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Abstract

Placing a new species on an existing phylogeny has increasing relevance to several1

applications. Placement can be used to update phylogenies in a scalable fashion and can2

help identify unknown query samples using (meta-)barcoding, skimming, or metagenomic3

data. Maximum likelihood (ML) methods of phylogenetic placement exist, but these4

methods are not scalable to reference trees with many thousands of leaves, limiting their5

ability to enjoy benefits of dense taxon sampling in modern reference libraries. They also6

rely on assembled sequences for the reference set and aligned sequences for the query.7

Thus, ML methods cannot analyze datasets where the reference consists of unassembled8

reads, a scenario relevant to emerging applications of genome-skimming for sample9

identification. We introduce APPLES, a distance-based method for phylogenetic10

placement. Compared to ML, APPLES is an order of magnitude faster and more memory11

efficient, and unlike ML, it is able to place on large backbone trees (tested for up to12

200,000 leaves). We show that using dense references improves accuracy substantially so13

that APPLES on dense trees is more accurate than ML on sparser trees, where it can run.14

Finally, APPLES can accurately identify samples without assembled reference or aligned15

queries using kmer-based distances, a scenario that ML cannot handle. APPLES is16

available publically at github.com/balabanmetin/apples.17
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19

Phylogenetic placement is the problem of finding the optimal position for a new20

query species on an existing backbone (or, reference) tree. Placement, as opposed to a21

de novo reconstruction of the full phylogeny, has two advantages. In some applications22

(discussed below), placement is all that is needed, and in terms of accuracy, it is as good23

as, and perhaps even better than, de novo reconstruction. Moreover, placement can be24

more scalable than de novo reconstruction when dealing with very large trees.25

Earlier research on placement was motivated by scalability. For example, placement26

is used in greedy algorithms that start with an empty tree and add sequences sequentially27

(e.g., Felsenstein, 1981; Desper and Gascuel, 2002). Each placement requires polynomial28

(often linear) time with respect to the size of the backbone, and thus, these greedy29

algorithms are scalable (often requiring quadratic time). Despite computational challenges30

(Warnow, 2017), there has been much progress in the de novo reconstruction of ultra-large31

trees (e.g., thousands to millions of sequences) using both maximum likelihood (ML) (e.g.,32

Price et al., 2010; Nguyen et al., 2015) and the distance-based (e.g., Lefort et al., 2015)33

approaches. However, these large-scale reconstructions require significant resources. As new34

sequences continually become available, placement can be used to update existing trees35

without repeating previous computations on full dataset.36

More recently, placement has found a new application in sample identification:37

given one or more query sequences of unknown origins, detect the identity of the (set of)38

organism(s) that could have generated that sequence. These identifications can be made39

easily using sequence matching tools such as BLAST (Altschul et al., 1990) when the40

query either exactly matches or is very close to a sequence in the reference library.41

However, when the sequence is novel (i.e., has lowered similarity to known sequences in the42

reference), this closest match approach is not sufficiently accurate (Koski and Golding,43

2001), leading some researchers to adopt a phylogenetic approach (Sunagawa et al., 2013;44
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APPLES 3

Nguyen et al., 2014). Sample identification is essential to the study of mixed environmental45

samples, especially of the microbiome, both using 16S profiling (e.g., Gill et al., 2006;46

Krause et al., 2008) and metagenomics (e.g., von Mering et al., 2007). It is also relevant to47

barcoding (Hebert et al., 2003) and meta-barcoding (Clarke et al., 2014; Bush et al., 2017)48

and quantification of biodiversity (e.g., Findley et al., 2013). Driven by applications to49

microbiome profiling, placement tools like pplacer (Matsen et al., 2010) and EPA(-ng)50

(Berger et al., 2011; Barbera et al., 2018) have been developed. Researchers have also51

developed methods for aligning query sequence (e.g., Berger and Stamatakis, 2011;52

Mirarab et al., 2012) and for downstream steps (e.g., Stark et al., 2010; Matsen and Evans,53

2013). These publications have made a strong case that for sample identification,54

placement is sufficient (i.e., de novo is not needed). Moreover, some studies (e.g., Janssen55

et al., 2018) have shown that when dealing with fragmentary reads typically found in56

microbiome samples, placement can be more accurate than de novo construction and can57

lead to improved associations of microbiome with clinical information.58

Existing phylogenetic placement methods have focused on the ML inference of the59

best placement – a successful approach, which nevertheless, suffers from two shortcomings.60

On the one hand, ML can only be applied when the reference species are assembled into61

full-length sequences (e.g., an entire gene) and are aligned; however, in new applications62

that we will describe, assembling (and hence aligning) the reference set is not possible. On63

the other hand, ML, while somewhat scalable, is still computationally demanding,64

especially in memory usage, and cannot place on backbone trees with many thousands of65

leaves. As the density of reference substantially impacts the accuracy and resolution of66

placement, this inability to use ultra-large trees as backbone also limits accuracy. This67

limitation has motivated alternative methods using local sensitive hashing (Brown and68

Truszkowski, 2013) and divide-and-conquer (Mirarab et al., 2012).69

Assembly-free and alignment-free sample identification using genome-skimming70

(Dodsworth, 2015) can also benefit from phylogenetic placement. A genome-skim is a71
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4 BALABAN ET AL.

shut-gun sample of the genome sequenced at low coverage (e.g., 1X) – so low that72

assembling the nuclear genome is not possible (though, mitochondrial or plastid genomes73

can often be assembled). Genome-skimming promises to replace traditional marker-based74

barcoding of biological samples (Coissac et al., 2016) but limiting analyses to organelle75

genome can limit resolution. Sarmashghi et al. (2019) have recently shown that using76

shared k-mers, the distance between two unassembled genome-skims with low coverage can77

be accurately estimated. This approach, unlike assembling organelle genomes, uses data78

from the entire nuclear genome and hence promises to provide a higher resolution (e.g., at79

species or sub-species levels) while keeping the low sequencing cost. However, ML and80

other methods that require assembled sequences cannot analyze genome-skims, where both81

the reference and the query species are unassembled genome-wide bags of reads.82

Distance-based approaches to phylogenetics are well-studied, but no existing tool83

can perform distance-based placement of a query sequence on a given backbone. The84

distance-based approach promises to solve both shortcomings of ML methods.85

Distance-based methods are computationally efficient and do not require assemblies. They86

only need distances (however computed). Thus, they can take as input assembly-free87

estimates of genomic distance estimated from low coverage genome-skims using Skmer88

(Sarmashghi et al., 2019) or other alternatives (Haubold, 2014; Leimeister and89

Morgenstern, 2014; Leimeister et al., 2017; Yi and Jin, 2013; Benoit et al., 2016; Fan et al.,90

2015; Ondov et al., 2016; Jain et al., 2017). While alignment-based phylogenetics has been91

traditionally more accurate than alignment-free methods when both methods are possible,92

in these new scenarios, only alignment-free methods are applicable.93

Here, we introduce a new method for distance-based phylogenetic placement called94

APPLES (Accurate Phylogenetic Placement using LEast Squares). APPLES uses dynamic95

programming to find the optimal distance-based placement of a sequence with running96

time and memory usage that scale linearly with the size of the backbone tree. We test97

APPLES in simulations and on real data, both for alignment-free and aligned scenarios.98
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APPLES 5

Materials and Methods99

Problem Statement.100

Notations. Let an unrooted tree T = (V,E) be a weighted connected acyclic101

undirected graph with leaves denoted by L = {1 · · ·n}. We let T ∗ be the rooting of T on a102

leaf 1 obtained by directing all edges away from 1. For node u ∈ V , let p(u) denote its103

parent, c(u) denote its set of children, sib(u) denote its siblings, and g(u) denote the set of104

leaves at or below u (i.e., those that have u on their path to the root), all with respect to105

T ∗. Also let l(u) denote the length of the edge (p(u), u).106

Distances. The tree T defines an n×n matrix where each entry dij(T ) corresponds

to the path length between leaves i and j. We further generalize this definition so that

duv(T
∗) indicates the length of the undirected path between any two nodes of T ∗ (when

clear, we simply write duv). Given some input data, we can compute a matrix of all pairwise

sequence distances ∆, where the entry δij indicates the dissimilarity between species i and

j. When the sequence distance δij is computed using (the correct) phylogenetic model, it

will be a noisy but statistically consistent estimate of the tree distance dij(T ) (Felsenstein,

2003). Given these “phylogenetically corrected” distances (e.g. 3
4

ln(1− 4
3
h) is the corrected

hamming distance h under the Jukes and Cantor (1969) model), we can define

optimization problems to recover the tree that best fits the distances. A natural choice is

minimizing the (weighted) least square difference between tree and sequence distances:

Q∗(T ) =
n∑

i=1

n∑
j=1

wij(δij − dij(T ))2 . (1)

Here, weights (e.g., wij) are used to reduce the impact of large distances (expected to have107

high variance). A general weighting schema can be defined as wqi = δ−kqi for a constant108

value k ∈ N. Standard choices of k include k = 0 for the ordinary least squares (OLS)109

method of Cavalli-Sforza and Edwards 1967, k = 1 due to Beyer et al. 1974 (BE), and110

k = 2 due to Fitch and Margoliash 1967 (FM).111
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Fig. 1. Any placement of q can be characterized as a tree P (u, x1, x2), shown here. The backbone tree T ∗ is an
arborescence on leaves L = {1 . . . n}, rooted at leaf 1. Query taxon q is added on the edge between u and p(u),
creating a node t. All placements on this edge are characterized by x1, the length of the pendant branch, and x2,
the distance between t and p(u).

Finding arg minT Q
∗(T ) is NP-Complete (Day, 1987). However, decades of research112

has produced heuristics like neighbor-joining (Saitou and Nei, 1987), alternative113

formulations like (balanced) minimum evolution (Cavalli-Sforza and Edwards, 1967;114

Desper and Gascuel, 2002), and several effective tools for solving the problem heuristically115

(e.g., FastME by Lefort et al. 2015, DAMBE by Xia 2018, and Ninja by Wheeler 2009).116

Phylogenetic placement. We let P (u, x1, x2) be the tree obtained by adding a117

query taxon q on an edge (p(u), u), creating three edges (t, q), (p(u), t), and (t, u), with118

weights x1, x2, and l(u)− x2, respectively (Fig. 1). When clear, we simply write P and119

note that P induces T both in topology and branch length. We now define the problem.120

Least Squares Phylogenetic Placement (LSPP).121

Input: A backbone tree T on L, a query species q, and a vector ∆q∗ with elements δqi122

giving sequence distances between q and every species i ∈ L;123

Output: The placement tree P that adds q on T and minimizes

Q(P ) =
n∑

i=1

wqi(δqi − dqi(P ))2 (2)
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Linear Time Solution for LSPP124

The number of possible placements of q is 2n− 3. Therefore, LSPP can be solved by125

simply iterating over all the topologies, optimizing the score for that branch, and returning126

the placement with the minimum least square error. A naive algorithm can accomplish this127

in Θ(n2) running time by optimizing Eq. 2 for each of the 2n− 3 branches. However, using128

dynamic programming, the optimal solution can be found in linear time.129

Theorem 1 The LSPP problem can be solved with Θ(n) running time and memory.130

The proof (given in Appendix A) follows easily from three lemmas that we next131

state. The algorithm starts with precomputing a fixed-size set of values for each nodes. For132

any node u and exponents a ∈ Z and b ∈ N+, let S(a, b, u) =
∑

i∈g(u) δ
a
qid

b
ui and for b = 0,133

let S(a, 0, u) = S ′(a, u) =
∑

i∈g(u) δ
a
qi. Note that S ′(0, u) = |g(u)|. Similarly, for u ∈ V \ {1},134

let R(a, b, u) =
∑

i/∈g(u) δ
a
qid

b
p(u)i for b > 0 and let R(a, 0, u) = R′(a, u) =

∑
i/∈g(u) δ

a
qi.135

Lemma 2 The set of all S(a, b, u) and R(a, b, u) values can be precomputed in Θ(n) time136

with two tree traversals using the dynamic programming given by:137

S(a, b, u) =


δaqu u ∈ L \ {1} & b = 0

0 u ∈ L \ {1} & b 6= 0
b∑

j=0

∑
v∈c(u)

l(v)j
(
b
j

)
S(a, b− j, v) u /∈ L \ {1}

(3)

R(a, b, u) =


δaq1 u = 1′ = c(1) & b = 0

0 u = 1′ = c(1) & b 6= 0
b∑

j=0

(
l(p(u))j

(
b
j

)
R(a, b− j, p(u)) +

∑
v∈sib(u)

l(v)j
(
b
j

)
S(a, b− j, v)

)
u /∈ {1, 1′}

(4)

Lemma 3 Equation 2 can be rearranged (see Eq. S2 in Appendix A) such that computing138

Q(P ) for a given P = P (u, x1, x2) requires a constant time computation using S(a, b, u)139

and R(a, b, u) values for −k 6 a 6 2− k and 0 6 b 6 2.140

Thus, after a linear time precomputation, we can compute the error for any given141

placement in constant time. It remains to show that for each node, the optimal placement142

on the branch above it (e.g., x1 and x2) can be computed in constant time.143
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8 BALABAN ET AL.

Lemma 4 For a fixed node u ∈ V \ {1}, if (x̂1, x̂2) = arg minx1,x2
Q(P (u, x1, x2)), then144

[
R′(−k, u) + S ′(−k, u) R′(−k, u)− S ′(−k, u)
R′(−k, u)− S ′(−k, u) R′(−k, u) + S ′(−k, u)

]
·
[
x̂1
x̂2

]
=[

R′(1− k, u) + S ′(1− k, u)− l(u)S ′(−k, u)−R(−k, 1, u)− S(−k, 1, u)
R′(1− k, u)− S ′(1− k, u) + l(u)S ′(−k, u)−R(−k, 1, u) + S(−k, 1, u)

] (5)

and hence x̂1, x̂2 can be computed in constant time.145

Non-negative branch lengths. The solution to Equation 5 does not necessarily146

conform to constraints 0 6 x1 and 0 6 x2 6 l(u). However, the following lemma (proof in147

Appendix A) allows us to easily impose the constraints by choosing optimal boundary148

points when unrestricted solutions fall outside boundaries.149

Lemma 5 With respect to variables x1 and x2, Q(P (u, x1, x2)) is a convex function.150

Minimum evolution An alternative to directly using MLSE (Eq. 1) is the151

minimum evolution (ME) principle (Cavalli-Sforza and Edwards, 1967; Rzhetsky and Nei,152

1992). Our algorithm can also optimize the ME criterion: after computing x1 and x2 by153

optimizing MLSE for each node u, we choose the placement with the minimum total154

branch length. This is equivalent to using arg minu x1, since the value of x2 does not155

contribute to total branch length. Other solution for ME placement exists (Desper and156

Gascuel, 2002), a topic we return to in the Discussion section.157

Hybrid. We have observed cases where ME is correct more often than MLSE, but when it158

is wrong, unlike MLSE, it has a relatively high error. This observation led us to design a159

hybrid approach. After computing x1 and x2 for all branches, we first select the top log2(n)160

edges with minimum Q(P (u, x1, x2)) values (this requires Θ(n log log n) time). Among this161

set of edges, we place the query on the edge satisfying the ME criteria.162
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Datasets163

We benchmark accuracy and scalability of APPLES in two settings: sample164

identification using assembly-free genome-skims on real biological data and placement165

using aligned sequences on simulated data.166

Real genome-skim datasets for the assembly-free scenario167

Columbicola genome-skims. We use a set of 61 genome-skims by Boyd et al. (2017),168

including 45 known lice species (some represented multiple times) and 7 undescribed169

species. We generate lower coverage skims of 0.1Gb or 0.5Gb by randomly subsampling the170

reads from the sequence read archives (SRA) provided by the original publication (NCBI171

BioProject PRJNA296666). We use BBTools (Bushnell, 2014) to filter subsampled reads172

for adapters and contaminants and remove duplicated reads. Since this dataset is not173

assembled, the coverage of the genome-skims is unknown; Skmer estimates the coverage to174

be between 0.2X and 1X for 0.1Gb samples (and 5 times that coverage with 0.5Gb).175

Anopheles and Drosophila datasets. We also use two insect datasets used by Sarmashghi176

et al. (2019): a dataset of 22 Anopheles and a dataset of 21 Drosophila genomes (Table S1),177

both obtained from InsectBase (Yin et al., 2016). For both datasets, genome-skims with178

0.1Gb and 0.5Gb sequence were generated from the assemblies using the short-read179

simulator tool ART, with the read length l = 100 and default error profile. Since species180

have different genome sizes, with 0.1Gb data, our subsampled genome-skims range in181

coverage from 0.35X to 1X for Anopheles and from 0.4X to 0.8X for Drosophila.182

More recently, Miller et al. (2018) sequenced several Drosophila genomes, including183

12 species shared with the InsectBase dataset. Sarmashghi et al. (2019) subsampled the184

SRAs from this second project to 0.1Gb or 0.5Gb and, after filtering contaminants,185

obtained artificial genome-skims. We can use these genome-skims as query and the186

genome-skims from the InsectBase dataset as the backbone. Since the reference and query187
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10 BALABAN ET AL.

come from two projects, the query genome-skim can have a non-zero distance to the same188

species in the reference set, providing a realistic test of sample identification applications.189

Simulated datasets for the aligned sequence scenario190

GTR. We use a 101-taxon dataset available from Mirarab and Warnow 2015. Sequences191

were simulated under the General Time Reversible (GTR) plus the Γ model of site rate192

heterogeneity using INDELible (Fletcher and Yang, 2009) on gene trees that were193

simulated using SimPhy (Mallo et al., 2016) under the coalescent model evolving on194

species trees generated under the Yule model. Note that the same model is used for195

inference under ML placement methods (i.e., no model misspecification). We took all 20196

replicates of this dataset with mutation rates between 5× 10−8 and 2× 10−7, and for each197

replicate, randomly selected five estimated gene trees among those with 620% RF distance198

between estimated and true gene tree. Thus, we have a total of 100 backbone trees.199

RNASim. Guo et al. 2009 designed a complex model of RNA evolution that does not200

make usual i.i.d assumptions of sequence evolution. Instead, it uses models of energy of the201

secondary structure to simulate RNA evolution by a mutation-selection population genetics202

model. This model is based on an inhomogeneous stochastic process without a global203

substitution matrix. The model complexity of RNASim allows us to test both ML and204

APPLES under a substantially misspecified model. An RNASim dataset of 106 sequences is205

available from Mirarab et al. 2015. We created several subsets of the full RNASim dataset.206

i) Heterogeneous: We first randomly subsampled the full dataset to create 10207

datasets of size 104. Then, we chose the largest clade of size at most 250 from each208

replicate; this gives us 10 backbone trees of mean size 249.209

ii) Varied diameter: To evaluate the impact of the evolutionary diameter (i.e., the210

highest distance between any two leaves in the backbone), we also created datasets with211

low, medium, and high diameters. We sampled the largest five clades of size at most 250212

from each of the 10 replicates used for the heterogeneous dataset. Among these 50 clades,213
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APPLES 11

we picked the bottom, middle, and top five clades in diameter, which had diameter in214

[0.3, 0.4] (mean: 0.36), [0.5, 0.52] (mean: 0.51), and [0.65, 1.07] (mean: 0.82), respectively.215

iii) Varied size: We randomly subsampled the tree of size 106 to create 5 replicates216

of datasets of size 5× 102, 103, 5× 103, 104, 5× 104, and 105, and 1 replicate (due to size)217

of size 2× 105. For replicates that contain at least 5× 103 species, we removed sites that218

contain gaps in 95% or more of the sequences in the alignment.219

Methods220

Alternative methods. For aligned data, we compare APPLES to two ML methods:221

pplacer (Matsen et al., 2010) and EPA-ng (Barbera et al., 2018). Matsen et al. (2010)222

found pplacer to be substantially faster than EPA (Berger and Stamatakis, 2011) while223

their accuracy was similar. EPA-ng improves the scalability of EPA; thus, we compare to224

EPA-ng in analyses that concerned scalability (e.g., RNASim-Varied Size). We run pplacer225

and EPA-ng in their default mode using GTR+Γ model (the only option for pplacer). We226

also compare with a simple method referred to as CLOSEST that places the query as the227

sister to the species with the minimum distance to it. CLOSEST is meant to emulate the228

use of BLAST (if it could be used). For the assembly-free setting, existing phylogenetic229

placement methods cannot be used, and we compared only against CLOSEST.230

Distance calculation and models. We modified FastME to compute distances only231

between query and backbone sequences, not among backbone sequences. This version,232

called FastME* here, also ensures that when estimating model parameters, positions that233

have a gap in at least one of the two sequences are always ignored.234

We compute phylogenetic distances under the parameter-free JC69 model, the235

six-parameter Tamura and Nei 1993 (TN93) model, and the 12-parameter general Markov236

model (Lockhart et al., 1994). We compute distances independently for all pairs, and not237

simultaneously as suggested by Tamura et al. (2004). We also use the Gamma model of238
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12 BALABAN ET AL.

sites rate heterogeneity for JC69 and TN93 using the standard approach (Waddell and239

Steel, 1997). Pairing Gamma with GTR is theoretically possible in the absence of noise;240

however, the method can run into problems on real data (Waddell and Steel, 1997). Thus,241

we do not include a GTR model directly. Instead, we use the log-det approach that can242

handle the most general (12-parameter) Markov model (Lockhart et al., 1994); however,243

log-det cannot account for rate across sites heterogeneity (Waddell and Steel, 1997). The α244

parameter of the Gamma model cannot be computed from pairwise sequence comparisons245

(Steel, 2009); instead, we use the α computed from the backbone tree. We used the α246

parameter computed by RAxML (Stamatakis, 2014) run on the backbone alignment and247

given the backbone tree.248

In analyses on assembly-free datasets, we first compute genomic distances using249

Skmer (Sarmashghi et al., 2019). We then correct these distances using the JC69 model,250

without the Gamma model of rate variation.251

Backbone trees. For genome-skimming experiments, we estimated the backbone252

tree using FastME* from the JC69 distance matrix computed from genome-skims using253

Skmer. For simulated datasets, we estimated the topology of the backbone tree by running254

RAxML (Stamatakis, 2014) on the true alignment using GTRGAMMA model and used255

this tree as the backbone for pplacer and EPA-ng. However, to handle large trees, we used256

FastTree-2 (Price et al., 2010) to estimate the backbone tree for RNASim-varied size and257

re-estimated branch lengths on the fixed topology using RAxML. For the backbone of258

APPLES, we always used the same tree topology but re-estimated branch lengths using259

FastTree-2 under the JC69 model.260

APPLES parameters. We have chosen default parameter settings for APPLES and refer261

to this version as APPLES∗. By default, we use FM weighting, the MLSE selection262

criterion, enforcement of non-negative branch lengths, and JC69 distances. When not263

specified otherwise, these default parameters are used.264
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Evaluation Procedure265

To evaluate the accuracy, we use a leave-one-out strategy. We remove each leaf i266

from the backbone tree T and place it back on this T \ i tree to obtain the placement tree267

P . However, on the RNAsim-varied size dataset, due to its large size, we only removed and268

added back 200 randomly chosen leaves per replicate.269

Delta error. We measure the accuracy of the placement using delta error (∆e): the270

number of branches of the true tree missing from P minus the number of branches of the271

true tree missing from T \ i (induced on the same leafset). Note that ∆e > 0 because272

adding i cannot decrease the number of missing branches in T \ i. Note that placing i to273

the same location as the backbone before leaving it out (e.g., T ) can still have a non-zero274

delta error because the backbone tree is not the true tree. We refer to the placement of a275

leaf into its position in the backbone tree as the de novo placement.276

On biological data, where the true tree is unknown, we use a reference tree277

(Fig. S1). For Drosophila and Anopheles, we use the tree available from the Open Tree Of278

Life (Hinchliff et al., 2015) as the reference. For Columbicola, we use the ML concatenation279

tree published by Boyd et al. (2017) as the reference.280

Results281

Assembly-free Placement of Genome-skims282

On our three biological genome-skim datasets, APPLES∗ successfully places the283

queries on the optimal position in most cases (97%, 95%, and 71% for Columbicola,284

Anopheles, and Drosophila, respectively) and is never off from the optimal position by285

more than one branch. Other versions of APPLES are less accurate than APPLES∗; e.g.,286

APPLES with ME can have up to five wrong branches (Table 1). On genome-skims, where287

assembly and alignment are not possible, existing placement tools cannot be used, and the288

only alternative is the CLOSEST method (emulating BLAST if assembly was possible).289
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(a) Columbicola (b) Anopheles (c) Drosophila

% ∆e emax % ∆e emax % ∆e emax

APPLES∗ 97 0.03 1 95 0.05 1 71 0.29 1
APPLES-ME 84 0.28 5 95 0.05 1 67 0.42 2

APPLES-HYBRID 87 0.16 2 95 0.05 1 67 0.33 1
CLOSEST 54 1.15 7 91 0.09 1 57 0.62 3
DE-NOVO 98 0.02 1 95 0.05 1 71 0.29 1

Table 1. Assembly-free placement of genome-skims. We show the percentage of placements into optimal
position (those that do not increase ∆e), average delta error (∆e), and maximum delta error (emax) for APPLES,
assignment to the CLOSEST species, and the placement to the position in the backbone (DE-NOVO) over the 61
(a), 22 (b), and 21 (c) placements. Results are shown for genome skims with 0.1Gbp of reads. Delta error is the
increase in the missing branches between the reference tree and the backbone tree after placing each query.

CLOSEST finds the optimal placement only in 54% and 57% of times for Columbicola and290

Drosophila; moreover, it can be off from the best placement by up to seven branches for291

the Columbicola dataset. On the Anopheles dataset, where the reference tree is unresolved292

(Fig. S1), all methods perform similarly.293

APPLES∗ is less accurate on the Drosophila dataset than other datasets. However,294

here, simply placing each query on its position in the backbone tree would lead to identical295

results (Table 1). Thus, placements by APPLES∗ are as good as the de novo construction,296

meaning that errors of APPLES∗ are entirely due to the differences between our backbone297

tree and the reference tree. Moreover, these errors are not due to low coverage; increasing298

the genome-skim size 5x (to 0.5Gb) does not decrease error (Table S4).299

On Drosophila dataset, we next tested a more realistic sample identification scenario300

using the 12 genome-skims from the separate study (and thus, non-zero distance to the301

corresponding species in the backbone tree). As desired, APPLES∗ places all of 12 queries302

from the second study as sister to the corresponding species in the reference dataset.303

Alignment-based Placement304

We first compare the accuracy and scalability of APPLES∗ to ML methods and305

then compare various settings of APPLES. For ML, we use pplacer (shown everywhere)306

and EPA-ng (shown only when we study scalability).307
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Low Medium High Heterogeneous

% ∆e emax % ∆e emax % ∆e emax % ∆e emax

APPLES∗ 86 0.15 2 85 0.18 5 84 0.18 3 85 0.17 5
CLOSEST 59 0.88 13 60 0.88 13 60 0.85 14 60 0.87 14

pplacer 88 0.13 2 89 0.11 3 87 0.13 3 88 0.13 3

Table 2. The delta error for APPLES∗, CLOSEST match, and pplacer on the RNASim-varied diameter dataset
(low, medium, or high) and the RNA-heterogeneous dataset. Measurements are shown over 1250 placements for
each diameter size category, corresponding to 5 backbone trees and 250 placements per replicate.

Comparison to Maximum Likelihood (ML)308

GTR dataset. On this dataset, where it faces no model misspecification, pplacer has high309

accuracy. It finds the best placement in 84% of cases and is off by one edge in 15%310

(Fig. 2a); its mean delta error (∆e) is only 0.17 edges. APPLES∗ is also accurate, finding311

the best placement in 78% of cases and resulting in the mean ∆e =0.28 edges. Thus, even312

though pplacer uses ML and faces no model misspecification and APPLES∗ uses distances313

based on a simpler model, the accuracy of the two methods is within 0.1 edges on average.314

In contrast, CLOSEST has poor accuracy and is correct only 50% of the times, with the315

mean ∆e of 1.0 edge.316

Model misspecification. On the small RNASim data with subsampled clades of ≈ 250317

species), both APPLES∗ and pplacer face model misspecification. Here, the accuracy of318

APPLES∗ is very close to ML using pplacer. On the heterogeneous subset (Fig. 2b and319

Table 2), pplacer and APPLES∗ find the best placement in 88% and 86% of cases and have320

a mean delta error of 0.13 and 0.17 edges, respectively. Both methods are much more321

accurate than CLOSEST, which has a delta error of 0.87 edges on average.322

Impact of diameter. When we control the tree diameter, APPLES∗ and pplacer remain323

very close in accuracy (Fig. 2c). The changes in error are small and not monotonic as the324

diameters change (Table 2). The accuracies of the two methods at low and high diameters325

are similar. The two methods are most divergent in the medium diameter case, where326

pplacer has its lowest error (∆e =0.11) and APPLES∗ has its highest error (∆e =0.18).327
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Fig. 2. Accuracy on simulated data. We show empirical cumulative distribution of the delta error, defined as the
increase in the number of missing branches in the estimated tree compared to the true tree. We compare pplacer
(dotted), CLOSEST match (dashed), and APPLES with FM weighting and JC69 distances and MLSE (APPLES*),
ME, or Hybrid optimization. (a) GTR dataset. (b) RNASim-Heterogeneous. (c) RNASim-varied diameter, shown in
boxes: low, medium (mid), or high (hi). Distributions are over 10, 000 (a), 2450 (b), and 3675 (c) points.

To summarize results on small RNASim dataset with model misspecification,328

although APPLES∗ uses a parameter-free model, its accuracy is extremely close to ML329

using pplacer with the GTR+Γ model.330

Impact of taxon sampling. The real advantage of APPLES∗ over pplacer becomes clear for331

placing on larger backbone trees (Fig. 3 and Table 3). For backbone sizes of 500 and 1000,332

pplacer continues to be slightly more accurate than APPLES∗ (mean ∆e of pplacer is333
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Fig. 3. Results on RNASim-Varied size. (a) Placement accuracy for various levels of taxon sampling,
comparing pplacer, CLOSEST match, EPA-ng, and APPLES* on RNASim dataset with backbone size ranging
from 500 to 200,000. (b) The empirical cumulative distribution of the delta error on the same datasets, only shown
for the backbone size 500 and 1000 where all methods can run. Distributions are over 1000 points. (c,d) Running
time and peak memory usage of placement methods for a single placement. For APPLES*, measurements are
shown with and without the distance calculation step performed using FastME*. On backbones of size 5000,
pplacer managed to correctly run for only 551 out of 1000 placements, whereas EPA-ng managed to run for
200/1000 placements (Fig S2). Lines are fitted in the log-log scale; thus, the slope of the line (indicated on the
figure) gives an empirical estimate of the polynomial degree of the asymptotic growth curve. All curves grow close
to linearly (slopes ≈1). APPLES lines are fitted to > 5, 000 points because the first two values correspond to
extremely low memory (100Mb) and are irrelevant to asymptotic behavior. All calculations are on 8-core, 2.6GHz
Intel Xeon CPUs (Sandy Bridge) with 64GB of memory.
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n = 500 n = 103 n = 5× 103 n = 104 n = 105 n = 2× 105

% ∆e % ∆e % ∆e % ∆e % ∆e % ∆e

APPLES∗ 75 0.32 71 0.43 77 0.37 79 0.33 84 0.25 87 0.25
CLOSEST 52 1.16 53 1.18 54 1.15 59 0.90 61 0.69 63 0.70

EPA-ng 73 0.33 73 0.31 fail (449) n.p n.p n.p n.p n.p n.p n.p
pplacer 80 0.23 81 0.20 fail (800) n.p n.p n.p n.p n.p n.p n.p

Table 3. Percentage of correct placements (shown as %) and the delta error (∆e) on the RNASim datasets with
various backbone size (n). % and ∆e is over 1000 placements (except n = 200, 000, which is over 200 placements).
Running pplacer and EPA-ng was not possible (n.p) for trees with at least 10, 000 leaves and failed in some cases
(number of fails shown) for 5, 000 leaves.

better than APPLES∗ by 0.09 and 0.23 edges, respectively). However, with backbones of334

5000 leaves, pplacer fails to run on 449/1000 cases, producing infinity likelihood (perhaps335

due to numerical issues) and has 41 times higher error than APPLES∗ on the rest (Fig. S2).336

Since pplacer could not scale to 5,000 leaves, we also tested the recent method,337

EPA-ng (Barbera et al., 2018). On datasets with up to 1000 leaves, EPA-ng was less338

accurate than pplacer and close in accuracy to APPLES∗ (Fig. 3ab). It also failed in339

800/1000 replicates of the 5000-taxon backbone but had 4% less error than APPLES∗ in340

the minority of cases where it could run (Fig. S2).341

For backbones trees with at least 104 leaves, pplacer and EPA-ng were not able to342

run, and CLOSEST is not very accurate (finding the best placement in only 59% of cases).343

However, APPLES∗ continues to be accurate for all backbone sizes. As the backbone size344

increases, the taxon sampling of the tree is improving (recall that these trees are all345

random subsets of the same tree). With denser backbone trees, APPLES∗ has increased346

accuracy despite placing on larger trees (Fig. 3a, Table 3). For example, using a backbone347

tree of 2× 105 leaves, APPLES∗ is able to find the best placement of query sequences in348

87% of cases, which is better than the accuracy of either APPLES∗ or ML tools on any349

backbone size. Thus, an increased taxon sampling helps accuracy, but ML tools are limited350

in the size of the tree they can handle.351

Running time and memory. As the backbone size increases, the running times of352

all methods increase close to linearly with the size of the backbone tree (Fig. 3c). However,353
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Fig. 4. The effect of imposing positivity constraint on error. We show the error of (a) APPLES-MLSE and
(b) APPLES-ME run both with and without enforcement of non-negative branch lengths on RNASim
heterogeneous dataset. Accuracy improves substantially for MLSE whereas it reduces drastically for ME.

APPLES is on average 15 times faster than pplacer and 12 times faster than EPA-ng on354

backbone trees with 5000 leaves in cases where those methods could run. Similarly, the355

memory of all methods increases linearly with the backbone size, but APPLES requires356

dramatically less memory (Fig. 3d). For example, for placing on a backbone with 5000357

leaves, pplacer requires 25GB of memory, EPA-ng requires 30GB whereas APPLES358

requires only 0.25GB. APPLES easily scales to a backbone of 2× 105 sequences, running in359

only 4 minutes and using 8GB of memory per query (including all precomputations in the360

dynamic programming). These numbers also include the time and memory needed to361

compute the distance between the query sequence and all the backbone sequences.362

Comparing parameters of APPLES. We now compare different settings of363

APPLES. Comparing five models of sequence evolution, we see similar patterns of accuracy364

across all models despite their varying complexity, ranging from 0 to 12 parameters365

(Fig. S3). Since the JC69 model is parameter-free and results in similar accuracy to others,366

we have used it as the default. Next, we ask whether imposing the constraint to disallow367

negative branch lengths improves the accuracy. The answer depends on the optimization368

strategy. Forcing non-negative lengths marginally increases the accuracy for MLSE but369

dramatically reduces the accuracy for ME (Fig. 4). Thus, we always impose non-negative370
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constraints on MLSE but never for ME. Likewise, our Hybrid method includes the371

constraint for the first MLSE step but not for the following ME step (Fig. S4).372

The next parameter to choose is the weighting scheme. Among the three methods373

available in APPLES, the best accuracy belongs to the FM scheme closely followed by the374

BE (Fig. S5). The OLS scheme, which does not penalize long distances, performs375

substantially worse than FM and BE. Thus, the most aggressive form of weighting (FM)376

results in the best accuracy. Fixing the weighting scheme to FM and comparing the three377

optimization strategies (MLSE, ME, and Hybrid), the MLSE approach has the best378

accuracy (Fig. 2), finding the correct placement 84% of the time (mean error: 0.18), and379

ME has the lowest accuracy, finding the best placement in only 67% of cases (mean error:380

0.70). The Hybrid approach is between the two (mean error: 0.34) and fails to outperform381

MLSE on this dataset. However, when we restrict the RNASim backbone trees to only 20382

leaves, we observe that Hybrid can have the best accuracy (Fig. S6).383

Discussion384

We introduced APPLES: a new method for adding query species onto large385

backbone trees using both unassembled genome-skims and aligned data. The accuracy of386

APPLES was very close to ML using pplacer in most settings where ML could run; the387

accuracy advantages of ML were particularly small for the more realistic simulation,388

RNASim, where both methods face model misspecification. As expected by the substantial389

evidence from the literature (Hillis et al., 2003; Zwickl and Hillis, 2002), improved taxon390

sampling increased the accuracy of placement. Thus, overall, the best accuracy on391

RNASim dataset was obtained by APPLES∗ run on the full reference dataset. This392

observation motivates the use of scalable methods such as APPLES∗ instead of ML393

methods, which have to restrict their backbone to at most several thousand species. It is394

possible to follow up the APPLES∗ placements with a round of ML placement on smaller395

trees, but the small differences in accuracy of pplacer and APPLES∗ on smaller trees did396
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not give us compelling reasons to try such hybrid approaches.397

Phylogenetic insertion using the ME criterion has been previously studied for the398

purpose of creating an algorithm for greedy minimum evolution (GME). Desper and399

Gascuel 2002 have designed a method that given the tree T can update it to get a tree400

with n+ 1 leaves in Θ(n) after precomputation of a data-structure that gives the average401

sequence distances between all adjacent clusters in T . The formulation by Desper and402

Gascuel 2002 has a subtle but consequential difference from our ME placement. Their403

algorithm does not compute branch lenghts for inserted sequence (e.g., x1 and x2). It is404

able to compute the optimal placement topology without knowing branch lengths of the405

backbone tree. Instead, it relies on pairwise distances among backbone sequences (∆),406

which are precomputed and saved in the data-structure mentioned before. In the context407

of the greedy algorithm for tree inference, in each iteration, the data structure can be408

updated in Θ(n), which does not impact the overall running time of the algorithm.409

However, if we were to start with a tree of n leaves, computing this structure from scratch410

would still require Θ(n2). Thus, computing the placement for a new query would need411

quadratic time, unless if the Θ(n2) precomputation is allowed to be amortized over Ω(n)412

queries. Our formulation, in contrast, uses branch lengths of the backbone tree (which is413

assumed fixed) and thus never uses pairwise distances among the backbone sequences.414

Thus, using tree distances is what allows us to develop a linear time algorithm.415

Our comparisons between versions of APPLES answered many questions but left416

others to future work. For example, we observed no advantage in using models more417

complex than JC69+Γ for distance calculation. However, these results may be due to our418

estimation of model parameters (e.g., base compositions) for each pair of sequences. More419

complex models may perform better if we instead estimate model parameters on the420

backbone alignment/tree and reuse the parameters for queries (or simultaneously among421

all queries and the reference sequences). Simultaneous estimation of distances has many422

advantages over using independent distances for the de novo case (Tamura et al., 2004;423
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Xia, 2009); these results gives us hope that using simultaneous distances inside APPLES424

can further improve its accuracy.425

In the aligned case, we were unable to test other methods. LSHPlace is theoretically426

fast, but we could not find an implementation of it. The distance-based insertion algorithm427

of FastME (Desper and Gascuel, 2002) is available only as part of a larger greedy428

algorithm but is not available as a stand-alone feature to place on a given tree. SEPP429

(Mirarab et al., 2012) performs alignment and placement simultaneously (using alignment430

scores to help the placement); however, in our experiments, our goal was only to test the431

placement step and not the alignment. Thus, we used true alignments in all the simulation432

tests and left an exploration of the impact of alignment error on different methods to433

future work. On a related note, future work can incorporate APPLES inside SEPP to434

perform alignment and placement in a unified pipeline.435

In our assembly-free test, we used Skmer to get distances because alternative436

alignment-free methods of estimating distance generally either require assemblies (e.g.,437

Haubold, 2014; Leimeister and Morgenstern, 2014; Leimeister et al., 2017) or higher438

coverage than Skmer (e.g., Benoit et al., 2016; Yi and Jin, 2013; Ondov et al., 2016);439

however, combining APPLES with other alignment-free methods can be attempted in440

future (finding the best way of computing distances without assemblies was not our focus).441

Moreover, the Skmer paper has described a trick that can be used to compute log-det442

distances from genome-skims. Future studies should test whether using that trick and443

using GTR instead of JC69 improves accuracy.444

Branch lengths of our backbone trees were computed using the same distance model445

as the one used for computing the distance of the query to backbone species. Using446

consistent models for the query and for the backbone branch lengths is essential for447

obtaining good accuracy (see Fig. S7 for evidence). Thus, in addition to having a large448

backbone tree at hand, we need to ensure that branch lengths are computed using the449

right model. Fortunately, FastTree-2 can compute both topologies and branch lengths on450
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large trees in a scalable fashion, without a need for quadratic time/memory computation451

of distance matrices (Price et al., 2010).452

APPLES was an order of magnitude or more faster and less memory-hungry than453

ML tools (pplacer and EPA-ng), but it has room for improvement. The python APPLES454

code is not optimized and can be dramatically improved. For example, APPLES can save455

precomputed values of Equations 3 and 4 for each backbone tree in a file, eliminating the456

need to recompute them. Also, online processing of the backbone alignment can457

dramatically reduce the memory usage for the distance calculation. Its current version uses458

Dendropy (Sukumaran and Holder, 2010), which is not optimized for large trees; switching459

to other platforms such as ETE (Huerta-Cepas et al., 2010) can improve memory usage.460

Future implementations of APPLES will improve speed and memory by applying such461

optimizations.462
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Appendix A. Proofs and derivations654

Recall the following notations.655

• For any node u and exponents a ∈ Z and b ∈ N+, let656

– S(a, b, u) =
∑

i∈g(u) δ
a
qid

b
ui657

– R(a, b, u) =
∑

i/∈g(u) δ
a
qid

b
p(u)i defined for u ∈ V \ {1}658

• For b = 0, let S(a, 0, u) =
∑

i∈g(u) δ
a
qi and let S ′(a, u) be a shorthand for S(a, 0, u).659

Similarly, let R(a, 0, u) = R′(a, u) =
∑

i/∈g(u) δ
a
qi.660

Proof of Lemma 2661

Proof. Recall the dynamic programming recursions of Equations 3 and 4:

S(a, b, u) =
b∑

j=0

∑
v∈c(u)

l(v)j
(
b

j

)
S(a, b− j, v), for u /∈ L \ {1}

R(a, b, u) =
b∑

j=0

(
l(p(u))j

(
b

j

)
R(a, b− j, p(u)) +

∑
v∈sib(u)

l(v)j
(
b

j

)
S(a, b− j, v)

)
for u /∈ {1, 1′}

Since u is not a leaf, for each leaf i ∈ g(u), there exists a v ∈ c(u) such that the

directed path from u to i passes through v. Therefore every leaf i can be grouped under its

corresponding v.

S(a, b, u) =
∑
i∈g(u)

δaqid
b
ui =

∑
v∈c(u)

∑
i∈g(v)

δaqi
(
l(v) + dvi

)b
=

b∑
j=0

∑
v∈c(u)

∑
i∈g(v)

δaqid
b−j
vi l(v)j

(
b

j

)

=
b∑

j=0

∑
v∈c(u)

l(v)j
(
b

j

)
S(a, b− j, v)

Similarly, given the condition u 6= 1, for each leaf i /∈ g(u), either (1) there exists662

v ∈ sib(u) such that the directed path from p(u) to i passes through v, or (2) undirected663

path between i and p(u) passes through p(p(u)).664
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R(a, b, u) =
∑
i/∈g(u)

δaqid
b
p(u)i =

∑
v∈sib(u)

∑
i∈g(v)

δaqi
(
l(v) + dvi

)b
+

∑
i/∈g(p(u))

δaqi
(
l(p(u)) + dp(p(u))i

)b
=

b∑
j=0

∑
v∈sib(u)

∑
i∈g(v)

δaqid
b−j
vi l(v)j

(
b

j

)
+

b∑
j=0

∑
i/∈g(p(u))

δaqid
b−j
p(p(u))il(p(u))j

(
b

j

)

=
b∑

j=0

∑
v∈sib(u)

l(v)j
(
b

j

)
S(a, b− j, v) +

b∑
j=0

l(p(u))j
(
b

j

)
R(a, b− j, p(u))

Boundary conditions follow from definitions. For u /∈ L \ {1}, since dii = 0, we have665

S(a, b, u) = 0 and it’s trivial to see S ′(a, u) = δaqu. For R(, , ) recursions, the boundary case666

happens at the unique child of the root, which we denote as 1′. Based on the definition,667

since the only i /∈ g(1′) is 1, and dbp(1′)1 = 0, we trivially have R(a, b, 1′) = 0. For b = 0,668

R′(a, 1′) = δaq1.669

A post-order traversal on T ∗ can compute S(a, b, u), and a subsequent pre-order670

traversal can compute R(a, b, u), both in constant time and using constant memory per671

node. Recall that a and b are both no more than k, which is a constant. Thus, time and672

memory complexity of this dynamic programming is Θ(bn), which translates to Θ(n) in673

least squares setting, where b 6 2. �674

Proof of Lemma 3.675

Recall wqi = δ−kqi and that Equation 2:

Q(P ) =
n∑

i=1

wqi(δqi − dqi(P ))2 =
n∑

i=1

δ−kqi (δqi − dqi(P ))2

Proof. Equation 2 can be re-written as:676

Q(P ) =
∑
i∈g(u)

δ−kqi

(
δqi − dui(P )− x1 + x2 − l(u)

)2
+

∑
i/∈g(u)

δ−kqi

(
δqi − dp(u)i(P )− x1 − x2

)2
(S1)
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By simple rearrangement of the terms, we can rewrite Equation S1 as follows.677

Q(P (u, x1, x2)) = R′(2− k, u) + S ′(2− k, u) +R(−k, 2, u) + S(−k, 2, u)

+ 2
(
x1 + x2

)(
R(−k, 1, u)−R′(1− k, u)

)
+ 2
(
x1 + l(u)− x2

)(
S(−k, 1, u)− S ′(1− k, u)

)
+
(
x1 + x2

)2
R(−k, 1, u) + 2

(
x1 + l(u)− x2

)2
S(−k, 1, u)

− 2R(1− k, 1, u)− 2S(1− k, 1, u)

(S2)

Note that computing Q(P (u, x1, x2)) requires only S(, , u) and R(, , u) values and l(u).678

Thus, computing Q(P ) requires only computing S(a, b, u) and R(a, b, u) values for679

−k 6 a 6 2− k and 0 6 b 6 2.680

�681

Proof of Lemma 4.682

Recall definitions

S(a, b, u) =
∑
i∈g(u)

δaqid
b
ui (for b > 0) and S ′(a, u) = S(a, 0, u) =

∑
i∈g(u)

δaqi

R(a, b, u) =
∑
i/∈g(u)

δaqid
b
p(u)i (for b > 0) and R′(a, u) = R(a, 0, u) =

∑
i/∈g(u)

δaqi

and recall Eq. S1:

Q(P ) =
∑
i∈g(u)

δ−kqi

(
δqi − dui(P )− x1 + x2 − l(u)

)2
+
∑
i/∈g(u)

δ−kqi

(
δqi − dp(u)i(P )− x1 − x2

)2
.

Proof. We take the derivative of Eq. S1 with respect to x1 and set it equal to zero:683
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∂Q(P )

∂x1
= −2

∑
i∈g(u)

δ−kqi

(
δqi − dui(P )− x1 + x2 − l(u)

)
− 2

∑
i/∈g(u)

δ−kqi

(
δqi − dp(u)i(P )− x1 − x2

)
= 0

=⇒
( ∑

i∈g(u)

δ−kqi +
∑
i/∈g(u)

δ−kqi

)
x1 +

(
−
∑
i∈g(u)

δ−kqi +
∑
i/∈g(u)

δ−kqi

)
x2

−
∑
i∈g(u)

δ1−kqi −
∑
i/∈g(u)

δ1−kqi +
∑
i∈g(u)

δ−kqi dui(P ) +
∑
i/∈g(u)

δ−kqi dp(u)i(P ) + l(u)
∑
i∈g(u)

δ−kqi = 0

=⇒
(
S ′(−k, u) +R′(−k, u)

)
x1 +

(
− S ′(−k, u) +R′(−k, u)

)
x2 =

S ′(1− k, u) +R′(1− k, u)− S(−k, 1, u)−R(−k, 1, u)− l(u)S ′(−k, u)

Similarly,

∂Q(P )

∂x2
= 2

∑
i∈g(u)

δ−kqi

(
δqi − dui(P )− x1 + x2 − l(u)

)
− 2

∑
i/∈g(u)

δ−kqi

(
δqi − dp(u)i(P )− x1 − x2

)
= 0

=⇒
(
−
∑
i∈g(u)

δ−kqi +
∑
i/∈g(u)

δ−kqi

)
x1 +

( ∑
i∈g(u)

δ−kqi +
∑
i/∈g(u)

δ−kqi

)
x2

+
∑
i∈g(u)

δ1−kqi −
∑
i/∈g(u)

δ1−kqi −
∑
i∈g(u)

δ−kqi dui(P ) +
∑
i/∈g(u)

δ−kqi dp(u)i(P )− l(u)
∑
i∈g(u)

δ−kqi = 0

=⇒
(
− S ′(−k, u) +R′(−k, u)

)
x1 +

(
+ S ′(−k, u) +R′(−k, u)

)
x2 =

− S ′(1− k, u) +R′(1− k, u) + S(−k, 1, u)−R(−k, 1, u) + l(u)S ′(−k, u)

These two linear equations have a unique solution for the pair x1, x2 if and only if the684

following matrix has the full rank:685

H =

[
R′(−k, u) + S ′(−k, u) R′(−k, u)− S ′(−k, u)
R′(−k, u)− S ′(−k, u) R′(−k, u) + S ′(−k, u)

]
·

Determinant of H is det(H) = 4R′(−k, u)S ′(−k, u). Assuming that δqi > 0 for all686

i ∈ L, both R′(−k, u) > 0 and S ′(−k, u) > 0 hold. Therefore, H has the full rank.687

However, δqi = 0 for q 6= i can be encountered on real data, especially for low divergence688

times, low evolutionary rates, or short sequences. In this case, APPLES is designed to689

place q on the pendant edge of i with x1 = 0 and x2 = l(i). In case there are multiple690

leaves i that satisfy δqi = 0 for q 6= i, we pick one of them arbitrarily. �691

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 27, 2019. ; https://doi.org/10.1101/475566doi: bioRxiv preprint 

https://doi.org/10.1101/475566
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES 37

Proof of Theorem 1692

Proof. First, using two traversals of the tree, we compute all the S(a, b, u) and R(a, b, u)693

values by Lemma 2. To find the optimal placement edge, we first optimize Q(P (u, x1, x2))694

for all u ∈ V \ {1}. By Lemma 4, this task requires only constant time after the695

precompuations. Then, for each node, we compute Q(P (u, x1, x2)) in constant time for the696

optimal u, x1, x2 by Lemma 3. Thus, each node is processed in linear time and the whole697

optimization requires linear time. Note that the system of equations (shown in Lemma 4)698

will not have a solution iff δqi 6 0 for some i; if there is δqi = 0, we make q sister to i,699

breaking ties arbitrarily. �700

Proof of Lemma 5701

Proof. Eigenvalues of the Hessian matrix of Q(P (u, x1, x2)) are 2R′(−k, u) and 2S ′(−k, u),702

which are both non-negative since δqi > 0 for i ∈ L. Thus, the Hessian matrix is positive703

semidefinite and therefore P (u, x1, x2) is a convex function of x1 and x2. �704
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Appendix B. Supplementary Figures705
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Anopheles arabiensis
Anopheles coluzzii
Anopheles gambiae
Anopheles melas
Anopheles quadriannulatus
Anopheles epiroticus
Anopheles farauti
Anopheles punctulatus
Anopheles dirus
Anopheles nili
Anopheles culicifacies
Anopheles funestus
Anopheles minimus
Anopheles maculatus
Anopheles stephensi
Anopheles albimanus
Anopheles darlingi
Anopheles atroparvus
Anopheles sinensis

Drosophila sechellia
Drosophila simulans
Drosophila melanogaster
Drosophila erecta
Drosophila yakuba
Drosophila eugracilis
Drosophila takahashii
Drosophila suzukii
Drosophila kikkawai
Drosophila ananassae
Drosophila bipectinata
Drosophila persimilis
Drosophila willistoni
Drosophila mojavensis
Drosophila virilis
Drosophila grimshawi

Proechinophthirus fluctus
Anatoecus icterodes
Degeeriella rufa
Craspedonirmus immer
Columbicola fortis
Columbicola triangularis
Columbicola extinctus
Columbicola adamsi ex Patagioenas oenops
Columbicola adamsi ex Patagioenas speciosa
Columbicola macrourae 1
Columbicola macrourae 3
Columbicola macrourae 2
Columbicola macrourae 6
Columbicola taschenbergi
Columbicola exilicornis 3
Columbicola exilicornis 1
Columbicola arnoldi
Columbicola beccarii
Columbicola exilicornis 4
Columbicola rodmani
Columbicola mjoebergi 1
Columbicola mjoebergi 3
Columbicola harbisoni
Columbicola tasmaniensis ex Phaps chalcoptera
Columbicola tasmaniensis ex Phaps elegans
Columbicola mckeani
Columbicola eowilsoni
Columbicola koopae
Columbicola wombeyi
Columbicola masoni 1
Columbicola masoni 1B
Columbicola waltheri
Columbicola gracilicapitis
Columbicola timmermanni
Columbicola altamimiae
Columbicola drowni
Columbicola gymnopeliae
Columbicola passerinae 1
Columbicola passerinae 2
Columbicola veigasimoni
Columbicola wecksteini
Columbicola palmai
Columbicola malenkeae
Columbicola wolffhuegeli
Columbicola claytoni
Columbicola paradoxus
Columbicola tschulyschman
Columbicola fradei
Columbicola smithae
Columbicola clayae
Columbicola elbeli
Columbicola hoogstraali
Columbicola theresae
Colubicola orientalis
Colubicola sp ex Turtur chalcospilos
Columbicola carrikeri
Colubicola sp ex Streptopelia orientalis
Columbicola sp ex Streptopelia semitorquata
Columbicola waiteae
Columbicola guimaraesi 1
Columbicola guimaraesi 3
Columbicola claviformis
Columbicola columbae 1
Columbicola columbae 2
Columbicola bacillus 1
Columbicola bacillus 2

Fig. S1. The reference biological trees obtained from Open Tree of Life (Drosophila and Anopheles)
and from Boyd et al. (2017) (Columbicola).
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Fig. S2. APPLES versus ML tools on 5,000 backbone trees. The empirical cumulative distribution of the
delta error is shown. We compare pplacer, EPA-ng, and APPLES* on RNASim-varied backbone dataset with 5000
leaves. Distributions is over 551 cases where pplacer could run for the panel on the right and 200 points where
EPA-NG could run for the panel on the left.
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Fig. S3. Comparing various models of DNA evolution. For the GTR (a) and RNASim-heterogeneous (b)
datasets, we show the delta error (edges) of APPLES* run with five distance matrices calculated based on different
models of DNA evolution. All model parameters are estimated per pair of sequences. The five models have similar
accuracy.
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Fig. S4. The effect of imposing positivity constraint on accuracy on Hybrid. The HYBRID approach does
not benefit from imposing positivity constraint on its second (ME) stage.
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Fig. S5. Comparing APPLES versions. For the RNASim dataset (without controlling for the diameter), we
show the delta error (edges) of APPLES run with three options for weighting: FM (green), BE (red), and OLS
(blue), and three options for selection strategy (MLSE, ME, and Hybrid). For each method, the mean (colored
circle) and standard errors (lines; too small to see) are shown over 2500 data points, each shown as dots. Some of
the methods occasionally have error above 5 branches, but for better resolution, we cap the y-axis at 5.
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Fig. S6. APPLES-HYBRID has higher accuracy on sparse RNAsim dataset On the RNAsim dataset, we
chose 20 sequences randomly from the larger RNAsim-heterogeneous dataset; here, APPLES-HYBRID has higher
accuracy than APPLES* (MLSE).
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Fig. S7. The effect of reestimating branch lengths of the backbone tree on accuracy. We show the
accuracy of pplacer and APPLES-FM with its three optimization criteria. APPLES is run both with (dotted) and
without (solid) re-estimating branch lengths in the backbone tree using the same model (here, TN93+Γ) used for
computing distances of query sequences to backbone sequences. FastME* is used to re-estimate branch lengths.
Accuracy improves dramatically by recomputing backbone branch lengths using the same model. The case labeled
“Not re-estimated” uses branch lengths produced using RAxML under the GTR+Γ model.
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Appendix C. Supplementary Tables706

Table S1. GenBank accession numbers and URLs for the dataset of 22 Anopheles genomes

Species GenBank assembly accession URL

Anopheles albimanus GCA 000349125.1 http://www.insect-genome.com/data/genome_download/Anopheles_albimanus/Anopheles_albimanus_genomic.fasta.gz

Anopheles arabiensis GCA 000349185.1 http://www.insect-genome.com/data/genome_download/Anopheles_arabiensis/Anopheles_arabiensis_genomic.fasta.gz

Anopheles atroparvus GCA 000473505.1 http://www.insect-genome.com/data/genome_download/Anopheles_atroparvus/Anopheles_atroparvus_genomic.fasta.gz

Anopheles christyi GCA 000349165.1 http://www.insect-genome.com/data/genome_download/Anopheles_christyi/Anopheles_christyi_genomic.fasta.gz

Anopheles coluzzii - http://www.insect-genome.com/data/genome_download/Anopheles_coluzzii/Anopheles_coluzzii_genomic.fasta.gz

Anopheles culicifacies GCA 000473375.1 http://www.insect-genome.com/data/genome_download/Anopheles_culicifacies/Anopheles_culicifacies_genomic.

fasta.gz

Anopheles darlingi GCA 000211455.3 http://www.insect-genome.com/data/genome_download/Anopheles_darlingi/Anopheles_darlingi_genomic.fasta.gz

Anopheles dirus GCA 000349145.1 http://www.insect-genome.com/data/genome_download/Anopheles_dirus/Anopheles_dirus_genomic.fasta.gz

Anopheles epiroticus GCA 000349105.1 http://www.insect-genome.com/data/genome_download/Anopheles_epiroticus/Anopheles_epiroticus_genomic.fasta.gz

Anopheles farauti GCA 000956265.1 http://www.insect-genome.com/data/genome_download/Anopheles_farauti/Anopheles_farauti_genomic.fasta.gz

Anopheles funestus GCA 000349085.1 http://www.insect-genome.com/data/genome_download/Anopheles_funestus/Anopheles_funestus_genomic.fasta.gz

Anopheles gambiae GCA 000150785.1 http://www.insect-genome.com/data/genome_download/Anopheles_gambiae/Anopheles_gambiae_genomic.fasta.gz

Anopheles koliensis GCA 000956275.1 http://www.insect-genome.com/data/genome_download/Anopheles_koliensis/Anopheles_koliensis_genomic.fasta.gz

Anopheles maculatus GCA 000473185.1 http://www.insect-genome.com/data/genome_download/Anopheles_maculatus/Anopheles_maculatus_genomic.fasta.gz

Anopheles melas GCA 000473525.2 http://www.insect-genome.com/data/genome_download/Anopheles_melas/Anopheles_melas_genomic.fasta.gz

Anopheles merus GCA 000473845.2 http://www.insect-genome.com/data/genome_download/Anopheles_merus/Anopheles_merus_genomic.fasta.gz

Anopheles minimus GCA 000349025.1 http://www.insect-genome.com/data/genome_download/Anopheles_minimus/Anopheles_minimus_genomic.fasta.gz

Anopheles nili GCA 000439205.1 http://www.insect-genome.com/data/genome_download/Anopheles_nili/Anopheles_nili_genomic.fasta.gz

Anopheles punctulatus GCA 000956255.1 http://www.insect-genome.com/data/genome_download/Anopheles_punctulatus/Anopheles_punctulatus_genomic.fasta.

gz

Anopheles quadriannulatus GCA 000349065.1 http://www.insect-genome.com/data/genome_download/Anopheles_quadriannulatus/Anopheles_quadriannulatus_

genomic.fasta.gz

Anopheles sinensis GCA 000441895.2 http://www.insect-genome.com/data/genome_download/Anopheles_sinensis/Anopheles_sinensis_genomic.fasta.gz

Anopheles stephensis GCA 000300775.2 http://www.insect-genome.com/data/genome_download/Anopheles_stephensi/Anopheles_stephensi_genomic.fasta.gz

Table S2. GenBank accession numbers and URLs for the dataset of 21 Drosophila genomes

Species GenBank assembly accession URL

Drosophila ananassae GCA 000005115.1 http://www.insect-genome.com/data/genome_download/Drosophila_ananassae/Drosophila_ananassae_genomic.fasta.gz

Drosophila biarmipes GCA 000233415.2 http://www.insect-genome.com/data/genome_download/Drosophila_biarmipes/Drosophila_biarmipes_genomic.fasta.gz

Drosophila bipectinata GCA 000236285.2 http://www.insect-genome.com/data/genome_download/Drosophila_bipectinata/Drosophila_bipectinata_genomic.fasta.

gz

Drosophila elegans GCA 000224195.2 http://www.insect-genome.com/data/genome_download/Drosophila_elegans/Drosophila_elegans_genomic.fasta.gz

Drosophila erecta GCA 000005135.1 http://www.insect-genome.com/data/genome_download/Drosophila_erecta/Drosophila_erecta_genomic.fasta.gz

Drosophila eugracilis GCA 000236325.2 http://www.insect-genome.com/data/genome_download/Drosophila_eugracilis/Drosophila_eugracilis_genomic.fasta.gz

Drosophila ficusphila GCA 000220665.2 http://www.insect-genome.com/data/genome_download/Drosophila_ficusphila/Drosophila_ficusphila_genomic.fasta.gz

Drosophila grimshawi GCA 000005155.1 http://www.insect-genome.com/data/genome_download/Drosophila_grimshawi/Drosophila_grimshawi_genomic.fasta.gz

Drosophila kikkawai GCA 000224215.2 http://www.insect-genome.com/data/genome_download/Drosophila_kikkawai/Drosophila_kikkawai_genomic.fasta.gz

Drosophila melanogaster GCA 000778455.1 http://www.insect-genome.com/data/genome_download/Drosophila_melanogaster/Drosophila_melanogaster_genomic.

fasta.gz

Drosophila miranda GCA 000269505.2 http://www.insect-genome.com/data/genome_download/Drosophila_miranda/Drosophila_miranda_genomic.fasta.gz

Drosophila mojavensis GCA 000005175.1 http://www.insect-genome.com/data/genome_download/Drosophila_mojavensis/Drosophila_mojavensis_genomic.fasta.gz

Drosophila persimilis GCA 000005195.1 http://www.insect-genome.com/data/genome_download/Drosophila_persimilis/Drosophila_persimilis_genomic.fasta.gz

Drosophila rhopaloa GCA 000236305.2 http://www.insect-genome.com/data/genome_download/Drosophila_rhopaloa/Drosophila_rhopaloa_genomic.fasta.gz

Drosophila sechellia GCA 000005215.1 http://www.insect-genome.com/data/genome_download/Drosophila_sechellia/Drosophila_sechellia_genomic.fasta.gz

Drosophila simulans GCA 000259055.1 http://www.insect-genome.com/data/genome_download/Drosophila_simulans/Drosophila_simulans_genomic.fasta.gz

Drosophila suzukii GCA 000472105.1 http://www.insect-genome.com/data/genome_download/Drosophila_suzukii/Drosophila_suzukii_genomic.fasta.gz

Drosophila takahashii GCA 000224235.2 http://www.insect-genome.com/data/genome_download/Drosophila_takahashii/Drosophila_takahashii_genomic.fasta.gz

Drosophila virilis GCA 000005245.1 http://www.insect-genome.com/data/genome_download/Drosophila_virilis/Drosophila_virilis_genomic.fasta.gz

Drosophila willistoni GCA 000005925.1 http://www.insect-genome.com/data/genome_download/Drosophila_willistoni/Drosophila_willistoni_genomic.fasta.gz

Drosophila yakuba GCA 000005975.1 http://www.insect-genome.com/data/genome_download/Drosophila_yakuba/Drosophila_yakuba_genomic.fasta.gz

Table S3. GenBank accession numbers of microbial species used in contamination removal.

Species GenBank assembly accession

Pasteurella langaaensis GCA 003096995.1
Providencia stuartii GCA 001558855.2
Serratia marcescens GCA 000783915.2
Shigella flexneri GCA 000006925.2
Commensalibacter intestini GCA 002153535.1
Acetobacter malorum GCA 002153605.1
Acetobacter pomorum GCA 002456135.1
Lactobacillus plantarum GCA 000203855.3
Lactobacillus brevis GCA 003184305.1
Enterococcus faecalis GCA 002208945.2
Vagococcus teuberi GCA 001870205.1
Wolbachia GCA 000022285.1
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0.1G 0.5G

% ∆e emax % ∆e emax

(a) Columbicola

APPLES∗ 97 0.03 1 92 0.08 1
APPLES-ME 84 0.28 5 87 0.21 5

APPLES-HYBRID 87 0.16 2 87 0.16 2
CLOSEST 54 1.15 7 58 0.91 8
DE-NOVO 98 0.02 1 92 0.08 1

(b) Anopheles

APPLES∗ 95 0.05 1 95 0.05 1
APPLES-ME 95 0.05 1 95 0.05 1

APPLES-HYBRID 95 0.05 1 95 0.05 1
CLOSEST 91 0.09 1 95 0.05 1
DE-NOVO 95 0.05 1 95 0.05 1

(c) Drosophila

APPLES∗ 71 0.29 1 71 0.33 2
APPLES-ME 67 0.42 2 67 0.48 2

APPLES-HYBRID 67 0.33 1 67 0.38 2
CLOSEST 57 0.62 3 57 0.57 2
DE-NOVO 71 0.29 1 71 0.33 2

Table S4. Assembly-free placement of genome-skims. We show the percentage of correct placements (those
that do not increase ∆e), average delta error (∆e), and maximum delta error (emax) for APPLES, assignment to
the CLOSEST species, and the placement to the position in the backbone (DE-NOVO) over the 61 (a), 22 (b), and
21 (c) placements. Results are shown for skims with 0.1 and 0.5Gbp of reads. Delta error is the increase in the
number missing branches between the reference tree and the backbone tree after placing each query.
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Appendix D. Commands707

Sampling Clades708

For sampling clades of size at most 250 from a tree ”tree.nwk”, we used the709

TreeCluster package, available at https://github.com/niemasd/TreeCluster.710

#!/bin/bash

python TreeCluster/TreeCluster.py -i 250 -o clusters.txt -t tree.nwk

-m count_max_clade

Backbone tree estimation711

When multiple sequence alignment is available, we used the following RAxML712

command to compute backbone tree for all datasets except RNAsim varied size dataset.713

We used RAxML version 7.2.6714

#!/bin/bash

raxmlHPC-PTHREADS -m GTRGAMMA -p 88 -n REF -s aln_dna.phy -T 6

For RNAsim varied size dataset, we used FastTreeMP version 2.1.10 for estimating715

backbone topology. We run FastTreeMP with the following command:716

#!/bin/bash

FastTreeMP -nosupport -gtr -gamma -nt -log tree.log < aln_dna.fa > tree.nwk

For alignment free datasets such as Drosophila dataset, we computed backbone tree717

using FastME* (based on FastME version 2.1.6.1) which is available at718

https://github.com/balabanmetin/FastME-personal-copy. FastME* is run with the719

following command:720

#!/bin/bash

fastme -i dist.mat -o tree.nwk -T 1
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Note that we performed Jukes-Cantor correction on the distance matrix ”dist.mat”721

before running FastME*.722

Backbone tree branch length re-estimation723

When multiple sequence alignment is available, we used FastME* to recompute724

backbone tree branch lengths for all datasets except RNAsim varied size dataset. We run725

FastME* with the following command:726

#!/bin/bash

fastme -dJ -i aln_dna.phy -u RAxML_result.REF -o tree_me.nwk

For RNAsim varied size dataset, we used RAxML version 7.2.6 for re-estimating727

ML based branch lengths and used that tree for performing placements using pplacer.728

RAxML is run with the following command:729

#!/bin/bash

raxmlHPC-PTHREADS -f e -t tree.nwk -m GTRGAMMA -s aln_dna.phy -n REF -p 1984 -T 8

For the same dataset, we used FastTree again for re-estimating Minimum Evolution730

based branch lengths and used that tree for performing placements using APPLES.731

FastTree is run with the following command:732

#!/bin/bash

FastTreeMP -nosupport -nt -nome -noml -log tree.log

-intree tree.nwk < aln_dna.fa > tree_me.nwk

Performing placement733

We performed phylogenetic placement of a query using pplacer with the following734

commands:735

#!/bin/bash

nw_prune RAxML_result.REF query > backbone.nwk
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pplacer -m GTR -s RAxML_info.REF -t backbone.nwk -o query.jplace aln_dna.fa

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 27, 2019. ; https://doi.org/10.1101/475566doi: bioRxiv preprint 

https://doi.org/10.1101/475566
http://creativecommons.org/licenses/by-nc-nd/4.0/

