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Abstract 

Much effort has been devoted to understand how chromatin modification regulates 

development and disease. Despite recent progress, however, it remains difficult to 

achieve high sensitivity and reliability of chromatin-immunoprecipitation-coupled 

deep sequencing (ChIP-seq) to map the epigenome and global transcription factor 

binding sites in cell populations of low cell abundance. We present a new Atlantis 

dsDNase-based technology, aFARP-ChIP-seq, that provides accurate profiling of 

genome-wide histone modifications in as few as 100 cells. By mapping histone lysine 

trimethylation (H3K4me3) and H3K27Ac in group I innate lymphoid cells from 

different tissues, aFARP-ChIP-seq uncovers potentially distinct active promoter and 

enhancer landscapes of several tissue-specific NK and ILC1. aFARP-ChIP-seq is also 

highly effective in mapping transcription factor binding sites in small number of cells. 

Since aFARP-ChIP-seq offers reproducible DNA fragmentation, it should allow 

multiplexing ChIP-seq of both histone modifications and transcription factor binding 

sites for low cell samples. 
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Introduction 

Chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) is a 

powerful technique for genome-wide mapping of the binding of chromatin regulators 

and epigenetic modifications, which has contributed greatly to both basic and 

translational research (Park, 2009; Furey, 2012). For example, the accurate mapping of 

epigenome changes in cell populations at distinct developmental stages facilitate our 

understanding of epigenetic mechanisms by which different cell lineages establish their 

unique transcriptional programs. Unfortunately, two major limitations restrict the 

utility of conventional ChIP-seq method in studying rare cell types isolated directly 

from tissues. The first is fragmentation. Although sonication is the most commonly 

used approach for chromatin fragmentation in ChIP-seq, it can result in epitope damage 

and thus reducing the immunoprecipitation efficiency especially when the initial 

material is limited (Stathopulos et al., 2004). The inconsistencies in sonication-based 

chromatin fragmentation results in a low-throughput processing of samples because 

each sample needs to be tested for specific setting of sonication power and time. This 

impedes its adaptation for reliably processing of multiple samples. Although 

micrococcal nuclease (MNase) has been used as an alternative to sonication for 

chromatin fragmentation, MNase often causes chromatin over-digestion (Brind'Amour 

et al., 2015). Another difficulty is chromatin loss during multiple steps of ChIP-seq 

operation, which makes it difficult to obtain high-quality mapping in a small number of 

cells (Park, 2009). 

Several strategies have been employed to reduce the number of cells needed to 

produce high quality ChIP-seq. One method is based on increasing DNA amplification 

cycles during the sequencing library building, which allowed high quality ChIP-seq in 

thousands of cells (Adli et al., 2010; Adli and Bernstein, 2011; Shankaranarayanan et 

al., 2011; Ng et al., 2013). The major deficiency of the amplification-based method is 

that the low-abundance of some ChIPed chromatin may be underrepresented or lost, 

which makes the method not applicable to ultralow cell numbers. Another method is 

barcoding of the fragmented chromatin in individual samples followed by sample 

pooling (Lara-Astiaso et al., 2014; Rotem et al., 2015; van Galen et al., 2016). By 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2018. ; https://doi.org/10.1101/474676doi: bioRxiv preprint 

https://doi.org/10.1101/474676
http://creativecommons.org/licenses/by-nc-nd/4.0/


pooling multiple barcoded samples, the increased total ChIPed chromatin helps to 

reduce chromatin loss in subsequent steps. The low efficiency of ligating barcode 

adaptors to chromatin fragments (<10%), however, significantly limits the application 

of the method for low cell numbers (Gury-BenAri et al., 2016b), because the majority 

of chromatin failed to be barcoded. Indeed, between 10,000 to 20,000 sorted 

hematopoietic cells were needed for the barcode-based iChIP-seq studies (Lara-Astiaso 

et al., 2014).  

By combining microfluidics and DNA barcoding, Rotam et al reported the 

mapping of chromatin states at single-cell resolution and identified a spectrum of 

heterogeneity defined by differences in chromatin signatures of pluripotency and 

differentiation priming among mouse embryonic stem cells (mESCs) (Rotem et al., 

2015). While this single-cell method is useful for identifying subpopulations of cells 

with the aid of single-cell RNA-seq data, the low number of valid sequencing reads 

(500 -10,000) per cell makes the method insufficient for de novo regulatory site 

identification (Rotem et al., 2015). Another recently published method, ChIPmentation, 

utilizes Tn5 transposon mediated adapter addition to immunoprecipitated chromatin 

still bound to beads. This greatly simplified the ChIP procedure, thereby reducing the 

time and cell input requirement (Schmidl et al., 2015). However, since chromatin loss 

still occurs during the sonication step, ChIPmentation requires ~10,000 cells for 

accurate mapping of histone modifications of H3K4me3 and H3K27me3. 

Innate lymphoid cells (ILCs) are a family of recently defined lymphoid cells 

that belongs to the innate counterpart of lymphocytes (Rankin et al., 2013; Diefenbach 

et al., 2014; Eberl et al., 2015). ILCs are present throughout the body and they are often 

found at the barrier surfaces of tissues. These cells play important roles in early defense 

against pathogens and they promote tissue repair and maintenance. Their inappropriate 

activation could contribute to inflammation and autoimmune diseases (Rankin et al., 

2013; McKenzie et al., 2014). Developing from the common ILC progenitor, three 

classes of ILCs have been defined, including group 1, group 2, and group 3 ILCs. These 

ILCs are characterized based on their analogous cytokine-production profiles of the 

adaptive T cell subsets (Diefenbach et al., 2014). The group 1 ILCs consist of 
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conventional Natural Killer cell (NK) and ILC1. Controversial classification exists in 

this subgrouping because they have functional similarities and shared expression of 

many cell surface markers (Jiao et al., 2016). Recent global transcriptome profiling of 

group 1 ILCs isolated from different peripheral tissues has begun to facilitate the 

subdivision of the NK and ILC1 subsets (Robinette et al., 2015). For example, the small 

intestine intraepithelial (siIEL) ILC1 is found as a unique subset with distinct 

developmental and functional properties (Fuchs et al., 2013). The unique transcription 

and cytokine profiles suggest that siIEL ILC1 may belong to a distinct ILC1 subset 

different from some of the other ILC1 or NK subsets (Robinette et al., 2015). However, 

the lack of high quality epigenome and chromatin protein binding profiles due to the 

difficult to perform ChIP-seq in the low abundance siIEL ILC1 has limited additional 

in-depth study of the lineage identity and origin of these cells (Sciumè et al., 2017). 

We have recently report two techniques, recovery via protection (RP)-ChIP-seq 

and favored amplification RP-ChIP-seq (FARP-ChIP-seq) for low-cell-number 

epigenome profiling (Zheng et al., 2015). These two ChIP-seq methods are based on 

the idea that if a rare cell population is not lost during the initial fixation and wash steps, 

and if chromatin loss is minimized during ChIP and library building, it should be 

possible to recover low-abundance chromatin without increasing DNA amplification 

cycles. Indeed, by employing these two methods, we were able to obtain reproducible 

mapping in as few as 500 cells. Here, we report a new dsDNase-based FARP-ChIP-seq 

method for high-fidelity genome-wide profiling using as few as 100 cells with broad 

applications such as profiling of epigenetic differences of group 1 ILCs from different 

tissue origins and transcription factor binding in splenic B cells. The reliability and 

consistency of dsDNase-based chromatin fragmentation among different samples in 

our method also allows multiplexing of ChIP-seq operations.   

 

Results 

Atlantis dsDNase-based FARP-ChIP-seq (aFARP-ChIP-seq) offers better 

mapping of histone marks than FARP-ChIP-seq  

 We recently reported RP-ChIP-seq and FARP-ChIP-seq that allow high quality 
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epigenome mapping in only 500 cells. However, the increase in sequencing depth 

required due to the presence of carrier DNA leads to an increase in mapping costs 

(Zheng et al., 2015). To reduce both the sequencing costs and the number of cells 

needed for successful FARP-ChIP-seq, we wish to further improve the recovery of 

chromatin of interest. We reasoned that sonication used for chromatin fragmentation 

could destroy the epitopes for subsequent immunoprecipitation, thereby resulting in a 

significant loss of chromatin of interest especially when the input cell number is low. 

To overcome this limitation, we tested enzymatic digestion-based chromatin 

fragmentation. We found that the commonly used micrococcal nuclease 

(MNase)-based fragmentation is compatible for FARP-ChIP-seq and it resulted in ~70% 

increase (from 16% to 27%) of H3K4me3 reads mapping to mouse genome compared 

to FARP-ChIP-seq at the same read depth for 500 mESCs (Fig 1A and B). However, it 

is challenging to control MNase activity and its propensity to over digest chromatin due 

to its exonuclease activity impedes reliable parallel processing of multiple samples, 

especially when dealing with different samples (Brind'Amour et al., 2015; van Galen et 

al., 2016). Therefore, we sought to identify an alternative DNase for chromatin 

fragmentation.  

 Among the DNases, the Atlantis dsDNase (Zymoresearch) is a double-stranded 

DNA-specific endonuclease that cleaves phosphodiester bonds in DNA to yield 

fragments with 5’-phosphate and 3’-hydroxyl termini, which are ideal for chromatin 

fragmentation. Our tests demonstrated that Atlantis dsDNase digestion of unfixed or 

paraformaldehyde fixed nuclei from different cell types and cell numbers at 0.5 Unit (U) 

for 20-30 min at 37 ⁰C yielded consistent chromatin fragmentation (Figure S1 and data 

not shown). This reliable fragmentation and suitable DNA length distribution are 

optimal for ChIP-seq (Park, 2009) and it is amenable for simultaneously fragment 

chromatin in different samples (Figure 1A). Thus, the Atlantis dsDNase may replace 

the conventional MNase for chromatin fragmentation in a variety of genome studies. 

 We next attempted at incorporating Atlantis dsDNase for chromatin 

fragmentation in our FARP-ChIP-seq and we referred to this method as 

Atlantis-FARP-ChIP-seq (aFARP-ChIP-seq). Since the total chromatin marked by 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2018. ; https://doi.org/10.1101/474676doi: bioRxiv preprint 

https://doi.org/10.1101/474676
http://creativecommons.org/licenses/by-nc-nd/4.0/


H3K4me3 is much lower compared to other histone modifications, it is most 

challenging in obtaining sufficient chromatin for high quality H3K4me3 profiling 

using low cell numbers. Thus, we initially applied aFARP-ChIP-seq to map H3K4me3 

in 500 mESCs (Figure 1A; also see the method section). We found that 

aFARP-ChIP-seq resulted in a ~3-fold increase of DNA reads of interest compared to 

FARP-ChIP-seq at the same read depth for 500 mESCs (Figure 1B). The two biological 

replicates were highly consistent (Figure 1C), demonstrating the reproducibility of this 

method. To further evaluate aFARP-ChIP-seq, we performed genome-wide 

comparisons of H3K4me3 signal intensity against the datasets generated from the 

standard ChIP-seq of 107 mESCs (Jia et al., 2012). This revealed that aFARP-ChIP-seq 

using 500 mESCs was highly correlated with the standard ChIP-seq of 107 mESCs 

(Figure 1D). Analyses of specific chromatin regions revealed that aFARP-ChIP-seq 

could uncover H3K4me3 peaks reliably. More importantly, aFARP-ChIP-seq 

generated higher H3K4me3 signal intensity compared to FARP-ChIP-seq (Figure 1E). 

Thus, aFARP-ChIP-seq yields accurate and consistent epigenome profiles and it 

performs better compared to FARP-ChIP-seq relying on the sonication-based or 

MNase-based chromatin fragmentation in 500 cells (Figure 1B).  

 

aFARP-ChIP-seq epigenome mapping in as few as 100 cells  

 The improved mapping efficiency of aFARP-ChIP-seq suggests that it could be 

used in less than 500 cells. To test this, we mapped H3K4me3 using 100 mESCs. We 

digested the fixed mESCs for 20 min. We found that the H3K4me3 mapping in 100 

mESCs showed good consistency between the two biological replicates (Figure 2A). 

Importantly, despite increased noise, the chromatin profiles generated from 100 mESCs 

were still informative and were similar to the 500-cell aFARP-ChIP-seq (Figure 2B). 

By using the MACS2 program with identical parameters, the peaks called for our 

previous standard ChIP-seq of 107 mESCs datasets (Jia et al., 2012) and 

aFARP-ChIP-seq of 100 mESCs also have a good degree of overlap (Figure 2C).  

 Next, we used the receiver-operating characteristic (ROC) curve to compare the 

H3K4me3 maps obtained by FARP-ChIP-seq or aFARP-ChIP-seq. The Area Under the 
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ROC curve (AUC) is a standard metric for quantifying balanced sensitivity and 

specificity. By using different cutoffs to calculate the true-positive and false-positive 

rates, we plotted ROC curves for each method, which showed that aFARP-ChIP-seq 

using 100 or 500 cells provides reliable performances (Figure 2D). These analyses 

demonstrate that aFARP-ChIP-seq enables analysis of as few as 100 cells. 

 

The H3K4me3 profiling of group 1 innate lymphocyte lineages reflects their 

distinct functionalities 

 To test the applicability of aFARP-ChIP-seq, we applied it on challenging in 

vivo biological samples by profiling histone modifications in innate lymphoid cell (ILC) 

types, which typically make up 1-5 % of total lymphocytes in peripheral non-gut tissues 

(Diefenbach et al., 2014). Recent studies indicate that tissue-specific signals have 

significant impacts on gene expression and activity of ILCs. The influence of local 

tissue microenvironments on chromatin and gene regulatory landscapes, however, has 

remained not well understood (Gury-BenAri et al., 2016a; Shih et al., 2016; Sciumè et 

al., 2017), in part, due to the difficulty in mapping chromatin and gene regulatory 

landscapes in ILCs isolated from individual animals. We focused our study on the 

IFN-γ-producing group 1 ILCs, including conventional NK and ILC1, isolated from 

individual mice (Cortez and Colonna, 2016) 

 Since there is a lack of unique and consistent markers in NK cells and ILC1 

cells in various organs, we used different sorting strategies according to previously 

published protocols for each tissue, including spleen, mesenteric lymph nodes (mLN), 

liver and small intestine intraepithelia (Figure 3A and Figure S2A) (Robinette et al., 

2015). We then applied aFARP-ChIP-seq to profile H3K4me3 using NK or ILC1 

sorted from each tissue from one mice without further in vitro culturing. For each 

aFARP-ChIP-seq analyses, we used 1000-2000 cells that were estimated based on the 

cell numbers sorted by Fluorescence Activated Cell Sorting (FACS). We found 

consistent maps for H3K4me3 (Figure S2B-H) between biological replicates in the 

ILC1 and NK cells in different tissues, which allowed us to examine the chromatin 

landscapes in these two group 1 ILC sub-lineages.  
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 We identified 789 up- and 271 down-regulated H3K4me3 peaks in spleen, 604 

up- and 557 down-regulated peaks in mLN, and 966 up- and 490 down-regulated 

H3K4me3 peaks in liver in ILC1 compared to NK cells (fold change > 1.5, FDR < 0.05.) 

(Figure 3B-D). We found those exhibiting differentially H3K4me3 peaks correlated 

with the lineage-specific developmental program and functionality of each subset such 

as IL7r (ILC1), Eomes (NK), and Gzma (NK, cytotoxic machinery) (Figure 3E).  

 Specifically, the H3K4me3 levels on Eomes is greater than twofold in NK cells 

than in ILC1 cells in all tissues analyzed (Figure 3E and Table S1), which is consistent 

with previous finding that Emoes is a marker for NK cells (Gordon et al., 2012; Daussy 

et al., 2014; Zhang et al., 2018). Interestingly, we found that siIEL ILC1 isolated from 

small intestines exhibited H3K4me3 peaks on both IL7r and Eomes (Figure 3E). This 

suggests functional plasticity of this unique ILC1 probably due to their constant 

exposure to varied environmental signals from microbiome and nutrients in the gut. 

The Multi-Dimensional Scaling (MDS) plot also revealed that siIEL ILC1 to be distinct 

from both ILC1 and NK derived from different peripheral tissues (Figure 3F). The 

elevated H3K4me3 peak in TGF-β locus in siIEL ILC1 compared to NK and other 

ILC1 cells (Figure 3G) is consistent with the unique roles of TGF-β in the development 

and function of siIEL ILC1 (Robinette et al., 2015; Cortez et al., 2016) 

 

H3K27Ac mapping reveals differential enhancer landscapes in the siIEL ILC1 

compared to the other ILC1 

 It is well known that gene expression programs in ILC subsets in different 

tissues can reflect distinct patterns of enhancer activity that in turn reflects the 

differential transcription factor binding profiles (Hallikas et al., 2006; Spitz and 

Furlong, 2012; Heinz et al., 2015). To probe the regulatory circuitry that specifies siIEL 

ILC1 and its functions, we next mapped the active enhancer mark H3K27Ac 

(Creyghton et al., 2010) in the same set of NK and ILC1 isolated from individual mice 

as described above (see Figure 3 and S2) using estimated 1000-2000 cells (based on 

FACS sorting) for each ChIP-seq experiment. The biological replicates of our maps 

were highly consistent with one another (Figure 4A and Figure S3A-F). We then 
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focused on analyzing the active enhancers in ILC1 from spleen, lymph nodes, liver, and 

small intestine. We identified total 21417 enhancers that are active in at least one ILC1 

cell type from at least one of the four tissues profiled (Figure 4B and Table S2). 

Consistent with previous finding of an early developmental acquisition of common 

chromatin organization in ILCs (Shih et al., 2016), the ILC1 cells from siIEL shared 

9892 enhancers with the other ILC1 from spleen, lymph node, and liver (Figure 4B). 

We also identified 2100 enhancers that are unique to siIEL ILC1 (Figure 4B). 

 By analyzing the top five genes located most proximally to the up-regulated 

enhancers in the siEIL ILC1 (compared to the other three ILC1), we found Ahrr, Cnih3 

(Figure 4C and Figure S3G), Ccny, Sec24d, and Rin2. Interestingly, a recent study 

reported that the expression of AhRR in colonic intraepithelial lymphocytes prevents 

excessive IL-1β production and Th17/Tc17 differentiation, implicating the physiologic 

importance of AhRR in balancing intestine inflammation (Brandstätter et al., 2016). 

Our finding that Ahrr gene is marked strongly by active enhancers in siIEL ILC1 

suggests that siEIL ILC1 could also use Ahrr in modulating inflammation in the small 

intestines. Our analyses also indicate that the other genes, such as Cnih3 and Ccny, 

could also play important roles in siEIL ILC1. Although additional studies are required 

to validate this possibility, the high-quality enhancer profiling achieved using 

aFARP-ChIP-seq in small number of cells directly isolated from tissues should 

facilitate the identification of candidate genes that function in lineage specification or 

functional plasticity of cells in vivo such as the ILC1 subsets in different tissue 

microenvironments in individual mice. 

 Since transcription factor binding is a key determinant of enhancer activity, we 

next attempted to identify potential transcription factors that could regulate the 

enhancer landscape in siEIL ILC1 by searching for the enrichment of transcription 

factor binding motifs in H3K27Ac peaks identified in these cells. This allowed the 

identified a full set of transcription factor signatures of siEIL ILC1. Among these, we 

found significant enrichment of sequence motifs known to be bound by Fli1 (or ETS), 

IRF1, RunX1, Zfx and Gata3 (Figure 4D), which have been shown to play important 

roles for the development and function of ILC1 in general (Rankin et al., 2013; 
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Diefenbach et al., 2014; Tanriver and Diefenbach, 2014). These results suggest that the 

shared transcriptional regulatory elements underlying either development or 

functionality of ILC1 subpopulations across the different tissue origins. Together, our 

analyses show that the high quality H3K4me3 and H3K27Ac datasets we generated for 

NK and ILC1 in different tissues can serve as valuable resources. 

 

aFARP-ChIP-seq is applicable for high quality mapping of transcription factor 

binding sites in small number of cells 

 Genome-wide profiles of transcription factor binding sites have been largely 

restricted to tissue culture cell lines due to the requirement of a large number of cells 

(>106 cells) as the starting material for the traditional ChIP-seq approach (Valouev et 

al., 2008; Ouyang et al., 2009). To test if aFARP-ChIP-seq can facilitate the mapping 

of transcription factor binding sites in relatively small number of cells sorted from 

tissues, we mapped the binding sites of the ETS-family transcription factor, PU.1. PU.1 

is widely expressed in hematopoietic lineages and plays key regulatory roles in early 

hematopoiesis and B-cell development (Klemsz et al., 1990). As proof of principle, we 

performed genome-wide mapping of PU.1 in splenic B cells using 1x105 or 1x104 cells 

in each aFARP-ChIP-seq. Several lines of evidence suggest that our profiling identified 

bona fide PU.1 binding sites in the isolated B cells. First of all, our data showed proper 

read distributions around genomic loci of genes that have previously been reported to 

be bound by PU.1 in B cells, such as Blnk (encoding B cell linker protein), Btk 

(encoding Bruton tyrosine kinase), and Fcgr2b (encoding FcγRIIb), and our parallel 

mapping using isolated T cells showed that these genes do not have PU.1 binding as 

expected (Figure 5A and Figure S4) (Schweitzer et al., 2006; Xu et al., 2012; Solomon 

et al., 2015). Additionally, we observed a similar PU.1 binding pattern around TNF 

locus as those obtained using iChIP-seq in 1x 104 dendritic cells derived by in vitro 

differentiation of mouse bone marrow cells (Figure 5B) (Lara-Astiaso et al., 2014).  

 To further validate the results of our aFARP-ChIP-seq in the isolated splenic B 

cells, we screened for the sequences of the enriched read regions for potential 

transcription factor binding motifs. We found that the top motif for PU.1-bound regions 
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contain a canonical ETS motif, 5′ -GGAA-3′ (Figure 5C) (Solomon et al., 2015). 

Therefore, the reproducibility and sensitivity of aFARP-ChIP-seq should allow genome 

wide characterization of chromatin binding proteins including transcription factors in 

small number of cells directly sorted from tissues. 

 

Discussion 

 By searching for DNases that allow reliable chromatin fragmentation under 

wider range of conditions than the commonly used MNase, we found that the Atlantis 

dsDNase can fragment chromatin reproducibly in different cell types and in different 

number of cells using a relatively wide range of incubation time without over digesting 

chromatin. Thus, the Atlantis dsDNase is a superior choice over MNase in applications 

involving chromatin fragmentation.  

 By applying FARP-ChIP-seq on the Atlantis dsDNase generated chromatin 

(aFARP-ChIP-seq), we are able to produce high-quality ChIP-seq datasets in as few as 

100 cells. We have shown that addition of carriers in FARP-ChIP-seq allows capture of 

low abundance chromatin without excessive PCR amplification, thereby greatly 

improves the fidelity and reproducibility of genome-wide chromatin mapping in small 

number of cells. However, a ~5-fold increase of sequencing depth is required to obtain 

sufficient reads of interest by FARP-ChIP-seq (Zheng et al., 2015), which increases 

sequencing costs. The improved chromatin fragmentation by Atlantis DNase in 

aFARP-ChIP-seq greatly increased the recovery of low abundance chromatin 

compared to FARP-ChIP-seq. Indeed, we show that aFARP-ChIP-seq offers a ~3-fold 

increase of DNA reads compared to FARP-ChIP-seq at the same read depth for 

H3K4me3 in 500 mESCs. This increase in sequence recovery significantly reduces 

DNA reads needed and thus sequencing cost, thereby facilitating the use of carrier 

approach for ChIP-seq in different applications.  

 Not much effort has been devoted to multiplexing of ChIP-seq in small number 

of cells because of the difficulty in obtaining high quality and fidelity reads and because 

of the inconsistency of chromatin fragmentation by sonication, tagmentation, or MNase 

in different samples. We show that optimal chromatin fragmentation and high 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2018. ; https://doi.org/10.1101/474676doi: bioRxiv preprint 

https://doi.org/10.1101/474676
http://creativecommons.org/licenses/by-nc-nd/4.0/


reproducibility is achieved by Atlantis dsDNase in a range of conditions and different 

cell number and types (Figue 1 and Figure 3-4). Therefore, aFARP-ChIP-seq offers a 

good opportunity to multiplexing ChIP-seq library preparations. This, coupled with the 

high-quality ChIP-seq data and reduced sequence need, should allow parallel 

epigenome mapping of different cell types isolated from different tissues without 

further amplification of cells or excessive rounds of PCR amplification of DNA 

fragments. The simplicity of aFARP-ChIP-seq workflow allows it to be easily 

established in any lab without specialized equipment, such as microfluidic devices used 

in MOWChIP-seq and single-cell ChIP-seq (Cao et al., 2015; Rotem et al., 2015). 

Considering the aFARP-ChIP-seq is fundamentally different from other 

high-sensitivity ChIP technologies, which rely on either excessive DNA amplification 

or chromatin indexing, we believe that it offers a viable alternative approach to further 

reduce read depth and cell number needed in a high throughout format. 

 By sorting the group 1 ILC subsets in mesenteric lymph node (mLN), spleen, 

small intestine, and liver from one mouse, we obtained high quality mapping of 

H3K4me3 and H3K27Ac in the NK and ILC1 cells. This should allow more accurate 

understanding of how the same kind of immune cell subsets differ in different organs in 

the same mouse. By obtaining genome wide maps of epigenome and chromatin binding 

sites for proteins in different cell types in different mouse, aFARP-ChIP-seq should 

also allow efficient comparisons of the same cell subsets in one organ to reveal how 

different environments and genotypes influence the genome features. For example, 

studies suggested that microenvironments in different tissues play important roles in 

shaping both gene expression and enhancer activities, resulting in tissue-specific 

identities of macrophages (Lavin et al., 2014). Consistent with the notion that different 

tissue microenvironments influence tissue resident immune cells, our H3K4me3 MDS 

analyses reveal a clear separation of NK cells and ILC1s isolated from the spleen, small 

intestines, mLN, or liver in one mouse (Figure 3F).  

 We also observed pronounced epigenome differences in siIEL ILC1 isolated 

from small intestine’s intraepithelial compartment compared to the ILC1s from the 

other three tissues we analyzed, which is consistent with the recently reported 
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transcriptome differences in the group I ILCs (Robinette et al., 2015). Interestingly, we 

show that siIEL ILC1 exhibits H3K4me3 peaks on Eomes, a key lineage-determining 

transcription factor for NK cells. One explanation for this finding is that the siIEL ILC1 

identified by cell-surface markers (NKp46+NK1.1+) is a heterogeneous population and 

it may be composed of both unidentified NK subsets and ILC1 lineage in the gut 

intraepithelial compartment. Alternatively, these siIEL ILC1 may exhibit lineage and 

functional plasticity due to the unique gut environment. Consistently, an ILC3-derived 

ILC1 population has been reported in the mouse gut under the influence of 

inflammatory stimuli (Li et al., 2016). Importantly, NK cells could be converted into 

ILC1 by the tumor microenvironment-derived TGF-β signaling (Cortez et al., 2017; 

Gao et al., 2017), indicating that a fraction of siIEL ILC1 could also be derived from 

NK cells underlying the unique gut compartment. Identification of signaling molecules 

involved in the conversion of NK to siIEL ILC1 within the gut epithelial environment 

could be a key to understanding the functional plasticity of this unique ILC1 population. 

Given that gut microbiome is thought to exhibit remarkable impact on the regulatory 

landscape of ILCs (Gury-BenAri et al., 2016a), aFARP-ChIP-seq should greatly aid 

further study of how ILCs differentially integrate signals from the microbial 

microenvironment in individual mice to generate phenotypic and functional differences, 

thereby influencing the health status of individuals.  

 The ability to achieve accurate map of active enhancer landscapes as revealed 

by H3K27Ac profiling in individual mice in this study should allow the identification 

of candidate genes that may function in specific cell types under different tissue 

microenvironments or external environments different mice experience. For example, 

compared to ILC1 from other peripheral tissues studied, the siIEL ILC1 displays a 

significant up-regulated H3K27Ac peaks for the gene Ahrr, which has been reported to 

play an important role for balancing colon inflammation (Brandstätter et al., 2016). 

This suggests that Ahrr in siIEL ILC1 could play a similar role in the small intestines. 

Additionally, the H3K27Ac profiling allowed the identification of transcription factor 

binding signature enriched in siIEL ILC1. Deep mining of the H3K27Ac datasets in 

NK1 and ILC1 we mapped should allow the identification of additional candidate 
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transcription factor binding in different tissues and cell subsets, which would facilitate 

further study of the regulatory logic underlying the developmental and homeostatic 

processes of group I ILCs. 

  Our proof-of-concept PU.1 profiling by aFARP-ChIP-seq using 1x104 isolated 

splenic B cells demonstrate the broad usage of this method for genome-wide mapping 

of transcription factor binding. The requirement of only 1x104 cells should allow 

successful mapping for majority of cell types of hematopoietic lineage in individual 

mice. This is especially important for the mapping of early hematopoietic progenitors 

because of limited cell number per mice. Additional optimization, including further 

optimizing digestion conditions and the use of improved ChIP grade antibodies, should 

allow the reduction of the number of cells needed, thereby further increasing the 

feasibility and success rate of discovering novel transcriptional regulatory network 

governing each stage of developmental process.  

 

Materials and methods 

 

Cell lines and animals 

 E14 mouse embryotic stem cells (mESCs) were cultured in DMEM with 15% 

fetal calf serum, penicillin/streptomycin, β-mercaptoethanol, L-glutamine, nonessential 

amino acids, recombinant leukemia inhibitory factor (1000 U/ml, Millipore). 

 C57BL/6L mice were obtained and maintained at the mouse facility of Carnegie 

Institution’s Embryology Department. Adult female mice (8 week of age) were used in 

all experiments. Mice were housed under a strict 12 hr light-dark cycle with food and 

water ad libitum. All mouse procedures in this study were in accordance with protocols 

approved by the Institutional Animal Care and Use Committee of the Carnegie 

Institution for Science. 

 

Antibodies  

 The following antibodies were obtained from Biolegend: Fluorescein 

isothiocyanate (FITC)-conjugated anti-NKp46 (clone 29A1.4), PE/Cy7-conjugated 

anti-NK1.1 (clone PK136), APC-conjugated anti-CD127 (IL-7Rα) (clone A7R34), 

PE/Cy7-conjugated anti-NK1.1 (clone PK136), PerCP/Cy5.5-conjugated anti-CD49b 
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(clone HMa2), PerCP/Cy5.5-conjugated anti-mouse Ly-6A/E (Sca-1) (clone D7), PE 

anti-CD253(TRAIL) (clone N2B2), PE/Cy7-conjugated anti-mouse CD117 (clone 

c-Kit) (clone 2B8), FITC-conjugated anti-mouse CD25 (clone 3C7), Lineage mixed 

cocktail antibodies (Ter119, Gr1, CD11b, B220, CD3, CD4, CD8), PE-conjugated 

anti-F4/80 (clone BM8), APC-conjugated anti-CD11c (clone N418), and 

isotype-matched control monoclonal antibodies. 

 Antibody against histone H3 lysine 4 trimethylation (H3K4me3) (clone C42D8, 

#9751S) was from Cell Signaling. Antibodies against acetylated histone H3 lysine 27 

(H3K27ac, #ab4729) and control mouse IgG were from Abcam. Antibodies against 

PU.1 (clone T-21, #sc-352X) were from Santa Cruz Biotechnology. The working 

concentrations of the above antibodies were used as recommended by the companies, 

unless otherwise specified below, or in the text and figure legends, in an 

assay-dependent manner. 

 

Cell identification, isolation, and flow cytometry 

All cells from mouse tissues or organs were collected, stained and sorted according 

to the published standard protocol (Halim and Takei, 2014). Spleens, mesenteric lymph 

nodes, liver, and small intestine were extracted from C57BL/6J female mice and were 

dissociated into single cell suspensions by passing through 100µm Falcon cell strainer. 

After washing with FACS buffer (PBS with 0.3% BSA and 2 mM EDTA), cell 

suspension was incubated in red blood cell lysis solution (#R7757, Sigma) for 5 min on 

ice. For spleen and mesenteric lymph nodes, anti-CD3 (#130-095-130) and anti-CD19 

(#130-052-201) microbeads (Miltenyi Biotec) were used to remove T cells and B cells, 

respectively, following the microbead guidelines. For liver, lymphocytes were enriched 

at the interface between a gradient of 40% and 80% Percoll in Hank’s balanced salt 

solution. For small intestine, the intestine was cut first longitudinally and then laterally 

into pieces of approximately 1-2 cm length in Petri dish. The tissues were transferred 

into 50 ml tube with 20 ml PBS containing 1mM EDTA. The sample was incubated at 

37°C for 20 min under continuous 120 rpm rotation. Lymphocytes in small intestine 

were enriched at the interface between a gradient of 40% and 80% Percoll in PBS. The 

cells were then stained with DAPI, NKp46, NK1.1, CD127, CD49b, TRAIL, CD25, 
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CD117, Sca-1, Lineage mixed cocktail antibodies (Ter119, Gr1, CD11b, B220, CD3, 

CD4, CD8), CD11c, I-A/I-E, F4/80 antibodies for 20 min at 4°C. After washing, cells 

were sorted with FACSAriaTM III cell sorter (BD Bioscience). All data were 

with FlowJo 9.3.2 software (Tree Star). The cell populations collected were identified 

as: 

Spleen- and mesenteric lymph node-ILC1: CD3-, CD19-, NKp46+, NK1.1+, 

Spleen- and mesenteric lymph node-NK cells: CD3-, CD19-, NKp46+, NK1.1+, 

CD127-. 

Liver-ILC1 cells: NKp46+, NK1.1+, CD49b-, TRAIL+. 

Liver-NK cells: NKp46+, NK1.1+, CD49b+, TRAIL-. 

siIEL-ILC1 cells: CD3-, CD19-, NKp46+, NK1.1+. 

Spleen-B cells: CD3-, B220+, CD19+. 

Spleen-T cells: CD3+, B220-. TCRβ+ 

 

FARP-ChIP-seq 

 Standard FARP-ChIP-seq was performed according to the conditions 

previously from our lab (Zheng et al., 2015). Briefly, 500 mESCs were mixed with 

~5x108 DH5α E.coli and fixed with 1% formaldehyde followed by quenching using 

0.125M glycine. After washes, the sample mixtures were sonicated to obtain 

fragments with a 1/16-inch probe for 15 min at 3 watts by a tip sonicator (Misonix 

sonicator 3000). Protein G beads (#10004D, Life Technologies) and M-280 

streptavidin beads (#11206D, Life Technologies) were pre-blocked with ~5x108 fixed 

and sonicated E.coli lysate overnight at 4°C. After blocking, 5 ng carrier biotin-DNA 

was then coupled to 10 µl M-280 streptavidin beads. These treated protein G and 

streptavidin beads were combined and used to ChIP H3K4me3 in the sonicated 

E.coli+mESC lysates overnight at 4°C. After de-crosslinking, the precipitated 

genomic DNA and biotin-DNA were purified by AMPure XP beads (#A63881, 

Beckman Coulter). Library building steps were performed following Illumina 

True-Seq protocol with 0.25µM blocker oligo included at the final library 

amplification step. 

 

MNase-FARP-ChIP-seq 
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 500 mESCs were mixed with ~1x108 DH5α E.coli and fixed with 1% 

formaldehyde followed by quenching using 0.125M glycine. After fixation and 

washing, the mixtures were re-suspended directly in nuclear isolation buffer 

(#NUC101, Sigma). Chromatin was fragmented using 2U/μl MNase (#M2047 NEB) 

at 25°C for 5 minutes according to the published protocol (Brind'Amour et al., 2015). 

ChIP, genomic DNA recovery, and sequencing library generation were performed 

following the FARP-ChIP-seq procedure. 

 

Atlantis-FARP-ChIP-seq (aFARP-ChIP-seq) 

 mESCs or sorted immune cells were mixed with ~1x108 E.coli (DH5α) and 

crosslink by 1% formaldehyde and incubated for 8 min at room temperature with 

moderate shaking. After fixation, glycine was adding to the final concentration of 

0.125 M and incubated for 5 min at room temperature to stop the crosslinking by 

quenching the free formaldehyde. After washing, the mixture was resuspended in the 

nuclear isolation buffer (#NUC101, Sigma). Then, the samples were digested with 

0.5U/100ul Atalantis dsDNase (#E2030, Zymo Research) for 30 min at 37°C (20 min 

at 37°C for 100 mESCs). The reactions were stopped by 0.5 M EDTA. ChIP, genomic 

DNA recovery and sequencing library generation were performed following the 

standard FARP-ChIP-seq. 

 

ChIP sequencing and peak finding 

 ChIP sequencing was done on Illumina Nextseq-500 and pooled libraries were 

sequenced at a sequencing depth of ~15-20 million aligned reads per sample. 

Libraries were prepared in triplicates or duplicates. Reads were mapped to the mouse 

genome mm9 using the ‘bowtie’ program with -v 2 parameter. Only tags that uniquely 

mapped to the genome were used for further analysis. ChIP-seq peaks were called 

using the MACS program (Zhang et al., 2008) with default parameters.  

 

Promoter correlation, whole-genome correlation, and ROC analysis 

 log2 of H3K4me3 enrichment were plotted for all TSS (2kb up and 

downstream of TSS) to generate the correlation plots. For the H3K4me3 ROC 

analysis, we used top 25,000 2-kb windows as “True” to mimic the ~25,000 peaks in 

benchmark dataset. Then by adjusting the "threshold" to include more top 2-kb 

windows in the test data, we can calculate the true-positive rate and false-positive rate 
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to get the ROC curve.  

 

Analyses of ChIP-seq of transcription factor binding in splenic B cells  

 PU.1 peaks of B cells from mouse spleen are called by MACS with p-value 

threshold of 10-5. The motifs was identified by using Homer (Heinz et al., 2010) to 

call motifs on PU.1 peak regions.  

 

Figure legends 

Figure 1. Development of aFARP-ChIP-seq 

(A) Schematic overview of aFARP-ChIP-seq or MNase-FARP-ChIP-seq. For 

aFARP-ChIP-seq, 1-16 samples can be simultaneously processed with consistent 

quality due to the consistent chromatin fragmentation in different samples.   

(B) aFARP-ChIP-seq resulted in increased ratios of mapped mouse reads to the total 

reads (mouse reads+carrier biotin-DNA+bacteria DNA reads). 

(C and D) Contour plots (as log2 of the average read density within 2 kb up and 

downstream of TSS. Spearman correlation coefficient, R) between two biological 

replicates of aFARP-ChIP-seq in 500 mESCs (C) or between 500 mESC 

AFARP-ChIP-seq and the 107 mESCs standard ChIP-seq of H3K4me3. 

(E) Enrichment at the indicated genes on chromosome 17 was mapped by the 

indicated methods. 

See also Figure S1. 

 

Figure 2. aFARP-ChIP-seq generates reliable epigenome mapping in as few as 
100 cells. 

(A) Contour plots between two biological replicates of aFARP-ChIP-seq of H3K4me3 

in 100 mESCs. 

(B) Enrichment at the indicated genes on chromosome 17 was mapped by the 

aFARP-ChIP-seq with 100 or 500 mESCs. 

(C) The overlap between the H3K4me3 peaks identified from conventional ChIP-seq 

of 107 mESCs and FARP-ChIP-seq of 500 mESCs and aFARP-ChIP-seq of 100 and 

500 mESCs. MACS2 with identical parameters was used to identify the peaks.  
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(D) ROC curve for H3K4me3 comparisons among different cell number inputs and 

ChIP-seq methods. True positive rate, the number of true-positive 2-kb regions 

divided by the number of ‘‘true’’ regions (25,000); false-positive rate, the number of 

false positive regions divided by the number of ‘‘false’’ regions.  

 

 

Figure 3. aFARP-ChIP-seq of H3K4me3 in group 1 ILCs from indicated tissues. 

(A) FACS plots with the markers and gating used for sorting NK and ILC1 cells from 

mesenteric lymph nodes (mLN). 

(B-D) Comparison of H3K4me3 in NK and ILC1 cells isolated from mesenteric 

lymph node (mLN) (B), spleen (SP) (C), and liver (LV) (D). 

(E) Genome browser view of the representative lineage- and function-specific 

H3K4me3 peaks in NK and ILC1 cells isolated from the indicated tissues.  

(F) MDS plot of aFARP-ChIP-seq of H3K4me3 maps in NK and ILC1 cells isolated 

from the indicated tissues. Distances between biological replicates (-1 and -2) within 

and between group 1 ILC subtypes show the similarities and differences among the 

datasets. 

(G) Browser view of TGF-β H3K4me3 peaks in NK and ILC1 from the indicated 

tissues. 

See also Figure S2 and Table S1 

 

Figure 4. Identification of the unique enhancer landscape in siIEL ILC1 among 
the four ILC1s mapped 

(A) Contour plots between two biological replicates of aFARP-ChIP-seq of H3K27Ac 

in siIEL ILC1. 

(B) The Venn diagram showing the numbers of active enhancers that are either unique 

or shared by the indicated number of the indicated tissues. 

(C) Genome browser view of H3K27Ac map at and around Ahrr locus in ILC1s from 

the indicated tissues. 

(D) P values for the enrichment of transcription factor binding motifs identified by 

analyzing enhancers that are active in siIEL ILC1. The sequences of the motifs are 
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listed to the right. 

See also Figure S3 and Table S2 

 

Figure 5. aFARP-ChIP-seq mapping of genome-wide PU.1 binding in isolated 

splenic B cells 

(A) Normalized profiles of PU.1 in a 200 kb region surrounding the Blnk locus 

obtained with aFARP-ChIP-seq in splenic B and T cells. The number of cells in the 

input samples is indicated on the y axis. Arrows point to the peaks at the Blnk locus. 

(B) Normalized profiles of PU.1 in a 150 kb region surrounding the TNF locus 

obtained with aFARP-ChIP-seq in the indicated number of isolated splenic B cells. 

Arrows mark the peaks at the TNF locus. 

(C) The PU.1 binding motif shown was identified as the top hits based on the motif 

analysis of all PU.1 binding regions. 

See also Figure S4 

 

Supplementary Figure legends 

Figure S1. Analyses of chromatin fragmentation conditions by Atlantis dsDNase 

(A-B) Bioanalyzer plots (A) and gel analyses (B) showing the efficiency of chromatin 

fragmentation using 1x105 mESCs by Atlantis dsDNAse with the indicated enzyme 

unit and digestion time. Arrows mark the position of mono-nucleosome. 

 

Figure S2. aFARP-ChIP-seq of H3K4me3 in group 1 ILCs from different tissues. 

(A) FACS plots with the markers and gating used for sorting NK and ILC1 cells from 

spleen (SP) and liver (LV) or ILC1 from intraepithelial of small intestine (siIEL). 

(B-E) Contour plots between two biological replicates of aFARP-ChIP-seq of 

H3K4me3 in ILC1 in mLN (B), SP (C), LV (D), and siIEL (E). 

(F-H) Contour plots between two biological replicates of aFARP-ChIP-seq of 

H3K4me3 in NK cells isolated from mLN (F), SP (G), and LV (H). 

 

Figure S3. aFARP-ChIP-seq of H3K27Ac in group 1 ILCs from different tissues. 
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(A-C) Contour plots between two biological replicates of aFARP-ChIP-seq of 

H3K27Ac in ILC1 in mLN (A), SP (B), and LV (C). 

(D-F) Contour plots between two biological replicates of aFARP-ChIP-seq of 

H3K27Ac in NK cells in mLN (D), SP (E) and LV (F). 

(H) Browser view of H3K27Ac map at Cnih3 in ILC1s from the indicated tissues. 

 

Figure S4. aFARP-ChIP-seq of PU.1 profiling in splenic B cells 

(A-B) Normalized profiles of PU.1 in a 75 kb region surrounding the Btk (A) or 

Fcgr2b (B) loci obtained with aFARP-ChIP-seq in isolated splenic B and T cells. The 

input cell numbers are indicated on the y axis. Arrows mark peaks in the Btk (A) or 

Fcgr2b (B) locus. 

 

Supplementary Table legends  

Table S1. Peaks called from H3K4me3 mapping of ILC1 and NK cells from indicated 

tissues. Related to Figure 3. Replicate datasets are pooled before peak calling 

 

Table S2. Peaks called from H3K27ac mapping of ILC1 and NK cells from indicated 

tissues. Related to Figure 4. Replicate datasets are pooled before peak calling. 

 

Table S3. PU.1 peaks called from mapping of B cells from mouse spleen. Related to 

Figure 5.  
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