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Abstract 38 

Antibiotic use is a primary driver of antibiotic resistance. However, antibiotic use can be 39 

distributed in different ways in a population, and the association between the distribution of use 40 

and antibiotic resistance has not been explored. Here we tested the hypothesis that repeated use 41 

of antibiotics has a stronger association with population-wide antibiotic resistance than broadly-42 

distributed, low-intensity use. First, we characterized the distribution of outpatient antibiotic use 43 

across US states, finding that antibiotic use is uneven and that repeated use of antibiotics makes 44 

up a minority of antibiotic use. Second, we compared antibiotic use with resistance for 72 45 

pathogen-antibiotic combinations across states. Finally, having partitioned total use into 46 

extensive and intensive margins, we found that intense use had a weaker association with 47 

resistance than extensive use. If the use-resistance relationship is causal, these results suggest 48 

that reducing total use and selection intensity will require reducing broadly-distributed, low-49 

intensity use. 50 

  51 
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Introduction 52 

Antibiotic use is a primary driver of antibiotic resistance, and reducing antibiotic use is a central 53 

strategy for combatting resistance (1, 2). Understanding the relationship between antibiotic use 54 

and antibiotic resistance is therefore critical for the design of rational antibiotic stewardship 55 

strategies. Multiple studies have identified cross-sectional relationships between antibiotic use 56 

and resistance, especially across European countries and US states (3–9). In general, these 57 

studies compare total outpatient antibiotic use with population-level resistance. However, 58 

antibiotic use is generally not evenly distributed. A study of outpatient prescribing in the UK 59 

found that 30% of patients were prescribed at least one antibiotic per year, with the top 9% of 60 

patients receiving 53% of all antibiotics (10). A study of beneficiaries of Medicare, a national 61 

health insurance program that covers that vast majority of Americans 65 and older, found that the 62 

proportion of beneficiaries who take antibiotics varies by US state and drug class (11). In some 63 

cases, antibiotic courses can last for months or even years (12, 13). Because antibiotic use is 64 

uneven, total use does not distinguish between broad use—many people receiving a few 65 

prescriptions—and intense use—a few people receiving many prescriptions (14). 66 

 67 

It stands to reason that the distribution of antibiotic use, not just total use, could have an effect on 68 

resistance (15). There are a few studies of the relationship between repeated antibiotic exposure 69 

on antibiotic resistance (16–22), and it remains unclear whether broad use or intense use is 70 

associated with population-level resistance. For example, if a first course of antibiotics given to 71 

an antibiotic-naive patient clears most of the susceptible bacteria they carry, then a second course 72 

in the same patient will have only a small effect, since most susceptible bacteria were already 73 

eliminated. Giving that second course to a different, antibiotic-naive patient instead would have a 74 
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greater effect on population-level resistance. On the other hand, multiple courses given to a 75 

single patient might have a synergistic effect on resistance. 76 

 77 

The goal of this study was to test the hypothesis that intense antibiotic use has a stronger 78 

association with population-level resistance than broad, low-level antibiotic use. We used an 79 

ecological design to compare the distribution of antibiotic use with antibiotic resistance. 80 

Although an ecological design is potentially subject to confounders and cannot definitively test 81 

for the causal effect of the distribution of use on resistance at the individual level, ecological 82 

studies of use and resistance are the most feasible design for studying the relationship between 83 

antibiotic use and population-level resistance, and the results of ecological designs play an 84 

important role in developing antibiotic stewardship policies (23, 24). 85 

 86 

To test this hypothesis, we first characterized the distribution of outpatient antibiotic use in two 87 

US nationwide pharmacy prescription claims databases, Truven Health MarketScan Research 88 

Database (25) and Medicare, both covering 2011-2014. We considered only outpatient antibiotic 89 

prescribing, which accounts for 80-90% of total medical antibiotic use in the UK and Sweden 90 

(26, 27) and is presumed to account for a similar fraction in the US (28). Unlike antibiotic sales 91 

data and nationwide healthcare surveys (29), MarketScan and Medicare claims data, which have 92 

previously been used to characterize variations in antibiotic use (11, 30–32), provide longitudinal 93 

prescribing information about individual people, which can distinguish between many people 94 

getting a few prescriptions and a few people getting many prescriptions. We characterized the 95 

distribution of antibiotic use across US states by partitioning annual total use as the sum of 96 

annual first use—individuals’ first pharmacy fill for an antibiotic in a calendar year—and annual 97 
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repeat use—pharmacy fills beyond individuals’ first ones in a calendar year. Second, we 98 

compared annual total antibiotic use with antibiotic resistance as measured in ResistanceOpen, a 99 

US nationwide sample of antibiotic susceptibility reports, for 2012-2015 (i.e., lagged by one year 100 

(8, 33)), evaluating the relationship between use and resistance across US states for 72 pathogen-101 

antibiotic combinations. Finally, we evaluated whether annual first use and annual repeat use are 102 

differently associated with population-level resistance. 103 

 104 

Results 105 

Antibiotic use is not evenly distributed 106 

Our analysis included 99.8 million outpatient pharmacy antibiotic prescription fills among 62.4 107 

million unique people, approximately 20% of the US population, during 2011-2014 using the 108 

MarketScan database (25). In 2011, 34% of people received an antibiotic, and 10% of people 109 

received 57% of all antibiotic prescriptions. This distribution varied by population but was 110 

similar across data years (Figure 1 - Figure Supplement 1). To characterize the distribution of 111 

specific antibiotics, we grouped individual antibiotic generic formulations into drug groups based 112 

on their chemical structures and mechanisms of action (Supplementary File 1 - Table 1). For all 113 

drug groups, most people had zero prescriptions for that antibiotic in a given year, but antibiotics 114 

differed in their distributions (Figure 1). 115 

 116 

We next examined the distribution of antibiotic use for each drug group and US state. To 117 

quantify the distribution of antibiotic use, we labeled each antibiotic pharmacy claim as “first” if 118 

it was the first pharmacy fill for that drug group made by that individual in that calendar year, 119 

and “repeat” if it was a second, third, etc. fill for an antibiotic in the same drug group made by 120 
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the same individual in the same calendar year. An individual’s first and repeat claims in a 121 

calendar year add up to their total number of claims for that year. We then partitioned 122 

population-level annual total use, measured as pharmacy fills per 1,000 members per year, into 123 

the sum of annual first use, measured as first fills per 1,000 members per year, and repeat use, 124 

measured as repeat fill per 1,000 members per year, for each drug group and US state. Annual 125 

first use of a drug group is equivalent to the proportion of the population taking an antibiotic in 126 

that group in that year. 127 

 128 

Total use varied between drug groups and across states (Figure 2). Annual repeat use made up a 129 

steady one-quarter to one-third of annual total use across drugs and states, with the exception of 130 

tetracyclines, for which high repeat use was associated with young adults (Figure 2 – Figure 131 

Supplements 1 and 2), probably for acne treatment. This distribution of first and repeat use is 132 

distinct from the pattern predicted by the single-parameter Poisson and geometric distributions 133 

(Figure 2), but the ratio of first use to repeat use for each drug was nearly constant across US 134 

Census regions (Figure 2 – Figure Supplement 3). Thus, the higher antibiotic use in the Southern 135 

states (11, 34) is primarily attributable to a greater proportion of people taking antibiotics, not 136 

because those who receive antibiotics receive more of them. 137 

 138 

Landscape of correlations between total use and resistance across pathogens and antibiotics 139 

To verify that our antibiotic use and resistance data sources could be used to distinguish the 140 

associations of first use and repeat use with antibiotic resistance, we first measured the landscape 141 

of Spearman correlations between total use and antibiotic resistance for multiple pathogens and 142 

antibiotics (3–8). To measure antibiotic resistance, we used a US nationwide sample of hospital 143 
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antibiotic susceptibility reports (35), which included resistance of 38 pathogens to 37 antibiotics 144 

in 641 antibiotic susceptibility reports from 230 organizations (hospitals, laboratories, and 145 

surveillance units) spread over 44 US states. Although most organizations contributing antibiotic 146 

susceptibility reports were hospitals, hospital antibiotic susceptibility reports are biased toward 147 

community-acquired organisms (36, 37), and studies often compare hospital antibiotic 148 

susceptibility reports with community antibiotic use (38). 149 

 150 

Because the epidemiology and pharmacology of each pathogen-antibiotic combination is unique, 151 

each combination could have a unique use-resistance relationship (15). We therefore aggregated 152 

antibiotic resistance into the same drug groups with which we aggregated antibiotic use 153 

(Supplementary File 1 – Table 1) and evaluated the 72 pathogen-antibiotic combinations that 154 

were adequately represented in the antibiotic resistance data (see Methods). Across those 72 155 

combinations, correlation coefficients ranged from –32% to 64% (Figure 3, Supplementary File 156 

1 - Table 2). The strongest correlation (Spearman’s ρ = 64%, 95% CI 41 to 80%) was between 157 

macrolide use and the proportion of Streptococcus pneumoniae isolates that were macrolide 158 

nonsusceptible (Figure 4). Correlation coefficients were mostly positive (median correlation 159 

coefficient 21%, IQR 8 to 34%). Use-resistance correlations involving macrolides, quinolones, 160 

and cephalosporins were more positive than those for nitrofurantoin, and correlations involving 161 

quinolones were more positive than those for trimethoprim/sulfamethoxazole (pairwise Mann-162 

Whitney tests, two-tailed, FDR = 0.05). Coefficients were not significantly more positive for any 163 

particular pathogen. 164 

 165 
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Because isolates from older adults are disproportionately represented in antibiotic susceptibility 166 

reports (39), we suspected that population-wide resistance might, in some cases, correlate better 167 

with antibiotic use among older adults. We therefore queried outpatient pharmacy antibiotic 168 

claims records from individuals 65 and older on Medicare (see Methods). When antibiotic use 169 

among Medicare beneficiaries was substituted for antibiotic use as measured in the MarketScan 170 

data (Figure 2 – Figure Supplement 2), correlation coefficients were similar (Supplementary File 171 

1 – Tables 2 and 3). Conversely, children are the primary carriers for some pathogens (e.g., 172 

Streptococcus pneumoniae (40)), so we suspected that resistance might, in other cases, better 173 

correlate with children’s antibiotic use. Restricting the antibiotic use data to members at most 15 174 

years old (Figure 2 – Figure Supplement 2) again yielded similar coefficients (Supplementary 175 

File - Tables 2 and 3). Thus, the landscape of correlations we observed was mostly robust to the 176 

exact population and data source. 177 

 178 

We also evaluated the sensitivity of the results to the measurement of antibiotic use, substituting 179 

days supply of antibiotic for number of pharmacy fills, and the geographic level of the analysis, 180 

by aggregating the Medicare use data and resistance data at the level of the 306 hospital referral 181 

regions intended to approximate regional health care markets (41) (Supplementary File – Tables 182 

2 and 3). The absolute values of the correlation coefficients were slightly closer to zero when 183 

using days supply rather than fills (Wilcoxon test, two-tailed; pseudomedian difference in 184 

absolute correlation coefficient 1.9 percentage points, 95% CI 0.72 to 3.1) and substantially 185 

closer to zero when using hospital referral regions rather than states as the units of analysis (6.1 186 

percentage points, 95% CI 3.0 to 9.1). 187 

 188 
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Lack of evidence for more positive association with repeat use 189 

Having examined the landscape of the relationships between total use and resistance across 190 

pathogen-antibiotic combinations, we set out to test the hypothesis that repeat use has a stronger 191 

association with resistance than first use. For each pathogen-antibiotic combination, we 192 

performed a multiple regression predicting proportion nonsusceptible from first use and repeat 193 

use (Figure 5). First use and repeat use are highly correlated in some cases (Supplementary File - 194 

- Table 4) which will widen the confidence intervals on the regression coefficients but should not 195 

introduce bias (42). Regression coefficients for first use were more often positive than negative 196 

(54 of 72 [75%]; binomial test, 95% CI 63 to 84%). That is, first use was positively associated 197 

with resistance when controlling for repeat use. In contrast, regression coefficients for repeat use 198 

were more often negative than positive (44 of 72 [61%]; binomial test, 95% CI 49 to 72%). That 199 

is, repeat use was negatively associated with resistance when controlling for first use.  200 

 201 

We evaluated the sensitivity of this result to age group, data source, metric of antibiotic use, and 202 

geographic unit of analysis, as described above. In all cases, regression coefficients for first use 203 

in the multiple regression were more likely to be positive than negative, while regression 204 

coefficients for repeat use were more likely to be negative than positive (Supplementary File 1 - 205 

Table 5). For certain pathogens and antibiotics, resistance could presumably accumulate in an 206 

individual over many years (18, 21), so we also computed alternate measures of first and repeat 207 

use by considering only individuals who were included in the MarketScan data for each year of 208 

2011-2014, and we labeled an antibiotic fill as first use only if it was the first fill for that drug 209 

group made by that individual in the entire four-year period. In that analysis, a similar proportion 210 

of regression coefficients for first use were positive (69%, 95% CI 57 to 80%) and regression 211 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/473769doi: bioRxiv preprint 

https://doi.org/10.1101/473769
http://creativecommons.org/licenses/by-nc/4.0/


 10 

coefficients for repeat use were equally likely to be positive or negative (53%, 95% CI 41 to 212 

65%). 213 

 214 

Discussion 215 

Landscape of use-resistance relationships 216 

We used US nationwide datasets measuring antibiotic use in 60 million individual and antibiotic 217 

resistance in 3 million bacterial isolates to analyze relationships between antibiotic use and 218 

resistance, examining 72 pathogen-antibiotic combinations simultaneously, using identical data 219 

sources and analytical methods across combinations. Although previous studies have examined 220 

multiple pathogen-antibiotic combinations, usually no more than 5 pathogens or antibiotics are 221 

considered at once (3, 4, 8). We found that correlations between total use and resistance were 222 

mostly positive, that certain drugs tended to have more positive correlations, but that there was 223 

no clear pattern by organism (6). The overall landscape of correlations was mostly robust to the 224 

age groups studied and the geographic scale of the analysis, although correlations were 225 

somewhat weaker when conducting analysis at smaller geographic scales (8, 43–45). We used 226 

outpatient antibiotic use as the predictor of resistance because 80-90% of antibiotic use occurs in 227 

the outpatient setting (28) and because most antibiotic pressure on pathogens is due to “bystander 228 

selection”, in which the patient is treated for some reason other than an infection caused by that 229 

pathogen (46). 230 

 231 

The correlations we observed between total antibiotic use and population-wide antibiotic 232 

resistance were noticeably weaker than those in highly cited European studies but comparable to 233 

those from other analyses of European data. For example, for S. pneumoniae and macrolides, 234 
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Goossens et al. (3) reported a Spearman’s ρ of 83% and García-Rey et al. (4) reported 85%, 235 

while we found 62% and van de Sande-Bruinsma et al. (8) reported a median of 56%. These 236 

studies all used similar statistical methods, so the differences in the results must be due to some 237 

other factors (e.g., data quality, range of antibiotic use, distribution of antibiotic use, or pathogen 238 

biology). Correlations between E. coli resistance and use of β-lactams, cephalosporins, 239 

trimethoprim/sulfamethoxazole, and quinolones were similar to those reported in studies of use 240 

and resistance in UK primary care groups (43, 44). 241 

 242 

The most notable difference, however, between our study and previous results from Europe is for 243 

S. pneumoniae and β-lactams: Goossens et al. (3) report a Spearman’s ρ of 84%, but we found no 244 

relation (–11%, 95% CI –41 to 22%). We propose that the narrow variation in β-lactam use 245 

across US states, approximately two-fold between the highest- and lowest-using states, obscures 246 

a correlation that is more apparent in Europe, where there is a four-fold variation between the 247 

highest- and lowest-using countries (3). Thus, our results and those from Goossens et al. may be 248 

consistent with respect to the underlying biology. We also note that, when reproducing the 249 

methodology from a US study (47) of the use-resistance relationship for β-lactams and S. 250 

pneumoniae (dichotomizing states as high- or low-prescribing and computing the odds ratio of 251 

resistance), we find a consistent point estimate but with wider confidence intervals (1.15, 95% CI 252 

0.75 to 1.76). 253 

 254 

Our study design may limit the interpretability of the landscape of use-resistance relationships. 255 

First, like the leading European studies using EARS-Net and US studies using the Centers for 256 

Disease Control and Prevention Active Bacterial Core surveillance, we compare population-wide 257 
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outpatient antibiotic use with antibiotic susceptibility reports from hospitals. The degree to which 258 

hospital antibiotic susceptibility reports represent community infections is debated (36, 38). For 259 

example, if outpatient antibiotic use selects for resistance among community-acquired infections, 260 

and hospital antibiograms reflect data from community-acquired infections as well as unrelated 261 

inpatient resistance patterns, then the correlations we measure would be biased toward weaker 262 

associations. Furthermore, antibiotic use and resistance in the community setting is not 263 

completely independent of use and resistance in the hospital setting (48), and our approach does 264 

not account for any relationship between the two. 265 

 266 

Second, antibiotic resistance is temporally dynamic, and our cross-sectional approach assumes 267 

that antibiotic use is autocorrelated across years (49) or resistance changes slowly (50). If use 268 

does cause resistance, and use and resistance changed meaningfully over the course of the study, 269 

then the correlations we measured by aggregating over all years would be biased toward weaker 270 

associations. 271 

 272 

Third, because of the limitations in statistical power, we did not address the possibility that use 273 

of one antibiotic can select for resistance to another antibiotic (51, 52). Notably, use of one 274 

antibiotic can select for resistance to another antibiotic if the dominant clones of that species are 275 

resistant to both (51). In that case, if the use rates of the two drugs are correlated across states, 276 

then the apparent relationship between one drug and resistance to that drug would be biased 277 

upward. Furthermore, because the palette of antibiotic use varies by country (53), and different 278 

pathogen strains circulate in different populations, the univariate associations we observed 279 
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between use of an antibiotic and resistance to that antibiotic in the US may not be applicable in 280 

other geographies. 281 

 282 

Finally, like in other studies of antibiotic use, we did not address patient adherence, and typical 283 

approaches to address adherence using claims data (54) are problematic when the intended 284 

duration of treatment is not clear. The measured correlation would then be biased if, for example, 285 

poor patient adherence increased resistance and patient adherence were correlated with antibiotic 286 

use. 287 

 288 

Distribution of antibiotic use and antibiotic resistance 289 

We described the distribution of antibiotic use across drug groups and US states, finding that 290 

34% of the study population took an antibiotic in a year, and 10% of the population had 57% of 291 

the antibiotic fills in that year, similar to results from the UK (10), although this distribution 292 

varied by population (Figure 1 – Figure Supplement 1). By partitioning annual total use into 293 

annual first use and annual repeat use, we were able to show that, for each drug, annual first use 294 

makes up the majority of annual total use and that variations in annual first use explain more 295 

variance in annual total use than do variations in annual repeat use. We also found that first use 296 

tends to have a positive association with resistance when controlling for repeat use, while repeat 297 

use tends to have negative or associations with resistance when controlling for first use. This 298 

result held across sensitivity analyses. 299 

 300 

If these associations are causal, that is, if outpatient first and repeat antibiotic use select for 301 

resistance among community-acquired pathogens, then our results would imply that antibiotic 302 
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resistance in the outpatient setting is due more to first use, which tended to have positive 303 

associations with resistance, than to repeat use. In contrast to proposals to focus on intense 304 

antibiotic users for combatting resistance (10), this situation would imply that preventing 305 

marginal prescriptions among patients whose indications are borderline-appropriate or 306 

inappropriate for antibiotics may be the more effective tactic for reducing the prevalence of 307 

resistance mechanisms already established in the US. 308 

 309 

There are limitations to the interpretability of these results. First, as mentioned above, there is a 310 

potential mismatch between the sources of the antibiotic use and antibiotic resistance data. 311 

 312 

Second, although antibiotic use is a major driver of antibiotic resistance, the observed results 313 

may not be causal. Factors beyond antibiotic use, like population density, play a role in antibiotic 314 

resistance (2, 9). Even if antibiotic use and resistance are causally related, it may be that 315 

resistance affects antibiotic use. For example, if resistance to a drug is high, treatment using that 316 

drug is more likely to fail, discouraging repeated use, so that high resistance lead to decreased 317 

repeat use (36, 43, 51). Ecological studies like this one do not directly address causality, and 318 

further work is needed to distinguish between different causal pathways. 319 

 320 

Third, the observed population-level relationships between antibiotic use and resistance need not 321 

also hold for the relationship between an individual’s first and repeat antibiotic use and the risk 322 

of a resistant infection in that individual. Any comparisons between our population-level results 323 

and individual-level studies would need to account for the difference between our population-324 
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level measures of first and repeat antibiotic use and the individual-level timing of antibiotic use 325 

and measurements of resistance. 326 

 327 

Fourth, controlling for factors beyond antibiotic use could alter the apparent relationship between 328 

antibiotic use and resistance. In particular, we speculate that controlling for patient morbidity, 329 

which we did not address in this population-level analysis, would amplify the observed result, 330 

that first use tends to have a more positive association with antibiotic resistance than repeat use. 331 

We expect that morbid individuals have more repeat antibiotic use. We also expect that morbid 332 

individuals visit the hospital more often, putting them at higher risk of antibiotic resistant 333 

infections regardless of their antibiotic use. Thus, we speculate that repeat use causes resistance 334 

and also is a predictor of morbidity, which is associated with resistance. Failing to control for 335 

morbidity thus biases the association between repeat use and resistance toward more positive 336 

values. Conversely, controlling for morbidity would decrease the measured relationships 337 

between repeat use and resistance, amplifying our central result. 338 

 339 

Fifth, we defined first and repeat use with respect to the calendar year, while it may be that some 340 

other timescale is the appropriate one for this analysis. Although our central result held when re-341 

defining first and repeat use with respect to a four-year period (Supplementary File 1 - Table 5), 342 

it may be that, say, repeat use within an individual on a time-scale shorter than a year is an 343 

important determinant for risk of resistance in that individual. Our study does not distinguish 344 

between repeat use that occurs across year boundaries, which is presumably important for 345 

relating individuals’ antibiotic use with their risk of resistance. 346 

 347 
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Finally, we note that first use and repeat use are only one set of many ways of measuring the 348 

distribution of antibiotic use. For example, 10 repeat uses could mean 1 person with 10 repeat 349 

uses or 10 people with 1 repeat use each. The first and repeat use metrics cannot distinguish 350 

between these two cases, and it may be that some other measure of the distribution of antibiotic 351 

use would yield different results. 352 

 353 

In conclusion, we find that population-wide antibiotic use and population-wide resistance 354 

appears to be more closely linked with broadly-distributed, low-intensity use rather than with 355 

intensity of use. Ultimately, accurate models predicting the emergence and spread of antibiotic 356 

resistance will require more careful characterizations of who gets what antibiotic (55), what 357 

selection pressure that places on pathogens, how those pathogens are transmitted, and in whom 358 

they manifest as infections (56). An ideal study would compare the complete history of an 359 

individual’s outpatient and inpatient antibiotic exposure with clinical microbiology data from 360 

that same individual, cross-referenced against population-level factors, among a representative, 361 

nationwide sample of individuals. Individual-level results could then also be compared with 362 

mechanistic models of resistance to draw inferences about within-host effects of antibiotic use 363 

(57, 58), and the role of co-occurring resistance and correlated antibiotic use could be addressed. 364 

In the absence of such a dataset, these ecological, associative results provide a guide to the 365 

development of antibiotic stewardship policy. 366 

  367 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/473769doi: bioRxiv preprint 

https://doi.org/10.1101/473769
http://creativecommons.org/licenses/by-nc/4.0/


 17 

Methods 368 

Study population and antibiotic use 369 

MarketScan (25) data covering 2011-2014 were used to identify insurance plan members and 370 

characterize their outpatient antibiotic use. To ensure quality of the antibiotic use distribution 371 

data, only members who were on their insurance plan for 12 months during a given year were 372 

included. Prescription fills for oral and injected antibiotics were identified by generic 373 

formulation (Supplementary File 1 - Table 6) and drug forms (Supplementary File 1 - Table 7). 374 

We treated multiple fills on the same day for the same generic formulation with the same refill 375 

code as a single prescription fill. In the main analysis, antibiotic use was measured using fills, 376 

rather than days supply of drug, because some previous research has suggested that prescriptions 377 

better correlate with resistance (33) and that this choice is probably not detrimental (8, 49). The 378 

specific generic drugs were grouped into antibiotic drug groups designed to correspond to the 379 

antibiotic resistance drug groups described below (Supplementary File 1 - Table 1). All measures 380 

of antibiotic use were computed for each year 2011 to 2014, and the mean for each value across 381 

the 4 years was reported and used in analyses of the use-resistance relationship. 382 

 383 

Antibiotic use among Medicare beneficiaries was measured as previously described (59). 384 

Briefly, we considered fee-for-service beneficiaries at least 65 years old among and with 12 385 

months of enrollment in Medicare Part B and Part D among a 20% sample of beneficiaries for 386 

each of 2011-2014. The Medicare data, which provides the zip code for each beneficiary, were 387 

also aggregated at the level of hospital referral region (41), using the 2011 zip code to region 388 

crosswalk. MarketScan data do not include zip code-level resolution.  389 

 390 
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This study was deemed exempt from review by the institutional review board at the Harvard T. 391 

H. Chan School of Public Health. 392 

 393 

Antibiotic resistance 394 

Antibiotic resistance prevalences for common bacterial pathogens were identified from 395 

ResistanceOpen, a previously developed database of spatially localized patterns of antibiotic 396 

resistance (35). This continuously updated database contains antibiotic resistance data from 397 

online sources during 2012 to 2015. At the time of analysis, the resistance data consisted of 398 

approximately 86,000 records, each indicating the fraction of isolates of an organism that were 399 

nonsusceptible to a particular drug in a particular antibiotic susceptibility report (“antibiogram”). 400 

The median number of isolates corresponding to each record was 93, but records had up to 401 

75,000 associated isolates. 7 records (<0.01%) with missing numbers of isolates were excluded. 402 

In antibiograms that separated S. aureus into MRSA and MSSA, resistance of aggregate S. 403 

aureus to individual drugs was taken as the average of the MRSA and MSSA records, weighted 404 

by number of isolates. MRSA and MSSA were not considered as separate species in any 405 

analysis. 406 

 407 

The specific antibiotics used in antibiotic resistance assays were grouped into antibiotic drug 408 

groups (Supplementary File 1 - Table 1) designed to correspond to the antibiotic use groups. If 409 

resistance to more than one antibiotic in a drug group was reported for a particular pathogen in a 410 

particular antibiogram, resistance to that drug group for that pathogen in that antibiogram was 411 

computed as the mean of the resistances measured for the antibiotics in that group, weighted by 412 

the number of isolates. The proportion of nonsusceptible isolates in a state for a particular 413 
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pathogen-antibiotic combination was computed as the average of the proportions from each 414 

contributing antibiogram in that state, weighted by number of isolates. 415 

 416 

Statistical methods 417 

Antibiotic use and resistance were compared using Spearman correlations and multiple linear 418 

regressions. Of the 887 pathogen-antibiotic combinations present in the data, we analyzed the 72 419 

combinations that were present in at least 34 states. This excluded 21% of the pathogen-420 

antibiotic-antibiogram combinations. We established the cut-off for number of states because 421 

80% power to detect a Pearson correlation coefficient of magnitude 0.55 at α = 0.01 under a two-422 

sided hypothesis requires at least 34 samples. (Although we report Spearman correlations, there 423 

is no straightforward power calculation methodology for Spearman correlations, and we used the 424 

Pearson power calculation as an approximation.) We aggregated data across all years, rather than 425 

comparing use and resistance in each year, because of the sparse of the resistance data: of 2,767 426 

pathogen-antibiotic-state combinations in the data, only 182 have data for all four years. No 427 

pathogen-antibiotic combination had more than 4 states with data for all 4 years. Confidence 428 

intervals on correlation coefficients were computed using the Fisher transformation and normal 429 

approximation method. Multiple comparisons were accounted for using the Benjamini-Hochberg 430 

false discovery rate (FDR) (60). Multiple regressions predicted proportion of isolates 431 

nonsusceptible from first use and repeat use. 432 

 433 

Data availability 434 

State-level, aggregate antibiotic use and resistance data used in the main analyses are in Figure 3 435 

– Source data 1 and 2. We do not own and cannot publish disaggregated MarketScan or 436 
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Medicare data. MarketScan data are available by commercial license from Truven Health 437 

(marketscan.truvenhealth.com). Medicare data are available from ResDAC (www.resdac.org). 438 

ResDAC requires an application ensuring that requesting researchers comply with Common 439 

Rule, HIPAA, and CMS security and privacy requirements. Disaggregated ResistanceOpen data 440 

are restricted due to hospitals’ privacy concerns. ResistanceOpen data are available by request 441 

from HealthMap (www.resistanceopen.org). 442 
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Figures 450 

 451 

Figure 1. The distribution of antibiotic use within individuals. Bars indicate the proportion of 452 

members in the MarketScan data with different numbers of prescription fills in 2011 for each of 453 

the drug groups. TMP/SMX: trimethoprim/sulfamethoxazole. 454 
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Figure 1 - Figure Supplement 1. Cumulative distribution of antibiotic use. Each point 457 

represents a group of people with a certain number of associated claims for any antibiotic, 458 

starting at the left with the members with the greatest number of claims. The upper-right line 459 

segment shows members with 1 claim, the next segment shows members with 2 claims, etc. 460 

Colors indicate data years. Panels indicate study population. MarketScan: main data set. 461 

Children: MarketScan data including only members 15 and younger. 462 
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Figure 2. The distribution of antibiotic use across US states. Each point indicates first use and 465 

repeat use of a single drug group in a single US state (averaged over the data years). Points 466 

falling on the black line have three times as much first use as repeat use (i.e., repeat use is one-467 

quarter of total use). The curves show the relationships between first use and repeat use expected 468 

from the Poisson and geometric distributions. TMP/SMX: trimethoprim/sulfamethoxazole. 469 
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Figure 2 – Figure Supplement 1. Distribution of tetracycline use by age. Colors indicate data 472 

years. 473 
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Figure 2 – Figure Supplement 2. Distribution of antibiotic use by population. Each point 476 

represents average use of a drug group in a state across data years. Children: MarketScan data 477 

including only members 15 and younger. 478 
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Figure 2 – Figure Supplement 3. Distribution of antibiotic use by region. Each point shows use 481 

for a drug group in a state, averaged over data years. Colors indicate US Census region (red, 482 

South; light red, Midwest; gray, Northeast; black, West). Line shows unweighted linear best fit. 483 
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Figure 3. Correlations between total antibiotic use and resistance are biased toward positive 486 

values. Error bars show 95% confidence intervals. The color strip visually displays the drug 487 

groups. Statistical significance is indicated by color of the points (black, significant at FDR = 488 

0.05, two-tailed; dark gray, significant at α = 0.05, two-tailed; light gray, not significant). 489 

TMP/SMX: trimethoprim/sulfamethoxazole. CoNS: coagulase-negative Staphylococcus. 490 
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Figure 3 – Source data 1. Antibiotic use data. For each data source (MarketScan or Medicare), 493 

data subset or population among MarketScan records, state (with masked ID), and drug group, 494 

annual first and repeat claims per 1,000 members. Main: main data set. Children: members at 495 

most 15 years old. Days supply: first and repeat use are reported as days supply, not claims. 496 

Multiyear: among members in the data for all 4 data years. 497 

 498 

Figure 3 – Source data 2. Antibiotic resistance data. For each adequately-represented pathogen 499 

and drug group (see Methods) and state (with masked ID matching the antibiotic use data), the 500 

proportion of isolates collected in that state susceptible to that drug. 501 

 502 

  503 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/473769doi: bioRxiv preprint 

https://doi.org/10.1101/473769
http://creativecommons.org/licenses/by-nc/4.0/


 29 

Figure 4. Total macrolide use and macrolide resistance among Streptococcus pneumoniae 504 

correlate across US states. Labels indicate selected states. Colors indicate US Census region 505 

(red, South; light red, Midwest; gray, Northeast; black, West). Line shows unweighted linear best 506 

fit. Southern states have highest macrolide use and resistance. 507 
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Figure 5. Repeat use tends to be negatively associated with resistance when controlling for 510 

first use. Each point represents a pathogen-antibiotic combination. The position of the point 511 

shows the two coefficients from the multiple regression. The units of the coefficients are 512 

proportion resistant per annual claim per 1,000 people. Color indicates drug group. Error bars 513 

show 95% CIs. (a) All data. (b) Same data, showing only the center cluster of points. 514 
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Supplementary File 1. Supplemental tables. 517 
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