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Abstract 

Apolipoprotein E (APOE) genotype is the strongest prevalent genetic risk factor for Alzheimer's disease. 

Numerous studies have provided insights into the pathological mechanisms. However, a comprehensive 

understanding of the impact of APOE genotype on microflora speciation and metabolism is completely 

lacking. The aim of this study was to investigate the association between APOE genotype and the gut 

microbiome composition in human and APOE-targeted replacement (TR, APOE3 and APOE4) transgenic 

mice. Faecal microbiota amplicon sequencing from matched individuals with different APOE genotypes 

revealed no significant differences in overall microbiota diversity (alpha or beta diversity) in group-

aggregated human APOE genotypes. However, several bacterial taxa showed significantly different 

relative abundance between APOE genotypes. Notably, we detected an association of Prevotellaceae and 

Ruminococcaceae and several butyrate-producing genera abundances with APOE genotypes. These 

findings were confirmed by comparing the gut microbiota of APOE-TR mice. Furthermore, metabolomic 

analysis of faecal water from murine samples detected significant differences in microbe-associated amino 

acids and short-chain fatty acids between APOE genotypes. Together, the findings indicate that APOE 

genotype associated with specific gut microbiome profiles in both humans and in APOE-TR mice. This 

suggests that the gut microbiome is worth further investigation as a potential therapeutic target to 

mitigate the deleterious impact of the APOE4 allele on cognitive decline and the prevention and 

treatment of AD.  
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Introduction 

The gut microbiome is intimately involved in numerous aspects of human physiology. Emerging 

evidence links perturbations in the microbiome to neurodegeneration and Alzheimer’s disease (AD), with 

(neuro)inflammation proposed as an aetiological link (Tremlett et al., 2017).  

The extent to which host genetic variation determines the microbiome composition is still 

currently debated. Indeed, although previous studies have reported that the microbiomes of humans and 

mice are associated with host genetic variation (Spor et al., 2011) and have identified several heritable 

bacterial taxa (Beaumont et al., 2016; Bonder et al., 2016; Turpin et al., 2016), other studies have 

identified a stronger environmental influence compared to host genetics in shaping human gut microbiota 

(Rothschild et al., 2018). Thus, the extent to which human genetics shape microbiome composition 

remains unclear. 

Apolipoprotein E (APOE) genotype is the strongest prevalent risk factor for neuropathology and 

AD (Liu et al., 2013; Neu et al., 2017; Pontifex et al., 2018). ApoE was originally identified as a 

component of systemic circulating lipoproteins and a member of a family of apolipoprotein modulators 

of their metabolism. It has subsequently emerged as the almost exclusive lipid transporter in the central 

nervous system (Shore and Shore, 1973; Vauzour and Minihane, 2012). In humans, APOE exists in three 

different isoforms (apoE2, apoE3 and apoE4), arising from three different alleles (ε2, ε3 and ε4). These 

alleles give rise to three homozygous (APOE2/E2, APOE3/E3 and APOE4/E4) and three heterozygous 

(APOE3/E2, APOE4/E3 and APOE4/E2) genotypes in humans (Huang et al., 2004). Generally, 50-70% 

of populations present with the APOE3/E3 genotype, with the ε3 allele accounting for 70-80% of the gene 

pool, and the ε2 and ε4 allele accounting for 5-10% and 10-15% respectively (Huang et al., 2004). APOE4 

carrier status is highly predictive of dementia and AD, with APOE3/E4 and APOE4/E4 being at 3-4 and 

8-12 fold increased risk and a much earlier age of onset (Pontifex et al., 2018). Although the aetiological 

basis of APOE4-neuropathological associations has been widely researched and reported, the main 

aetiological mechanism has not been clearly defined. The ApoE protein is involved in multiple biological 

processes including lipoprotein metabolism (Raffai et al., 2001), intracellular cholesterol utilisation 
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(Reyland and Williams, 1991), cell growth (Ishigami et al., 1998), immunoregulation, 

(neuro)inflammation (Hui et al., 1980; Pepe and Curtiss, 1986) and neuroprotection (Jofre-Monseny et 

al., 2008). Whilst involved in the metabolism of gut-derived chylomicrons, its role in intestinal integrity 

and gut microbiome composition and metabolism is currently unknown. 

In the present study, we explore the hypothesis that APOE variation influences the microbiome 

composition and its subsequent metabolism. Our experiments using human faecal samples and APOE‐

targeted replacement (TR) mice revealed significantly different relative abundance between bacterial taxa 

according to APOE genotypes. Furthermore, using a metabolomic approach, differences in microbe-

associated amino acids and short-chain fatty acids according to APOE genotypes were also observed. 

Taken together, our findings indicate that APOE genotype associates with specific gut microbiome 

profiles, which may affect the host metabolism and ultimately contribute to AD pathology.  
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Results 

Descriptive statistics of human APOE-genotyped cohorts.  

A total of 56 fecal samples were analysed from participants of the COB (NCT01922869) and the 

CANN studies (NCT02525198) (Norwich Clinical Centre, UK) with the four APOE genotype groups 

selected to be matched for sex, age and body mass index (BMI) (Table 1 and Table S1).  

 

Table 1. Clinical characteristics of participants according to APOE genotypes. 

Parameter E2/E3 E3/E3 E3/E4 E4/E4 p-value† 

n 14 18 18 6  

Age (yrs) 68.6 ± 4.6 68.5 ± 5.0 68.6 ± 3.0 67.7 ± 6.1 1.0 

Sex (# male:female) 7:7 9:9 9:9 3:3 1.0 

BMI (kg/m2) 25 ± 2.2 26.3 ± 2.6 26.1 ± 3.1 25 ± 1.9 0.42 

 

Data presented as mean ± SD. †p-value was calculated by Kruskal-Wallis H test. 

 

 

Difference in human gut microbiota composition between APOE genotypes 

The V3-V4 hypervariable region of the 16S rRNA gene was PCR-amplified from faecal samples 

collected from participants to generate an amplicon of approximately 460 bp. Sequencing this amplicon 

allows determination of microbiota composition. The reads were clustered at a 97% similarity threshold 

into 3,314 unique Operational Taxonomic Units (OTUs) or sequence-based bacterial classification, 

approximating to species. The total OTUs were assigned to 15 phyla, 27 classes, 43 orders, 70 families, 

and 155 unique genera, across the entire dataset. The vast majority (99.5 %) of all sequences were 

affiliated to five dominant phyla, mainly in the Firmicutes (82.2±10.8%), lower assignment to phyla 

Bacteroidetes (7.7±6.3%), Actinobacteria (3.8±4.5%), Proteobacteria (3.2±9.5%), and Verrucomicrobia 

(2.6±5.1%) (Figure S1a). After rarefaction with a depth of 8,736 reads per sample, alpha diversity (net 

diversity within a single sample/subject) was measured by calculating three diversity indices namely 
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chao1 (richness), phylogenetic diversity, and Shannon diversity index. None of these metrics was 

significantly different between APOE genotypes (Figure S2a). Similarly, there was no significant 

difference in any of the alpha diversity-metrics between males and females (Figure S2b). However, the 

microbiota alpha diversity of obese subjects (n=3) was significantly lower than that in normal weight and 

overweight subjects (p < 0.05, Figure S2c), in line with previous observations (Le Chatelier et al., 2013). 

Beta-diversity analysis (which measures inter-individual microbiota relatedness) was performed using 

Principal Coordinate Analysis (PCoA) clustering based on unweighted and weighted UniFrac distances. 

PERMANOVA for testing associations between clinical parameters and microbiota composition are given 

in Table S2. There was no difference in beta diversity of gut microbiota composition according to 

APOE genotype (Figure S3a). However, we observed a weak, but significant association between 

microbiota composition and gender and BMI categories (Figure S3b and Figure S3c).  

Although alpha and beta- diversity analyses of the gut microbiota did not discriminate between 

APOE genotypes, these are global measures that detect relatively large differences in microbiota structure. 

We therefore questioned whether the relative abundance of any taxa might differ between these genotypes, 

using Kruskal-Wallis H test to compare all taxa at various phylogenetic assignment levels across all 

genotypes. We observed that the relative abundance of the phylum Firmicutes and order Clostridiales was 

higher in subjects of the APOE2/E3 genotype than in APOE3/E4 or APOE4/E4 (p < 0.05; Figure 1 and 

Table S3). Furthermore, at the bacterial family level, the abundance of Ruminococcaceae (a family of 

fermentative anaerobes associated with fibre degradation and short chain fatty acid production) was higher 

in APOE2/E3 than in APOE3/E3 (p = 0.004), APOE3/E4 (p = 0.002) or APOE4/E4 (p = 0.072). On the 

other hand, the abundance of Prevotellaceae was lower in APOE2/E3 than the other three APOE 

genotypes (APOE3/E3 p = 0.008, APOE3/E4 p = 0.085, APOE4/E4 p = 0.015) and was slightly more 

abundant at close to significant levels (p = 0.088) in APOE3/E4 compared to APOE4/E4 with mean of 

relative abundance of 1.79% versus 1.40% (Figure 1c, Table S3 and Figure S1b). Within the 

Ruminococcaceae family, three genera including Clostridium cluster IV, Clostridium cluster XIVa and 

Gemmiger were statistically significant and differentially abundant according to APOE genotypes. The 
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abundance of Clostridium cluster IV was lower in APOE3/E3 than in APOE2/E3 (p = 0.027) and 

APOE4/E4 (p = 0.039) while the abundance of Clostridium cluster XIVa was higher in APOE4/E4 than 

in APOE2/E3 (p = 0.044) and APOE3/E4 (p = 0.078). Higher presence of Gemmiger was observed in 

fecal samples from APOE2/E3 compared to APOE3/E3 (p = 0.0499) and APOE3/E4 (p = 0.086). 

Moreover, we observed a higher abundance of Roseburia in fecal samples at close to significant levels (p 

< 0.1) in APOE3/E3 compared to three other APOE genotypes and in APOE3/E4 compared to APOE4/E4 

(Figure 1d, Table S3 and Figure S1c). 

To determine possible associations between APOE genotypes and microbial translocation, we 

measured the plasma levels of two biomarkers of intestinal integrity, namely haptoglobin (Hp) and 

lipopolysaccharide binding protein (LBP). No significant differences were observed in the levels of Hp 

and LBP (Table S1) according to genotype. Furthermore, no significant correlation was observed between 

the clinical parameters and both the weighted and unweighted Unifrac distances (Table S2). 

 

Difference in murine gut microbiota composition between APOE genotypes 

We next sought to investigate if APOE genotype/gut microbiota interactions in humans were 

evident in human transgenic homozygous APOE3- and APOE4-TR mice at 4 months (young) and 18 

months (old) of age. Their gut microbial communities were analyzed based on sequencing the V4 

hypervariable region (approximately 254 bp) of the 16S rRNA gene. There was no significant difference 

in alpha diversity between APOE3 and APOE4 genotypes. However, in line with our previous studies of 

microbiota in ageing humans (O'Toole and Jeffery, 2015) and rodents (Flemer et al., 2017), both chao1 

and phylogenetic diversity were much higher in young mice compared to old mice (p < 0.001; Figure 

S4). Moreover, UniFrac distances (unweighted and weighted) PCoA showed that faecal microbial profiles 

of young mice separated significantly from those of old mice (PERMANOVA, p = 0.001; Figure 2a). 

Within each age group, both UniFrac measures showed significant microbiota differences between 

APOE3 and APOE4 genotypes, with the p-value from PERMANOVA analysis less than 0.005 (Figure 
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2a). These differences could be explained by differences detected in the relative abundance of dominant 

taxa, of which the most dominant were Firmicutes (62.8 ± 14.4%) and Bacteroidetes (32.3 ± 14.8%), 

followed by Proteobacteria, Verrucomicrobia and Deferribacteres accounting for less than 5% in total 

(Figure S5a). 

Analysis of differentially abundant taxa between APOE3-TR and APOE4-TR animals at the 

phylum level revealed that Deferribacteres in combined young and old mice were notably higher in the 

APOE4-TR mice compared to the APOE3-TR mice, while the opposite was true for Candidatus 

Saccharibacteria. In addition, lower relative abundance of Proteobacteria were seen in APOE4-TR young 

mice when compared to the APOE3-TR young mice (Table S4 and Figure S6). Although no significant 

difference was found in aggregated Firmicute or Bacteroidetes phylum abundance between APOE 

genotypes, we observed an increase in Firmicutes/Bacteroidetes ratio in old mice when compared to 

young mice (p < 0.001, Figure S7), in agreement with a previous C57BL/6N mouse study (Hoffman et 

al., 2017).  At the order level, Deferribacterales abundance in combined age groups was significantly 

higher in the APOE4-TR mice compared to the APOE3-TR mice. Additionally, Clostridiales, 

Erysipelotrichales and Desulfovibrionales in young mice were significantly different in relative 

abundance between the two APOE genotypes. The increase of Lachnospiraceae, Deferribacteraceae 

abundance and decrease of Bacteroidaceae abundance at family level in APOE4 transgenes compared 

with APOE3 was detected in combined age groups. Desulfovibrionaceae, Clostridiales Incertae Sedis 

XIII, Rikenellaceae, Prevotellaceae, Erysipelotrichaceae were also found to be significantly different 

between APOE genotypes in young mice (Figure 2b, Table S4, and Figure S6). Those differentially 

abundant families by APOE genotype were reflected by Mucispirillum, Clostridium cluster XIVa, 

Butyricicoccus, Odorobacter, Enterorhabdus, and Bacteroides in combined age groups; Mucispirillum, 

Desulfovibrio, Butyricicoccus, Bacteroides, Alistipes and Johnsonella in young mice at genus level 

(Figure 2b, Table S4, and Figure S6).  
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Faecal metabolite associations with APOE genotype and age 

In order to improve our understanding of the relationships between metabolite and microbiota 

composition in the gut, we performed metabolomic analyses of faecal water prepared from caecal 

contents. Sparse PLS Discriminant Analysis (sPLS-DA) showed a trend for separation according to age 

and APOE genotypes (Fig S8). Two-way ANOVA was therefore performed to investigate interactions 

between age and APOE genotype. Seven metabolites, adenosine monophosphate, alpha ketoisovaleric 

acid, glucose, glycine, lactate, oxocaproate, and xanthine were present at significantly different levels in 

age-APOE genotype interaction while 39 and 19 metabolites were significantly different in age groups 

and APOE genotype groups, respectively (Figure S9, Table S5). Four clusters of all significant 

metabolites had distinct correlations. Cluster A comprising 5 metabolites (lactate, pyruvate, fumarate, 

hypoxanthine and uracil) had inverse direct correlations with APOE4-TR old mice and had strong direct 

correlations with three other groups. However, cluster B and cluster C metabolites were associated with 

age. Ten metabolites in cluster B (methylamine, acetate, butyrate, propionate, arabinose, xylose, 

succinate, glucose, AMP, GTP) were more abundant in young mice especially in APOE3-TR young 

compared to old mice. Fourteen metabolites in Cluster C (asparagine, alanine, tryptophan, threonine, 

tyrosine, lysine, phenylalanine, glutamate, histidine, leucine, glutamine, valine, isoleucine, methionine) 

showed an opposite trend. Cluster D metabolites were divided into two sub-clusters, cluster D1 

comprising 4 metabolites (2-oxoisocaproate, alpha-ketoisovalerate, 3-methyl-2-oxovalerate, urocanate) 

had direct correlations with APOE4-TR young mice; and cluster D2 including 14 metabolites (isobutyrate, 

1,3-dihydroxyacetone, lactaldehyde, aspartate, ornithine, ribose, xanthine, choline, glycine, creatine, 

taurine, 2-methylbutyric acid, ethanol and formate) which had positive correlations with old mice (Figure 

3a). In addition, Metabolite Set Enrichment Analysis (MESA) was used to identify significantly enriched 

pathways in metabolomics data associated with APOE genotype and age. Of the top 50 assigned pathways, 

the significant pathways in APOE genotype were ammonia recycling, urea cycle, and alanine metabolism 

(Table S6, Figure S10a) while the significant pathways in age were ammonia recycling, urea cycle, 

glycine and serine metabolism, glutamate metabolism and alanine metabolism (Table S7, Figure S10b).  
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Co-inertia analysis (COIA) was carried to explore the correlation between the composition of 

microbiota at OTU level and the faecal metabolome (Figure 3b). The Monte-Carlo permutation test 

revealed a high overall similarity in the structure between the two datasets which was statistically 

significant (RV co-efficient = 0.685; p = 0.01).  The first four axes represented 72.5 %, 8.9%, 7.0% and 

2.6% of the explained variance respectively, and so the analysis focused on the first axis. Each sample is 

represented by an arrow where length of arrow indicates the divergence between two datasets. We 

observed that the aggregate arrow length was shorter in APOE4 mice compared with that in APOE3 mice, 

which indicated a higher consensus between microbiota composition and metabolites of APOE4 mice 

compared with APOE3 mice. The metabolites and OTUs that strongly correlated in the co-inertia analysis 

axes were plotted in on the first two COIA axes (Figure S11). Metabolites and bacterial OTUs were 

projected onto the same direction as samples, indicating that they were more abundant in those samples. 

There was an agreement between the metabolite abundance and the specific taxon abundance. Notably, 

SCFAs including acetate, butyrate and propionate were located in the direction of butyrate-producing 

bacteria from Clostridium cluster IV genus and the families Ruminococcaceae and Lachnospiraceae. 
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Discussion 

Although several recent studies have implicated a link between the gut microbiome and the 

development of AD (Bhattacharjee and Lukiw, 2013; Ghaisas et al., 2016; Sampson et al., 2016; Vogt et 

al., 2017), there is no direct study that establishes a link between gut microbiota composition and the 

strongest genetic risk factor for AD, APOE genotype. The current study marks the first analysis that 

compares gut microbiota composition in humans and transgenic mice with different APOE genotypes. 

Analysis of 16S rRNA gene sequences and faecal metabolome showed that APOE genotype correlated 

with abundance differences of several gut bacterial taxa which may drive the difference in amino acids 

and SCFAs levels.  

Higher levels of Prevotellaceae were evident in APOE3/E3 carriers relative to other genotype 

subgroups, while higher levels of Ruminococcaceae were correlated with the APOE2/E3 genotype 

(Figure 1 and Table S3) relative to APOE4 carriers. Similar associations were observed in APOE-TR 

transgenic animals with an increase in Prevotellaceae abundance in APOE3 young mice compared to 

APOE4 young mice in this study and an increase of Ruminococcaceae in APOE2 mice compared to 

APOE4 and APOE3 mice (Parikh et al., 2017). Interestingly, loss of these bacteria has been reported to 

negatively correlate with neurodegenerative disorders. Prevotellaceae and Ruminococcaceae were noted 

as being less abundant in patients with Parkinson's disease (PD) (Unger et al., 2016) and AD (Vogt et al., 

2017). A reduction of Prevotellaceae influenced mucin synthesis and increased mucosal permeability, 

allowing local and systemic exposure to bacterial endotoxin which may lead to the accumulation of alpha-

synuclein (α-syn) in the colon (Forsyth et al., 2011; Scheperjans et al., 2015). Aggregation-prone proteins 

such as β-amyloid (Aβ) and α-syn can propagate from the gut to the brain via the vagus nerve (Holmqvist 

et al., 2014) and contribute to the pathogenesis of PD, AD, and other neurodegenerative disorders 

(Bennett, 2005; Crews et al., 2009; Jellinger, 2003; Stefanis, 2012). Ruminococcaceae are involved in the 

production of short chain fatty acids (SCFAs), such that their depletion is causally linked to inflammation 

(Larsen et al., 2010; Pryde et al., 2002; Zhang et al., 2016). These findings suggest that these bacteria 
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might contribute to the protective effects of APOE2 and APOE3 alleles against AD relative to the 

APOE4 genotype (de-Almada et al., 2012; Farrer et al., 1997; Liu et al., 2013).  

The high abundance of Ruminococcaceae in subjects of the APOE2/E3 genotype was reflected by 

Gemmiger at the genus level. Gemmiger are strictly anaerobic bacteria which ferment a variety of 

carbohydrates to produce formic and n-butyric acids, often with small amounts of acetic, lactic, succinic, 

malonic, and pyruvic acids (Gossling and Moore, 1975). In addition, we observed differences between 

APOE genotypes in Clostridium cluster IV, Roseburia and Clostridium cluster XIVa which are able to 

convert dietary fibres to SCFAs (Duncan et al., 2002; Van den Abbeele et al., 2013). Although the 

butyrate-producing bacteria Clostridium cluster IV were modestly less abundant in human APOE3/E3 

individuals, they could be substituted by Roseburia with an increased abundance of these bacteria in the 

APOE3/E3. A slight increase of Clostridium cluster XIVa from Lachnospiraceae was seen in the human 

APOE4/E4 genotype which is consistent with the murine data. However, the increase of this genus in 

APOE4/E4 may not substitute for the reduction of other butyrate-producing bacteria. Additionally, several 

genera, which were not correlated with APOE genotype in human gut microbiomes, were significantly 

different between APOE3 and APOE4 genotypes in murine gut microbiomes. These taxa could not be 

detected in human data due to: (i) absence of some mouse gut microbiota in human such as Mucispirillum, 

(ii) differences in relative abundance of each individual taxa, and (iii) complexity in interactions of human 

gut microbiota with genetics, diet, and other environmental factors.  

Incorporating the gut microbiota data with the corresponding metabolites, faecal samples between 

APOE genotype groups were clearly discriminated based on the metabolomic profiles of faecal water 

extracts. We detected a higher level of SCFAs including acetate, lactate, propionate, and pyruvate in 

APOE3 mice which might be the result of a high abundance of butyrate-producing bacteria. Several 

SCFAs have been shown to inhibit the formation of toxic soluble Aβ aggregates in vitro (Ho et al., 2018). 

Interestingly, co-segregation of the faecal metabolomic profiles and the gut microbiome profiles as 

revealed by the co-inertia analysis suggests that the differences in gut microbiota associated with APOE 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 19, 2018. ; https://doi.org/10.1101/473694doi: bioRxiv preprint 

https://doi.org/10.1101/473694


13 

 

genotype and age in APOE-TR mice are reflected in the segregation of metabolites, which may be 

clinically relevant.  

In conclusion, the collective evidence here suggests a link between APOE genotypes and gut 

microbiome composition. Loss of butyrate-producing bacteria and SCFAs in APOE4 carriers might drive 

the impact of the APOE4 allele on neuropathology. Our findings suggest a possible role of gut microbiota, 

especially butyrate-producing bacteria, as an intervention point to mitigate the impact of APOE genotype 

in the development of AD.   
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Methods 

Participants, sample collection, APOE genotyping and biochemical analysis 

Fifty-six healthy participants, aged between 56 and 78 years, were prospectively selected 

according to APOE genotype from the COB (NCT01922869) and the CANN (NCT02525198) studies for 

the analysis of their gut microbiota speciation. Participants were provided with faecal collection kits, 

which included a stool collection bag and an ice pack. They were asked to defecate directly into the bag, 

which was secured and placed with the ice pack into an insulated container and delivered to the study 

scientist. The samples were then homogenised by physical manipulation before aliquots were taken and 

stored at −80°C.   The study protocols were approved by the National Research Ethics Service (NRES) 

Committee (13/EE/0066 (COB) and 14/EE/0189 (CANN) studies), and all participants consented to 

provide stool samples, and to the use of the stored samples for research purposes. 

APOE genotyping was carried out as previously described (Calabuig-Navarro et al., 2014). 

Briefly, DNA was isolated from the buffy coat layer of 8 mL of blood collected into sodium heparin 

CPT™ Mononuclear Cell Preparation Tubes with the use of the QIAgen DNA blood mini kit (Qiagen 

Ltd). Allelic discrimination of the APOE gene variants was conducted with TaqMan PCR technology 

(7500 Instrument; Applied Biosystems) and Assay-on-Demand single nucleotide polymorphism 

genotyping assays (Applied Biosystems). The APOE haplotypes (E2/E3, E3/E3, E3/E4, and E4/E4) were 

determined from the alleles for the APOE single nucleotide polymorphisms rs7412 and rs429358. Twenty-

four participants were selected as APOE4 carriers (APOE3/4 and APOE4/4; 12 men and 12 women), with 

32 participants selected as APOE4 non-carriers (APOE2/3 and APOE3/3; 16 men and 16 women), with 

the selection process matching the genotype groups for age, BMI and gender.  

Serum LPS Binding Protein (LBP) (cat. Ab213805, Abcam, Cambridge, UK) and Haptoglobin 

(cat. ab108856, Abcam, Cambridge, UK) plasmatic concentrations were detected by enzyme-linked 

immunosorbent assay (ELISA) kits according to the manufacturer’s instructions. The assay range for the 

LBP and the Haptoglobin ELISA kits were 1.56 ng/ml - 100 ng/ml and 0.078 µg/ml - 20 µg/ml 
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respectively. Serum samples were diluted until the LBP or Haptoglobin concentrations were in the range 

of these kits. 

 

Human faecal bacterial DNA extraction and 16S rRNA amplicon sequencing 

Total genomic DNA were isolated from human faecal samples using DNeasy Blood and Tissue 

kit (Qiagen, UK) following the manufacturer's instructions with some modifications following the 

repeated bead-beating method (Yu and Morrison, 2004). The V3-V4 hypervariable region of the16S 

rRNA gene was amplified to generate a fragment of 460 bp using the forward primer 

5′TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG and reverse 

primer 5′GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC 

(Klindworth et al., 2013). The Illumina overhang adapter sequences were added to the 16S rRNA gene 

specific primer sequences. Each 30 µl PCR reaction contained 10 ng/µl microbial genomic DNA, 0.2 µM 

of each primer, 15 µl of 2x Phusion Taq High-Fidelity Mix and 10.6 µl of nuclease free water. The PCR 

conditions were: initial denaturation 98oC for 30s; 25 cycles of 10s at 98oC, 15s at 55oC and 20s at 72oC; 

and 72oC for 5 minutes for final elongation. The SPRI select reagent kit (Beckman Coulter, UK) was used 

to purify the amplicons. The Qubit® dsDNA HS Assay Kit (Life Technologies) was followed for 

quantification and pooling. Library preparation was carried out by Teagasc, Fermoy, Ireland on the 

Illumina MiSeq platform using paired‐end Illumina sequencing run (2 × 250 bp). 

 

APOE Targeted Replacement mice 

All experimental procedures and protocols used in this study were reviewed and approved by the 

Animal Welfare and Ethical Review Body (AWERB) and were conducted within the provisions of the 

Animals (Scientific Procedures) Act 1986 (ASPA). 

Male human APOE3 (B6.129P2-Apoetm2(APOE*3)Mae N8) and APOE4 (B6.129P2-Apoetm2(APOE*4)Mae 

N8) Targeted Replacement (TR) mice homozygous for the human APOE3 or APOE4 gene (Taconic, 
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Germantown, NY, US) were used in these experiments. The model was created by Dr Maeda by targeting 

the murine APOE gene for replacement with the human APOE3 and APOE4 allele in E14TG2a ES cells 

and injecting the targeted cells into blastocysts. Resultant chimeras were backcrossed to C57BL/6 for 

eight generations (N8). Mice were maintained in controlled environment (21°C; 12-h light–dark cycle; 

light from 07:00 hours) and fed a standard chow diet (RM3-P, Special Diet Services, Essex, UK) for the 

duration of the experiments. 

 

Mice genomic DNA extraction and 16S rRNA amplicon sequencing 

Bacterial genomic DNA was extracted from faecal samples using a FastDNA SPIN Kit for Soil 

(MP Biomedicals) with three bead‐beating periods of 1 min (Maukonen et al., 2006). Bacterial DNA 

concentration was normalised to 1 ng/μL by dilution with DNA elution solution (MP Biomedicals, UK) 

to produce a final volume of 20 μL. Normalised DNA samples were sent to the Centre of Genomic 

Research (Liverpool, UK) for PCR amplification of the 16S ribosomal RNA (rRNA) gene and paired‐end 

Illumina sequencing (2 × 250 bp) on the MiSeq platform. The V4 region of the 16S rRNA gene was 

amplified to generate a 254 bp insert product as described previously (Caporaso et al., 2011). The first 

round of PCR was performed using the forward primer 5′‐

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNGTGCCAGCMGCCGCGGTAA‐3′ and 

the reverse primer 5′‐

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGACTACHVGGGTWTCTAAT‐3′, which 

include recognition sequences that enable a second nested PCR, using the N501f and N701r primers, to 

incorporate Illumina adapter sequences and barcode sequences. The use of these primers enables efficient 

community clustering for the length of reads obtained through Illumina sequencing, and this method also 

allows for high‐throughput sequencing. Sequencing data were supplied in FASTQ format with adaptors 

already trimmed. 
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Metabolomic analyses 

Faecal contents were extracted from caeca and prepared for NMR analysis by mixing thoroughly 

20 mg of frozen faecal material with 1 mL of saline phosphate buffer (1.9 mM Na2HPO4, 8.1 mM 

NaH2PO4, 150 mM NaCl, and 1 mM TSP (sodium 3-(trimethylsilyl)-propionate-d4)) in D2O (deuterium 

oxide), followed by centrifugation (18,000g, 1 min). Supernatants were removed, filtered through 0.2 μm 

membrane filters, and stored at −20 °C until required.  

High resolution 1H NMR spectra were recorded on a 600 MHz Bruker Avance spectrometer fitted 

with a 5 mm TCI cryoprobe and a 60 slot autosampler (Bruker, Rheinstetten, Germany). Sample 

temperature was controlled at 300 K. Each spectrum consisted of 128 scans of 32 768 complex data points 

with a spectral width of 14 ppm (acquisition time 1.95 s). The noesypr1d pre-saturation sequence was 

used to suppress the residual water signal with low power selective irradiation at the water frequency 

during the recycle delay (D1 = 2 s) and mixing time (D8 = 0.15 s). A 90° pulse length of 8.8 μs was set 

for all samples. Spectra were transformed with a 0.3 Hz line broadening and zero filling, manually phased, 

baseline corrected, and referenced by setting the TSP methyl signal to 0 ppm. Metabolites were identified 

using information found in the literature or on the web (Human Metabolome Database, 

http://www.hmdb.ca/) and by use of the 2D-NMR methods, COSY, HSQC, and HMBC (Le Gall et al., 

2011) and quantified using the software Chenomx® NMR Suite 7.0TM. 

 

Analysis of 16S amplicon sequencing data from humans and mice 

Bioinformatics analysis of 16S amplicon sequencing data from humans and mice were performed 

using the Quantitative Insights Into Microbial Ecology (QIIME) v1.9.1 (Caporaso et al., 2010) and 

usearch v8.1 (Edgar, 2010) software and the following procedure. First, the paired-end reads were merged 

using FLASH v1.2.8 (Magoc and Salzberg, 2011), then adaptors were removed from reads using cutadapt 

v1.8.3 (Martin, 2011). The sequences were demultiplexed and filtered using QIIME with the 
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split_libraries_fastq.py script, all reads with a quality score below 19 were removed. Reverse primers 

were removed using QIIME with truncate_reverse_primer.py. An operational taxonomic unit (OTU) table 

was obtained using usearch. Unique sequences were filtered (derep_fulllength) and sorted by length 

(sortbylength) with a length of 373–473 nt for V3-V4 region and a length of 237–271 nt for V4 region. 

After singleton removal (sortbysize), the remaining sequences were clustered into OTUs at a default 97% 

sequence identity (cluster_otus) and filtered for chimeras against the ChimeraSlayer reference database 

(uchime_ref) (Haas et al., 2011). All sequences were mapped against this database (usearch_global) to 

generate an OTU table. Classification of representative sequences for each OTU was carried out using 

mothur v1.36.1 (Schloss et al., 2009) against the 16S rRNA reference of Ribosomal Database Project 

(RDP) database trainset 14 (Cole et al., 2009).  To ensure an even sampling depth, we used QIIME to 

generate rarefied OTU tables with single_rarefaction.py script and compute alpha diversity metrics 

(chao1, phylogenetic diversity, Shannon’s diversity index, evenness) with alpha_rarefaction script and 

beta diversity (weighted Unifrac, unweighted Unifrac and Bray-curtis distances) with beta_diversity.py 

script.  

 

Statistical analysis 

Statistical analysis was carried out using R v.3.5.1 software packages (R Core Team, 2016). The 

significant differences in clinical measures, alpha diversity and abundances of each taxonomic unit 

between two or more groups were detected using Mann-Whitney U test or Kruskal-Wallis H test with 

Dunn's multiple comparison test, respectively. The p-values were corrected for multiple testing by 

Benjamini–Hochberg correction to control false discovery rate. Differences in beta diversity were 

determined using permutational multivariate analysis of variance (PERMANOVA) (R package vegan).  

Multivariate statistical analysis (Sparse PLS Discriminant Analysis (sPLS-DA) and MSEA) of the 

1H NMR data was carried out using the MetaboAnalystR 1.0.0. Co-inertia analysis (COIA) was used to 

investigate the relationships between the faecal metabolome and the composition of microbiota at OTU 

level using the co-inertia function (R package ade4 (Dray and Dufour, 2007)). Only OTUs present in at 
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least 50% of the samples were used in COIA analysis. Overall similarity in the structure between two 

datasets were measured by RV-coefficient. The significant of the RV-coefficient was tested using the 

Monte-Carlo permutation test (Moonseong and Ruben Gabriel, 1998). 
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Figure 1. Box plot of the relative abundance distribution of selected taxa at (a) Phylum level, (b) Order 
level, (c) Family level and (d) Clostridium cluster/Genus level. Taxa were selected based on differential 
abundance associated with human APOE genotypes. P-values were calculated by Kruskal-Wallis H test 
for all genotypes with followed by Dunn's multiple comparisons adjusting false discovery rate using the 
Benjamini-Hochberg correction, *p < 0.05.
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PERMANOVA tests Unweighted UniFrac Weighted UniFrac
R2 p R2 p

Age: Young vs. Old 0.325 0.001 0.554 0.001
Young mice: E3Y vs. E4Y 0.473 0.001 0.345 0.002
Old mice: E3O vs. E4O 0.395 0.004 0.306 0.003

APOE genotype: E3 vs. E4 0.217 0.001 0.087 0.018
Age and APOE genotype 0.622 0.001 0.702 0.001

Figure 2. Differences in gut microbiome composition between APOE3-TR and APOE4-TR mice. (a) 
Principle Coordinates Analysis based on unweighted and weighted UniFrac distances of partial sequences 
of bacterial 16S rRNA genes showing gut microbiota beta diversity grouped by age and APOE genotypes. 
Significant differences between groups were calculated by PERMANOVA tests. (b) Comparison of 
relative abundance taxa between APOE3 and APOE4 in young mice samples, old mice samples and both 
age groups combined were represented by  log2 fold changes. Statistical significances were determined 
by the Mann–Whitney U test and were corrected for the multiple comparison using the 
Benjamini–Hochberg adjustment, *p < 0.05.  E3Y, APOE3 young mice; E4Y, APOE4 young mice; E3O, 
APOE3 old mice; E4O, APOE4 old mice.
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Figure 3. Faecal metabolome analysis of APOE3-TR and APOE4-TR mice. (a) Heatmap and cluster 
analysis of two-way ANOVA of significantly differentially abundant metabolites grouped by age and 
APOE genotype. Clustering was obtained following similarity analysis using the Ward hierarchical 
algorithm and Euclidean distance metrics. (b) Co-inertia analysis (COIA) of the association between 
metabolites and microbiota composition in the gut. The left panel shows the COIA of the microbiota 
principal component analysis (PCA) (solid circle) at OTU level and the metabolomics PCA (empty 
circle); length of arrow indicates the divergence between two datasets. The right panel shows co-inertia 
of metabolome and microbiota data, represented by arrow length between the two data points per 
sample, grouped according to APOE genotype or age. Length of arrow was estimated using Euclidean 
distance measurement. *p < 0.05.
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