A brief 

incubation with Fc receptor blocking solution 

is followed by incubation with the TotalSeq 

Hashtag antibodies and 3 washes in ST-SB. 

Next, nuclei were counted and their 

concentration normalized to the desired 

loading concentration and pooled right before 

running the 10X Genomics single-cell 3’ v2 

assay (with minor adjustments listed in the 

detailed protocol), followed by library 

preparation and Illumina sequencing. 

 

Buffer optimization. In cell-hashing 

experiments (10), staining is performed with 

a PBS-based staining buffer (SB: 2% BSA, 

0.02% Tween-20 in PBS). We initially used 

this buffer during staining for nucleus 

hashing as well (gender-specific expression 

and species-mixing experiments) (10). To 

further optimize our protocol, we compared 

both a PBS-based staining buffer and a Tris-

based staining buffer (ST-SB, see protocol 

below, 2% BSA, 0.02% Tween-20, 10mM 

Tris, 146mM NaCl, 1mM CaCl2, 21mM 

MgCl2) to a non-hashed control observing 

better performance in ST-SB, in terms of 

overall agreement with non-hashed controls 

and in the number of genes recovered per 

nucleus (Supplementary Figure 1). We 

therefore recommend to perform the staining 

and washing steps of nucleus-hashing in ST-

SB (see detailed Protocol below). 

 

SnRNA-Seq data analysis. Starting from 

BCL files obtained from Illumina 

sequencing, we ran cellranger mkfastq to 

extract sequence reads in FASTQ format, 

followed by cellranger count to generate 

gene-count matrices from the FASTQ files. 

Since our data are from single nuclei, we built 

and aligned reads to genome references with 

pre-mRNA annotations, which account for 

both exons and introns. Pre-mRNA 

annotations improve the number of detected 

genes significantly compared to a reference 

with only exon annotations (15). For human 

and mouse data, we used the GRCh38 and 

mm10 genome references, respectively. To 

compare samples of interest (e.g., different 

loading concentrations), we pooled their 

gene-count matrices together, and filtered out 

low-quality nuclei identified based on any 

one of the following criteria: (1) a total 

number of expressed genes < 200; (2) a total 
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number of expressed genes >= 6,000; or (3) a 

percentage of RNA UMIs from 

mitochondrial genes >= 10%. We performed 

dimensionality reduction, clustering and 

visualization on the filtered count matrix as 

previously described (16, 17). Specifically, 

we selected highly variable genes as 

previously described (18) with a z-score 

cutoff at 0.5, performed PCA and selected the 

top 50 principal components (PCs) (19), 

clustered the data based on the 50 selected 

PCs using the Louvain community detection 

algorithm (20) with a resolution at 1.3. We 

identified cluster-specific gene expression by 

differential expression analyses between 

nuclei within the cluster and outside of the 

cluster (16) using Welch’s t-test and Fisher’s 

exact test; controlled false discovery rates 

(FDR) at 5% using the Benjamini-Hochberg 

procedure (21), and annotated putative cell 

types based on legacy signatures of human 

and mouse brain cells. We visualized the 

reduced dimensionality data using tSNE (22) 

with perplexity at 30. Note that in 

experiments 1 and 4 (Supplementary Table 

1), we identified one cluster that did not 

express any known cell type markers and had 

the lowest median number of RNA UMIs 

among all clusters. We removed it from 

further analysis, and repeated the above 

analysis workflow, except the low-quality 

nucleus filtration step. 

 

DemuxEM. Suppose we multiplex 𝑛 

samples together. For each droplet, we have 

a count vector of hashtag UMIs from each 

sample, (𝑐$,⋯ , 𝑐'). Each hashtag UMI in the 

vector can either originate from a properly 

stained nuclear pore complex (signal) or 

come from ambient hashtag UMIs 

(background). We define Θ =

(𝜃,, 𝜃$,⋯ , 𝜃'), where 𝜃, is the probability 

that a hashtag UMI is from the background, 

and 𝜃$,⋯ , 𝜃' are the probabilities that the 

hashtag UMI is true signal 1,…,n. If a 

hashtag UMI is from the background, we 

denote 𝑃 = (𝑝$,⋯ , 𝑝') as the probabilities 

that this hashtag UMI matches the barcode 

sequence of samples 1,⋯ , 𝑛 . In addition, we 

require ∑ 𝑝1'
12$ = 1.  

 

The probability of generating a hashtag UMI 

that matches sample 𝑖’s barcode sequence is:  

𝑃(ℎ𝑎𝑠ℎ𝑡𝑎𝑔 = 𝑖) = 𝜃, ⋅ 𝑝1 + 𝜃1 

And the log-likelihood of generating the 

hashtag UMI vector is: 

𝐿(Θ) = <𝑐1 log(𝜃,𝑝1 + 𝜃1)
'

12$

+ log
(∑ 𝑐1'

12$ )!
∏ 𝑐1!'
12$
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DemuxEM estimates two sets of parameters: 

(1) the background distribution 𝑃 =

(𝑝$,⋯ , 𝑝') , and (2) Θ = (𝜃,, 𝜃$,⋯ , 𝜃').  

 

We estimate the background distribution 

using empty droplets. To identify empty 

droplets, we first collect all bead barcodes 

with at least one hashtag UMI. We then 

calculate the total number of hashtag UMIs 

each collected bead barcode has and 

performed a K-means clustering with k = 2 

on the total hashtag UMIs. The cluster with a 

lower mean hashtag UMI number was 

identified as empty droplets. If we denote the 

set of identified empty droplets as 𝐵, we can 

estimate the background distribution as 

follows: 

𝑝1 =
∑ CDED∈G

∑ ∑ CDEH
EIJD∈G

, 

where 𝑐K1 is the number of hashtag UMIs 

matching sample 𝑖 in bead barcode 𝑗. 

 

We estimate Θ using an Expectation-

Maximization algorithm. First, we impose a 

sparse Dirichlet prior on Θ, 

Θ~𝐷𝑖𝑟(1, 0,⋯ , 0), to encourage the 

background distribution to explain as much 

hashtag UMIs as possible. We then follow 

the EM procedure below: 

 

- E step: 

𝑧1 = 𝑐1 ⋅
𝜃1

𝜃,𝑝1 + 𝜃1
,									𝑖 = 1,⋯ , 𝑛 

 

𝑧, =<𝑐1 ⋅
𝜃,𝑝1

𝜃,𝑝1 + 𝜃1

'

12$

 

- M step: 

 

𝜃1 =
max(𝑧1 − 1,0)

𝑧, + ∑ max(𝑧1 − 1,0)'
12$

,									𝑖

= 1,⋯ , 𝑛 

𝜃, =
𝑧,

𝑧, + ∑ max(𝑧1 − 1,0)'
12$

 

 

Once we have Θ estimated, we first calculate 

the expected number of signal hashtag UMIs:  

𝑐W = (1 − 𝜃,) ⋅<𝑐1

'

12$

 

If 𝑐W < 10, the hashtag UMI vector contains 

too little signal and thus we mark this droplet 

as ‘unassigned’. Otherwise, we count the 

number of samples that has at least 10% 

signal hashtag UMIs, | Z𝑖[ \E
$]\^

≥ 0.1a |. If 

this number is 1, the droplet is a singlet. 

Otherwise, it is a multiplet.  

 

Generation of the “species-mixing” plot. 

We only used RNA UMIs that were 

confirmed by at least 2 reads to generate the 

“species-mixing” plot. Requiring at least 2 

reads to confirm a RNA UMI helps filter 
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potentially erroneous RNA UMIs produced 

from PCR and sequencing errors. 

 

Estimation of cost per single nucleus in the 

overloading experiment. We estimate the 

reduction in cost per single nucleus for a 

given pricing structure, assuming 𝑋 for 

loading one 10X channel, 𝑌 for sequencing 

one HiSeq lane, and 𝑍 for the TotalSeq nuclei 

hashtag cost per hashed sample, to allow 

readers to determine the costs for their own 

pricing structures. We sequenced 4 HiSeq 

lanes in total for four overloading 

experiments, with proportions roughly as 

1: 3: 6: 9 (500 nuc/µl:1,500 nuc/µl:3,000 

nuc/µl:4,500 nuc/µl). Based on these values, 

the sequencing costs for the four settings are 
j
$k
𝑌, $l

$k
𝑌, lj

$k
𝑌, and mn

$k
𝑌 respectively. Adding 

the 10X channel cost of 𝑋, and the TotalSeq 

nuclei hashtag costs of 8𝑍, the final cost for 

each setting is 𝑋 + j
$k
𝑌 + 8𝑍, 𝑋 + $l

$k
𝑌 +

8𝑍, 𝑋 + lj
$k
𝑌 + 8𝑍, and 𝑋 + mn

$k
𝑌 + 8𝑍, 

respectively. We then divide each cost by the 

total number of singlets we detected 

(Supplementary Table 3) to obtain cost per 

single nucleus in each overloading setting.  
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Detailed Protocol 

Materials 

NAME CATALOG # VENDOR 

BSA-Molecular Biology Grade - 12 mg B9000S New England 

Biolabs 

Dounce homogenizers D8938-1SET Sigma 

Pre-Separation Filters (30 µm) 130-041-407 
 

Miltenyi Biotec 

Pre-Separation Filters (20 µm) 130-101-812 Miltenyi Biotec 

Eppendorf® LoBind microcentrifuge tubes Z666505-

100EA 

Sigma Aldrich 

Human TruStain FcX™ 422302 BioLegend 

Beckman Coulter SPRI SELECT REAGENT 5ML NC0406406 Fisher Scientific 

KAPA HiFi HotStart ReadyMix NC0465187 Fisher Scientific 

 

1. Prepare buffers fresh 

NP40 Lysis Buffer (NST): 0.1% NP40, 

10mM Tris, 146mM NaCl, 1mM CaCl2, 

21mM MgCl2, 40U/mL of RNAse inhibitor 

ST Wash Buffer: (10mM Tris, 146mM NaCl, 

1mM CaCl2, 21mM MgCl2), 0.01% BSA 

(NEB B9000S), 40U/mL of RNAse inhibitor 

ST Staining buffer (ST-SB): 2%BSA, 

0.02%Tween-20, 10mM Tris, 146mM NaCl, 

1mM CaCl2, 21mM MgCl2) 

2. Tissue lysis and homogenizing 

Nuclei were extracted as previously 

described (1) with the following minor 

modifications: 
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a)    For each sample to barcode and 

pool: prepare a separate homogenizer 

and douncing pestles A & B. Add 1ml 

NST buffer to the dounce 

homogenizer and keep on ice. 

Note: Keep tissues/homogenate and 

buffers on ice throughout the 

protocol. Pre-cool the centrifuge to 

4C and keep at 4C for all steps. 

b) Cut a 50-200mg section of frozen 

brain tissue with a scalpel and dissect 

to remove white matter and 

vasculature.  Mince tissue and add it 

to the homogenizer.   

c) with a total volume of 1mL, dounce 

20 times with pestle A followed by 20 

times with pestle B. 

d) Add 1ml of ST buffer, filter 

through 30µm filters (Milentyi Biotec 

130-041-407) and transfer filtered 

homogenate to a 15mL tube. 

e) Rinse the homogenizer with 3x 1ml 

of ST buffer, filter through 30µm 

filters and add to the filtered 

homogenate to add up to a final 

volume of 5ml. 

f) Immediately spin down at 500g for 

5 mins at 4C to pellet the nuclei in 

swing bucket rotor 

g) Remove supernatant 

h) Resuspend nuclei in 200µl of ST-

SB, filter with 20um (miltenyibiotec 

130-101-812) and transfer to a lo-

bind 1.5ml tube (Sigma-Aldrich, 

Z666505-100EA) 

Count nuclei 

Nuclei were counted using the Nexcelom 

Cellometer Vision 10x objective and a DAPI 

stain.   

a) DAPI was diluted to 2.5µg/µl in ST 

Buffer.   

b) 20µl of the DAPI was pipet mixed 

with 20ul of the nuclei suspension 

and 20µl was loaded onto a 

cellometer cell counting chamber of 

standard thickness (Nexcelom 

catalog number: CHT4-SD100-002) 

and counted using a custom assay 

with the dilution factor set to 2.   

Hashtag antibody staining 

 Note: this part mirrors the cell-hashing 

protocol (10), with very minor differences. 
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a) Add 10 µl Fc Blocking reagent 

(Biolegend 422302) per 1-2M of 

nuclei in 100µl of ST-SB/nuclei and 

incubate for 5 minutes at 4C. 

b) Add 1 µg of single nuclei hashing 

antibody per 100µl of ST-SB/nuclei 

mix and incubate for 10 minutes at 

4C.  

c) Wash nuclei 3 times with 1.2 mL ST-

SB, spin in swinging bucket rotor for 

5 minutes at 500g and 4˚C. 

d) Resuspend nuclei in ST-SB at 500-

3,000 cells/µl.   

e) Filter nuclei through MACS Pre-

Separation Filters (20µm), and count 

nuclei to verify concentration after 

filtration.  Adjust to desired 

concentration. 

f) Pool all samples at desired 

proportions and immediately proceed 

to next step. 

 

10X Genomics single-nuclei sequencing 

Use 14µl of pooled sample as input into the 

10X Genomics single-cell 3’ v2 assay and 

process as described until before cDNA 

amplification. 

 

Library preparation 

a) To increase yield of HTO products 

during the 10X Genomics cDNA 

amplification step: Add 1µl of 

2µM HTO PCR additive primer 

(5’GTGACTGGAGTTCAGACGTG

TGC*T*C) 

b) After cDNA amplification: Separate 

HTO-derived cDNAs (<180bp) and 

mRNA-derived cDNAs (>300bp). 

Perform SPRI selection to separate 

mRNA-derived and antibody-oligo-

derived cDNAs. DO NOT DISCARD 

SUPERNATANT FROM 0.6X SPRI. 

THIS CONTAINS THE 

HASHTAGS. 

c) Add 0.6X SPRI (Beckman Coulter, 

B23317) to cDNA reaction as 

described in 10X Genomics protocol.  

d) Incubate 5 minutes and place on 

magnet. Supernatant contains 

hashtags, and beads contain full 

length mRNA-derived cDNAs. 

 

Library preparation for mRNA-derived 

cDNA >300bp (bead fraction) 

Proceed with standard 10X protocol for 

cDNA sequencing library preparation. 
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Library preparation for mRNA-derived 

cDNA <300bp (supernatant fraction) 

Purify Hashtags using two 2X SPRI 

purifications per manufacturer protocol: 

● Add 1.4X SPRI to supernatant to obtain a 

final SPRI volume of 2X SPRI. 

● Transfer entire volume into a low-bind 

1.5mL tube. 

● Incubate 10 minutes at room temperature. 

● Place tube on magnet and wait ~2 minutes 

until solution is clear. 

● Carefully remove and discard the 

supernatant. 

● Add 400 µl 80% ethanol to the tube without 

disturbing the pellet and stand for 30 seconds 

(only one ethanol wash). 

● Carefully remove and discard the ethanol 

wash. 

● Centrifuge tube briefly and return it to 

magnet. 

● Remove and discard any remaining 

ethanol. 

● Resuspend beads in 50 µl water. 

● Perform another round of 2X SPRI 

purification by adding 100 µl SPRI reagent 

directly onto resuspended beads. 

● Mix by pipetting, and incubate 10 minutes 

at room temperature. 

● Place tube on magnet and wait ~2 minutes 

until solution is clear. 

● Carefully remove and discard the 

supernatant. 

● Add 200 µl 80% ethanol to the tube without 

disturbing the pellet and let stand for 30 

seconds (first Ethanol wash). 

● Carefully remove and discard the ethanol 

wash. 

● Add 200 µl 80% ethanol to the tube without 

disturbing the pellet and let stand for 30 

seconds (second Ethanol wash). 

● Carefully remove and discard the ethanol 

wash. 

● Centrifuge tube briefly and return it to 

magnet. 

● Remove and discard any remaining ethanol 

and allow the beads to air dry for 2 minutes 

(do not over-dry beads). 

● Resuspend beads in 90 µl water. 

● Mix vigorously by pipetting and incubate 

at room temperature for 5 minutes. 

● Place tube on magnet and transfer clear 

supernatant into PCR well. 

● Prepare 100µL PCR reaction with purified 

small fraction: 

 

o 45 µl purified Hashtag fraction 

o 50 µl 2x KAPA Hifi PCR Master 

Mix. 

o 2.5 µl TruSeq DNA D7xx_s primer 

(containing i7 index) 10 µM. (i.e. 

D701: 5’CAAGCAGAAGACGGCA
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TACGAGATCGAGTAAT

GTGACTGGAGTTCAGACGTGT*

G*C) 

o 2.5 µl SI PCR oligo at 10 µM (SI 

PCR: 5’AATGATACGGCGACCA

CCGAGATCTACACTCTTTCCCT

ACACGACGC*T*C) 

 

Cycling conditions: 

95˚C 3 min 

95˚C 20 sec | 

64˚C 30 sec | ~ 8 cycles 

72˚C 20 sec | 

72˚C 5 min 

 

Perform 1.6X SPRI purification by adding 

160 µl SPRI reagent. 

● Incubate 5 minutes at room temperature. 

● Place tube on magnet and wait 1 minute 

until solution is clear. 

● Carefully remove and discard the 

supernatant. 

● Add 200 µl 80% ethanol to the tube without 

disturbing the pellet and let stand for 30 

seconds (first ethanol wash). 

● Carefully remove and discard the ethanol 

wash. 

● Add 200 µl 80% ethanol to the tube without 

disturbing the pellet and let stand for 30 

seconds (second ethanol wash). 

● Carefully remove and discard the ethanol 

wash. 

● Centrifuge tube briefly and return it to 

magnet. 

● Remove and discard any remaining ethanol 

and allow the beads to air dry for 2 minutes. 

● Resuspend beads in 20 µl water. 

● Pipette mix vigorously and incubate at 

room temperature for 5 minutes. 

● Place tube on magnet and transfer clear 

supernatant to PCR tube. 

Quantify library 

Quantify library by standard methods (QuBit, 

BioAnalyzer). Hashtag library will be around 

180 bp. 

Sequence 

Combine mRNA library and HTO library 

(~90% mRNA to 10% HTO), and sequence 

with the regular 10X RNA-seq read 

structure:  

o Read 1 = 26  

o Read 2 = 55 bp  

o Index 1 = 8 bp  

o Index 2 = n/a 
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Fig S1
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Fig S2
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