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Summary 28 

Accelerating human impacts are reshaping Earth’s ecosystems. Populations1, richness2–4 and 29 

composition4 of communities at sites around the world are being altered over time in complex 30 

and heterogeneous ways5–7. Land-use change is thought to be the greatest driver of this 31 

population and biodiversity change in terrestrial ecosystems8–10. However, a major knowledge 32 

gap is whether land-use change drivers, such as forest loss and habitat conversion, can indeed 33 

explain the high heterogeneity of temporal population and biodiversity trends9,11. Here, we fill 34 

this gap by analysing change in 6,667 time series of populations (species’ abundance)12 and 35 

biodiversity (species richness and turnover in ecological communities)13 over one and a half 36 

centuries of forest cover change and habitat transitions. We revealed an acceleration in both 37 

increases and decreases in population size, species richness and turnover after peak forest 38 

loss at over 2,000 sites across the globe. We found that temporal lags in population and 39 

biodiversity change following forest loss can extend up to half of a century and were longer for 40 

species with longer generation times such as large mammals. Together, our results 41 

demonstrate that historic and contemporary forest cover change do not universally lead to 42 

population declines and biodiversity loss, though population declines were most pronounced 43 

during and immediately following peak forest loss. By explicitly quantifying multi-decadal 44 

temporal lags in population and biodiversity responses to land-use change, our findings inform 45 

projections of how life on Earth will be reshaped across the Anthropocene. 46 

 47 

Main text 48 

Earth’s biodiversity is changing3–5,14. At sites across the planet, populations are increasing and 49 

decreasing1,15,16, species are lost17 and gained18,19, yet synthesis studies across sites indicate 50 

no net change in local scale species richness3,4 despite marked shifts in species composition 51 

(turnover)2,4,5. At present, we have only a limited understanding of how global change drivers 52 
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produce these complex population and biodiversity patterns over time6,20,21. Our current 53 

knowledge of the mechanisms explaining the ongoing reorganisation of ecological communities 54 

predominantly stems from space-for-time8,22 and modelling23,24 approaches that attribute 55 

population and richness declines to land-use change. Yet, space-for-time methods can 56 

overestimate the effects of global change drivers compared to long-term monitoring, because 57 

they do not account for ecological lags6,25,26 and community self-regulation27. Such temporal 58 

discrepancies in the magnitude of effects have been observed when studying the impacts of 59 

warming on community change25, and of habitat fragmentation on populations and 60 

biodiversity28,29. The integration of multi-century long reconstructions of past land cover30 and 61 

high-resolution remote-sensing observations31,32 with recent compilations of over five million 62 

population and biodiversity records12,13 provides an unprecedented opportunity to test the in-63 

situ impacts of land-use change. Only now can we quantitatively attribute the heterogeneous 64 

patterns of population and biodiversity change observed over time to land-use dynamics, thus 65 

improving projections of human impacts on the world’s biota. 66 

 67 

Here, we asked how populations (trends in numerical abundance) and biodiversity (trends in 68 

species richness and community composition) across vertebrate, invertebrate and plant taxa 69 

vary according to the timing and magnitude of forest cover change and habitat conversions 70 

(Figure 1, Extended Data Figures 1 and 3b). We assessed whether population and biodiversity 71 

change were different after versus before contemporary peak forest loss (the timing of the 72 

largest forest loss event across the duration of each time series). Additionally, we tested 73 

population and biodiversity change versus overall forest cover gain and loss experienced across 74 

the duration of each time series. In a post-hoc analysis, we categorized population time series 75 

based on whether they were recorded before, during, or after the period of all-time historic peak 76 

forest loss (the timing of the largest forest loss event at the location of each time series between 77 
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the years 850 and 2015), and then compared population trends among the three categories. 78 

Finally, we investigated among-taxa variation in temporal lags of population and biodiversity 79 

responses to peak forest (the time period between contemporary peak forest loss and maximum 80 

change in populations and communities). We used a hierarchical Bayesian modelling 81 

framework for all attribution analyses, with individual time series nested within biomes33 to 82 

account for the spatial and temporal structure of the data. We used the Living Planet Database 83 

(133,092 records) and the BioTIME database (4,970,128 records), currently the two largest 84 

databases of population and community time series, respectively. We calculated population 85 

change using state-space models that account for observation error and random fluctuations34. 86 

We quantified turnover by partitioning Jaccard’s dissimilarity measure into its nestedness 87 

(change due to communities becoming reduced subsets of themselves or new species 88 

colonising in addition to the original species) and turnover35 components. We focused on 89 

turnover because it quantifies compositional changes due to species replacement and is 90 

independent of changes in species richness. Our data synthesis quantitatively tests the 91 

attribution of change in populations and ecological communities to land-use change through 92 

time across the world’s woody biomes.  93 

 94 

We predicted greater population and species richness declines with increased forest loss. 95 

Forest degradation and land-use conversion reduce habitat and resource availability8,19,36 and 96 

are the most common global threats for our studied species37 (Figure 1b, Extended Data Figure 97 

4e). Conversely, we predicted greater increases in population abundance and species richness 98 

with larger gains in forest cover. Forest restoration and natural regeneration, two examples of 99 

forest cover gain, can lead to positive biodiversity responses38,39. We expected greater turnover 100 

of species within ecological communities with greater change in forest cover (both loss and 101 

gain), as these extremes of the forest cover change spectrum both create novel environmental 102 
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conditions prompting local extinctions but also colonisations by new species27,36. Secondly, we 103 

predicted that the largest population declines will occur during the periods of all-time peak forest 104 

loss across sites as that is the baseline for maximum intensity of forest cover change26. Finally, 105 

we predicted that temporal lags will be greater for species with longer generation times, as they 106 

typically respond more slowly to environmental change40 and have more limited dispersal41. If 107 

we find support for our overall prediction that population and biodiversity loss will be greater 108 

with higher forest loss, this would indicate that forest loss is a key driver of rapid and pervasive 109 

declines over time. Alternatively, if we find support for heterogeneous and temporally-delayed 110 

responses of populations and ecological communities to forest loss, this would imply that the 111 

effects of land-use change over time are more complex than previously thought, which has 112 

implications for improved prediction of future ecological change and development of biodiversity 113 

and conservation policy. 114 
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Figure 1. Forest cover change can influence population and biodiversity change through 116 

multiple mechanisms. For 38% of population time series and 70% of biodiversity time series 117 

monitoring began after historic peak forest loss had already occurred (see Extended Data 118 

Figures 2-3, 4a-b). See Extended Data Figure 1 for workflow of analyses. a, Global map of 119 

locations and duration of 542 Living Planet Database (LPD) and 190 BioTIME studies, 120 

containing the 6,497 time series from 2,154 locations analysed here. From the total number of 121 

time series analysed, 2,852 had experienced historic or contemporary forest cover gains and 122 

losses.  Black outlines on a indicate locations that were forested at the start of the population 123 

or biodiversity monitoring period (1,247 sites). b, Timeline of monitoring and forest loss across 124 

the LPD and BioTIME databases (for variation in monitoring duration among time series, see 125 

Extended Data Figures 2-4). Forest loss was quantified over 10-year periods across 96 km2 126 

cells as a proportion, with e.g., -0.05 meaning a 5% loss of forest cover.  Inset on b shows the 127 

proportion of species, part of the LPD and BioTIME databases, that are threatened by land-use 128 

change, based on species’ IUCN threat assessments (see Extended Data Figure 4e). c-d, 129 

Questions and predictions for this study outlined with respect to population change, richness 130 

change and turnover (species composition change). Habitat conversion refers to a change in 131 

the dominant land cover type. Photos in d are by G. N. Daskalova. 132 

 133 

We found that forest loss and habitat transitions did not universally lead to population declines 134 

and biodiversity loss (Figures 2-3) and are instead reshaping populations and ecological 135 

communities in more complex ways than previously recognised8,15,22,24. Surprisingly, forest loss 136 

acted as a catalyst for both positive and negative change and intensified population declines, 137 

population increases and species richness losses over time, despite equally long monitoring 138 

periods before and after peak forest loss. In 72% of the populations which were in decline before 139 

peak forest loss, the declines became more acute after forest loss (slope = -0.04 CI = -0.04 to 140 
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-0.03, Figure 2a). Similarly, 66% of the increasing populations experienced even more positive 141 

population change after peak forest loss (slope = 0.02, CI = 0.02 to 0.03, Figure 2b). In contrast, 142 

among time series, we did not find directional relationships among greater forest loss and 143 

population and species richness declines (Figure 3, Extended Data Figures 5-7). This 144 

disconnect between the magnitude of land-use change and population and biodiversity change 145 

could be due to a number of factors including temporal lags in population or community 146 

responses26,40 and/or less forest cover change having occurred during the monitoring period 147 

relative to historic forest clearing26,42,43 (Extended Data Figures 2-3). In further contrast to our 148 

first prediction, larger magnitudes of forest loss often led to greater increases, rather than 149 

decreases, in species richness over time, particularly among time series comparisons with 150 

shorter durations (Extended Data Figure 6e). Forest loss is a key driver of habitat fragmentation 151 

which can lead to rapid colonisation by new species due to increased landscape heterogeneity 152 

and larger breadth of ecological niches across sites5,28,36. Our results highlight that the same 153 

global change driver, forest loss, affects populations and ecological communities in 154 

heterogeneous ways at different sites around the world, and accounting for this heterogeneity 155 

is key when scaling from local impacts of human activities to global scale biodiversity patterns 156 

and attribution of change10. 157 
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 158 

Figure 2. At the site level, population and biodiversity change increase after 159 

contemporary peak forest loss. Though species richness tended to decrease after peak forest 160 

loss, the proportion of populations that experienced increases and declines in population 161 

abundance and turnover were similar. Numbers on plots indicate number of time series. 162 

Population, richness and turnover change increased across 55% of the 1,007 time series for 163 
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which baseline comparisons were possible. Distributions show posterior means from model fits 164 

of a, population declines (µ), b, population increases (µ),  d, richness losses (slopes), e, richness 165 

gains (slopes) and g, turnover (in the final year of each period relative to the first year, measured 166 

as Jaccard’s dissimilarity, where zero indicates no changes in species composition and one 167 

indicates a completely new set of species). Vertical lines indicate the mean for each category. 168 

The y-axis on a, b and c refers to the probability density function for the kernel density estimation 169 

per unit on the x-axis, and the distributions are relative to one another. Temporal change before 170 

and after peak forest loss, c, f, h is indicated with lines for individual time series. The time 171 

window duration varied among time series but was consistent at the time series level (n years 172 

before disturbance = n years after disturbance at the time series level, n ≥ 5 years). Light grey 173 

and dark grey points indicate the mean values across all times series, with error bars indicating 174 

the 2.5 and 97.5% quantiles. See Extended Data Table 1 for model outputs. 175 

 176 

Our results revealed that population declines were most pronounced during the period of all-177 

time peak forest loss and turnover was highest when primary forests were converted to 178 

agricultural and urban areas (Figure 3). Following peak contemporary forest loss, turnover 179 

increased by over 10% in 19% of the time series (Figure 2), further testifying to the high rates 180 

of compositional change detected across the Anthropocene4,5,14. However, within 22% of the 181 

time series, turnover declined by over 10% after forest loss, suggesting that biotic 182 

homogenisation might also be occurring following human-induced environmental change44. 183 

Taken together, our findings suggest site-specific impacts that were stronger and more common 184 

when the population and biodiversity monitoring captured the largest forest loss events and the 185 

most dramatic habitat conversion events across time relative to when monitoring is mismatched 186 

with forest cover change (Figures 2-3). A greater proportion of the planet is projected to 187 

experience an unprecedented amount of land-use change in the coming decades45, highlighting 188 
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the importance of improved biodiversity monitoring in current and future hotspots of forest loss 189 

and habitat conversion.  190 

 191 

Figure 3.  Population declines were most acute when the all-time peak in deforestation 192 

for study sites occurred within the duration of population monitoring. a, Population 193 

declines are more likely to be detected when peak deforestation occurs during the population 194 

monitoring period (slope = -0.01, CI = -0.01 to -0.01). Density plots show distributions of µ values 195 
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(population trend).  b, Among time series, there were no directional relationships among overall 196 

forest loss and population declines and increases, species richness declines and turnover. 197 

Standardised effect sizes in b were calculated by dividing the slopes from hierarchical models 198 

testing population and biodiversity change as a function of forest loss by the standard deviation 199 

of forest loss. For visualisations of each model, see Extended Data Figures 5-6. Low sample 200 

size precluded an analysis of biodiversity change differences based on whether all-time peak 201 

forest loss had occurred before, during or after the biodiversity monitoring. Distributions in c 202 

show µ values  for population change, posterior means (slopes) for richness change and 203 

Jaccard’s dissimilarity for turnover under different habitat conversions. Line thickness 204 

corresponds with magnitude of detected change. Forest loss led to habitat conversion in 304 of 205 

5795 (approximately 5%) of monitored population and biodiversity time series. There was only 206 

one instance of a population time series experiencing habitat conversion with secondary forest 207 

as the starting dominant land cover, thus no distribution is plotted for that category. The y-axis 208 

in c refers to the probability density function for the kernel density estimation per unit on the x-209 

axis, and the distributions are relative to one another. Numbers in plots indicate number of time 210 

series for each category. Small sample sizes of an average 10 time series per transition types 211 

of interest for this analysis precluded statistical analysis and inferences on the effects of habitat 212 

transitions were drawn by visually inspecting the density distributions. See Extended Data 213 

Figures 5-6 and Extended Data Table 1 for models of forest cover gain and loss (GFC 214 

database12, 2000-2016) and forest cover loss (LUH database11, across the time series) and 215 

population and biodiversity change. See Extended Data Figure 7 for distributions of population 216 

and biodiversity change following habitat transitions detected by the MODIS Land Cover 217 

Database32. 218 

 219 
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We found evidence for up to half-century ecological lags in changes in population abundance, 220 

species richness and community composition following forest loss (Figure 4). On average, we 221 

documented maximum change in populations and biodiversity six to 13 years after 222 

contemporary peak forest loss across taxa. Yet, nearly half of population and biodiversity 223 

change (40%) occurred within three years of peak forest loss, demonstrating that rapid shifts in 224 

populations and ecological communities occur frequently (Figure 4a). As predicted, the period 225 

between peak forest loss and peak change in populations and biodiversity was longer for taxa 226 

with longer generation times (e.g., large mammals, Figure 4b, Extended Data Table 1), further 227 

confirmed by a post-hoc analysis of lags in population change versus mammal generation time 228 

(Extended Data Figure 8a). Population declines and increases occurred on similar time scales 229 

(Extended Data Figure 8b-c), potentially explaining why previous temporal analyses of 230 

population change have not found evidence for net population declines1,20. Losses in species 231 

richness lagged behind richness gains only by approximately half a year (slope = 0.5, CI = 0.1 232 

– 1.05), indicating that potential extinction debts and immigration credits accumulated at roughly 233 

the same speed across taxa. The similar pace and temporal delay of richness gains and losses 234 

could be the source of the previously observed findings of no net local richness change3,4, yet 235 

substantial compositional change2,4 across sites and taxa. Such temporal lags in biodiversity 236 

change have also been observed in post-agricultural forests2,46 and fragmented grasslands40, 237 

where agricultural activity has ceased decades to centuries ago, yet richness and community 238 

composition change continue to the modern-day. Overall, our results indicate that increasing 239 

rates of land-use change in the Anthropocene11,45 will alter ecosystems on both short- and long-240 

term timescales. 241 
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 242 

Figure 4. Population and community change after peak forest loss may be delayed by up 243 

to half a century across 3,187 time series from around the world, with species with long 244 

generation times and low mobility showing the largest temporal lags. a, Distributions of 245 
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temporal lag values (measured in years). b, Vertebrate population change lags by taxa (reptiles, 246 

amphibians, birds and mammals). c, Richness change and d, turnover lags by taxa 247 

(invertebrates, amphibians, birds, mammals, plants and trees). Peak forest loss refers to the 248 

timing of the largest forest loss event across the duration of each time series. Lag was measured 249 

as the number of years between peak forest loss and peak population/biodiversity change. 250 

Turnover was measured as Jaccard’s dissimilarity, where zero indicates to changes in species 251 

composition and one indicates a completely new set of species. Numbers on plots indicate 252 

number of time series. Some time series did not experience richness change following peak 253 

forest loss, thus no lags were calculated for them. See Extended Data Table 1 for model outputs. 254 

 255 

In summary, our analysis reveals an acceleration of increases and decreases of populations 256 

and biodiversity after forest loss and habitat conversion at sites around the planet. Our findings 257 

that all is not loss contrast with our hypothesis and challenge the widely-held assumption that 258 

land-use change universally leads to population declines and species richness loss8,15,23. 259 

Nevertheless, the increased magnitude and likelihood of population declines during and 260 

following peak forest loss highlight that human impacts are altering the biodiversity of the planet 261 

and emphasize the importance of expanded biodiversity monitoring in current and future 262 

hotspots of land-use change. A critical assumption underlying existing projections of biodiversity 263 

responses to land-use change8,23 is that space-for-time approaches accurately reflect longer-264 

term population and biodiversity dynamics11. On the contrary, we find that temporal lags in 265 

population and biodiversity change following forest loss varied by taxa and generation time and 266 

extended up to half of a century. Over the Anthropocene, ecosystems could be responding to a 267 

suite of global change drivers, in addition to land-use change, and a key next research step is 268 

to test the synergy and discord between the effects of multiple anthropogenic threats on Earth’s 269 

biota. Our results highlight the complex biological responses to habitat conversion across sites, 270 
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taxa and time scales that are leading to the reorganisation of ecological communities. Thus, 271 

indicators used to assess biodiversity change regionally and globally10, including progress 272 

towards Aichi targets47, must capture the full spectrum and temporal spread of population and 273 

biodiversity responses to human impacts across the Anthropocene.  274 
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available temporal population, biodiversity and forest cover change data that met our duration 416 

criteria. For analyses of population change, we included time series with five or more survey 417 

points. For analyses of biodiversity change, we included time series with five or more data points 418 

when analysing the full time series, and time series with two or more data points when matching 419 

the duration of time series comparisons to the 16-year duration of the Global Forest Change 420 

Database from 2000 to 2016).  421 
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 422 

Databases 423 

Forest cover change data 424 

To quantify historic and contemporary forest cover change, we extracted historic forest loss 425 

from the Land Use Harmonisation (LUH; 850 – 2015, forest loss and habitat transitions at a 426 

0.25° degree resolution)30 and contemporary forest cover change and habitat conversions from 427 

the Global Forest Change (GFC, 2000 – 2016, forest loss and gain at a 30 m resolution)31, and 428 

MODIS Landcover (2000 – 2013, land-use transitions at 500m resolution)32 datasets. 429 

 430 

Land Use Harmonisation Database 431 

To estimate forest cover change across a time period matching the full duration of the 432 

biodiversity observations, we derived the change in primary forest cover from the Land Use 433 

Harmonisation database (LUH)30 for 96 km2 cells around the location of each population in the 434 

LPD database and for the standardised grid cells of the BioTIME database (~ 96 km2 each). 435 

LUH includes annual gridded fractions of land-use states for the period from 850 to 2013 at 436 

0.25° x 0.25° resolution. The estimates are based on historical reconstructions using Earth 437 

System models, with inputs such as regional and national rates of wood harvest and potential 438 

biomass density. The accuracy and precision of LUH increases towards the modern day, when 439 

there are more available data to inform the Earth System models. Note that unlike GFC, LUH 440 

estimates forest cover as a proportion (bounded between zero and one). For our analyses, we 441 

focused on time series from locations that have experienced at least 0.05 (equivalent to 5%) 442 

forest loss. To calculate total forest cover change over the period of a given population or 443 

biodiversity time series, we subtracted the proportion of forest cover in the first year of 444 

biodiversity monitoring from the proportion of forest cover in the last year. The type of forest 445 

cover change detected by the LUH database was predominantly forest loss, with forest gain 446 
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occurring infrequently and at very small magnitudes (<0.001 out of maximum 1), thus we focus 447 

our analysis on forest loss. 448 

 449 

To estimate the historic baseline of forest cover change, we calculated yearly change in % forest 450 

cover in a study cell from one year to the next for each site from 850 to 2015 from the LUH data, 451 

and determined the 10-year period when the most forest loss occurred (historic peak forest loss, 452 

calculated by adding the yearly proportions of forest loss in each cell over standardised 10-year 453 

blocks). Time since historic peak forest loss was a poor predictor of the variation in 454 

contemporary population and biodiversity change (Extended Data Figure 10e-f). To determine 455 

contemporary peak forest loss for each time series of monitoring data, we calculated yearly 456 

changes in forest cover across the duration of each time series and determined the year when 457 

the most change had occurred. 458 

 459 

Global Forest Change Database 460 

We derived overall forest loss and forest gain across the 2000-2016 period for 96 km2 cells 461 

around the location of each population in the LPD database and for the standardised grid cells 462 

of the BioTIME database (~ 96 km2 each) from the Global Forest Change (GFC)31 database 463 

using the Google Earth Engine48. The GFC database provides high resolution forest cover 464 

change data, derived from Landsat satellite observations at a 30-meter spatial resolution. We 465 

calculated the total area of forest cover gain and loss separately (measured in km2) for each 96 466 

km2 cell on a yearly time step. We then summed the yearly values for the period that coincided 467 

with population and biodiversity monitoring to estimate overall forest cover gain and loss (two 468 

separate metrics). For example, for a biodiversity time series spanning 2002 – 2009, our forest 469 

cover gain and loss metrics included the total amount of forest cover gained and lost during that 470 

same period. For our analyses, we focused on time series from locations that have experienced 471 
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at least 0.5 km2 of forest gain or loss. GFC does not distinguish between primary forest, 472 

secondary forest and plantations, but it does provide a very high-resolution measure of general 473 

forest cover. The drivers of the forest loss detected by GFC across our study sites are 474 

predominantly forestry, changes in agricultural practices and wildfires49. Note that the GFC 475 

database spans from 2000 to 2016, whereas the earliest terrestrial biodiversity record in 476 

BioTIME is from 1858.  477 

 478 

MODIS Landcover Database 479 

We used the MODIS Landcover Database32 to quantify habitat conversion for locations where 480 

we had population and biodiversity monitoring data. The MODIS Database has a resolution of 481 

500 m, and it uses satellite-derived reflectance data to classify land cover around the world. To 482 

determine the types of habitat conversion between 2000 and 2013 (the time span of available 483 

MODIS data) across all monitoring locations, we calculated the dominant land cover type at the 484 

start and end of each population and biodiversity time series and split time series into categories 485 

such as “no habitat conversion” and “grassland to woody savannah”. We focused on the eight 486 

most frequent types of habitat conversion (Extended Data Figure 7). 487 

 488 

By synthesising information from scenario data based on Earth Dynamics Models (LUH) and 489 

remote-sensing databases (GFC, MODIS), we were able to determine historic forest loss from 490 

the start of the monitoring period to 2015, as well as contemporary forest cover change (gain 491 

and loss) and habitat transitions from 2000 to 2016. GFC and MODIS detect forest cover, with 492 

no distinction between primary and secondary forests, thus we derived information on 493 

transitions from primary to secondary forest from the LUH database. We calculated overall 494 

forest cover change because we considered total change in habitat to be more meaningful for 495 

long-term population and biodiversity trends as opposed to an annual rate of forest cover 496 
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change which does not capture cumulative effects. Together, the three databases (GFC, 497 

MODIS, LUH) encompass two different elements of land-use change: 1) land cover types and 498 

long-term historical reconstructions of past land-use and habitat conversions and 2) high-499 

resolution satellite data from recent years of forest cover change and habitat conversion types. 500 

Thus, the combined analysis allows for a comprehensive test of the effects of land-use change 501 

on populations and biodiversity around the world. 502 

 503 

Population time series data (Living Planet Database) 504 

We analysed 4,228 population time series, with records distributed around the world. 505 

Geographic representation is variable with, for example, an under-representation of tropical 506 

regions in the population data (Figure 1). In the LPD, some populations have precise 507 

coordinates, whereas the location of others are approximate. Because of the extent over which 508 

we are calculating forest cover change (96 km2), we included both types of populations in our 509 

analysis. Duration varied across time series (Extended Data Figure 4c-d) and we only included 510 

populations with at least five survey points. The overall range of the time series covered the 511 

period between the years 1970 and 2014. We calculated population change using state-space 512 

models which are particularly appropriate when quantifying change in data with varying 513 

collection methodology, as they take into account observation error and process noise50,51. For 514 

more details on state-space model calculations, see Humbert et al. 200934 and Daskalova et al. 515 

20181.  We scaled the population size data to be between 0 and 1 to analyse within-population 516 

relationships and to make sure that we were not conflating within-population relationships and 517 

between-population relationships52. State-space models partition the variance in abundance 518 

estimates into process error (σ2) and observation or measurement error (τ2) and estimate 519 

population trends (µ):  520 

𝑋𝑡 = 𝑋𝑡 − 1 + 	𝜇 + 	𝜀𝑡, (1) 521 
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where Xt and Xt-1 are the scaled (observed) abundance estimates (between 0 and 1) in the 522 

present and past year, with process noise represented by εt	~	gaussian(0,	σ2). We included 523 

measurement error following: 524 

𝑌𝑡 = 𝑋𝑡 + 𝐹𝑡,	525 

where Yt	 is the estimate of the true (unobserved) population abundance with measurement 526 

error: 527 

Ft	~	gaussian(0,	τ2). 528 

We substituted the estimate of population abundance (Yt) into equation 1: 529 

𝑌𝑡 = 𝑋𝑡 − 1 + 	𝜇 + 	𝜀𝑡 + 𝐹𝑡.	530 

Given 𝑋𝑡 − 1 = 𝑌𝑡 − 1 − 𝐹𝑡 − 1,	then: 531 

𝑌𝑡	 = 𝑌𝑡 − 1	 + 𝜇 + 𝜀𝑡	 + 𝐹𝑡	 − 𝐹𝑡 − 1. 532 

 533 

For each time series, we calculated overall population change (µ) experienced 1) across the 534 

periods before and after contemporary peak forest loss, 2) across the full duration of the time 535 

series, 3) from 2000 to 2016 (matching the temporal scale of the GFC database), and 4) from 536 

2000 to 2013 (matching the temporal scale of the MODIS database). We standardised the 537 

number of years over which we calculated population change before and after peak forest loss 538 

on the population-level, meaning that the number of years before and after was the same within 539 

populations, but might differ among populations.  540 

 541 

Biodiversity time series data (BioTIME Database) 542 

We analysed 2,339 time series from 190 studies from terrestrial biomes across the globe, part 543 

of the BioTIME database13 (with the addition of 36 studies that are not yet a part of the public 544 

database). Similarly to the LPD, tropical regions and some taxa such as amphibians and reptiles 545 
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were under-represented. Some of the study locations fall within protected areas (32%). Because 546 

those studies only had one time series each, overall only 1% of analysed time series were from 547 

inside protected areas. To account for the different spatial extents of the BioTIME database and 548 

uneven sampling, studies with multiple locations and extents > 72 km2 were partitioned into 96 549 

km2 grids, and then sample-based rarefaction was applied to standardise sampling within each 550 

time series14. Duration varied across time series (Extended Data Figure 4c-d) and the overall 551 

range of the time series covered the period between the years 1858 and 2016. For time series 552 

with five or more years of monitoring records, we calculated overall richness change and 553 

turnover experienced 1) across the periods before and after contemporary peak forest loss, 2) 554 

across the full duration of the time series. For time series with two or more years of monitoring 555 

records, we calculated overall richness change and turnover experienced 3) from 2000 to 2016 556 

(matching the temporal scale of the GFC database), and 4) from 2000 to 2013 (matching the 557 

temporal scale of the MODIS database). The GFC and MODIS databases cover shorter time 558 

periods, thus we included biodiversity time series with shorter durations than the five-year cut 559 

off point that was used in the rest of our analyses using datasets with longer durations (but note 560 

that 76% of biodiversity time series had a duration of three or more years). To estimate richness 561 

change, we modelled species richness versus time (year, mean centered) with random slopes 562 

and intercepts for each rarefied cell and a Poisson error distribution with a log link.  563 

𝑙𝑜𝑔(𝜇𝑗, 𝑖, 𝑡) = 𝛽0 + 𝛽0𝑗 + 𝛽0𝑗, 𝑖 + (𝛽1 + 𝛽1𝑗 + 𝛽1𝑗, 𝑖)𝑦𝑒𝑎𝑟𝑗, 𝑖, 𝑡,	564 

𝑦𝑗, 𝑖, 𝑡	 ∼ 	𝑝𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑗, 𝑖, 𝑡), 565 

where yearj,i,t is the time in years, β0 and β1 are the global intercept and slope (fixed effects), 566 

β0j and β1j are the biome-level departures from β0 and β1 (respectively; biome-level random 567 

effects), β0j,i and β1j,i are the (nested) cell-level departures from β0 and β1 (cell-level random 568 

effects); yj,i,t is the (rarefied) species richness within the jth biome in the ith cell in year t. 569 
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 570 

From the richness over time model, we extracted the posterior means for richness change for 571 

each time series (i.e., the cell-level slope estimates), which then became the response variable 572 

in the second stage of our analyses where we tested richness change versus forest cover 573 

change (see Statistical analyses section).  574 

 575 

To determine changes in community composition, we calculated the turnover component of 576 

beta diversity (changes due to species replacement rather than changes in species 577 

abundances14,35), at the end of each time period outlined above relative to the first year of 578 

observation in the same period. Turnover is bound between zero and one, where zero is no 579 

change in species composition and one indicates that all of the original species of a community 580 

have been replaced with new species.  581 

 582 

Statistical analyses 583 

When testing for an attribution signal (i.e., evidence that a predictor variable is a potential driver 584 

of population or biodiversity change), we always matched the temporal scales of the forest cover 585 

change data and the population and biodiversity data. For example, when testing the effects of 586 

forest cover change and land-use transitions as detected by GFC (2000 – 2016) and MODIS 587 

(2000 – 2013), we calculated population and biodiversity change for the same time periods. 588 

Because of the longer duration of the LUH database, we were also able to extract forest and 589 

land cover information for the full duration of the LPD and BioTIME time series. For our analyses 590 

of contemporary peak forest loss and overall forest loss (using the LUH database over a time 591 

period matching the duration of each time series), we excluded locations which had less than 592 

0.05 (out of maximum 1) forest cover change. We excluded locations which had no forest cover 593 

across the duration of the time series in both the 96 km2 cells and the 500 km2 larger landscape 594 
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cells from our analyses of population and biodiversity change versus forest cover gain and loss 595 

from 2000 to 2016 (using the GFC database). See Extended Data Table 1 for the outputs of all 596 

statistical models and their respective sample sizes. 597 

 598 

            Population and biodiversity change after versus before contemporary peak forest loss 599 

To test if temporal population and biodiversity change differed before and after peak forest loss 600 

on the site-level, we split each time series into two periods – before and after peak deforestation 601 

– and estimated population change, richness change and turnover for each period separately. 602 

Then, to infer if population and biodiversity change differed following peak forest loss, we 603 

modelled µ (population change), richness change (cell-level random slopes) and turnover as a 604 

function of period (categorical with two levels – before or after forest loss) and time series 605 

duration (numeric) as fixed effects, with a biome random effect to account for the spatial 606 

clustering of the data. For population and richness change, we modelled the positive and 607 

negative components of the distributions of change separately, e.g., one model for populations 608 

with positive µ values and one model for populations with negative µ values. This approach 609 

allowed us to test if the effects of forest loss differ across the positive and negative dimensions 610 

of population and biodiversity change. The models were as follows: 611 

𝜇𝑗, 𝑖, 𝑝 = 𝛽0 + 𝛽0𝑗 + 𝛽1 ∗ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗, 𝑖, 𝑝 + 	𝛽2 ∗ 𝑝𝑒𝑟𝑖𝑜𝑑𝑗, 𝑖, 𝑝,	612 

𝑦𝑗, 𝑖, 𝑝	 ∼ 	𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝑗, 𝑖, 𝑝, σ2), 613 

where durationj,i,p is the duration of the time series in years of cell i within biome j		for period	p,	614 

and periodj,i,p is an indicator variable for the period (before or after forest loss); β0, β1 and β2		615 

are the global intercept and slope estimates for duration and the categorical period effect, 616 

respectively (fixed effects), β0j	 is the biome-level departures from β0 (biome-level random 617 
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effects); yj,i,p is the estimate for change in population size or species richness for the ith cell in 618 

the jth biome for the pth period. 619 

 620 

To model the change in turnover before and after contemporary peak forest loss, we followed 621 

the same conceptual framework as outlined above, but we used a zero one inflated beta 622 

distribution to account for the properties of turnover (bounded between zero and one, inclusive, 623 

where one is a complete change in species composition). The probability density function for 624 

the zero one inflated beta distribution is: 625 

𝑏𝑒𝑡𝑎𝑖𝑛𝑓(𝑦; 𝛼, 𝛾, 𝜇, 𝜙) = 	b
𝛼(1 − 𝛾),																																				𝑦 = 0
𝛼𝛾,																																																𝑦 = 1
(1 − 𝛼)𝛾𝑓(𝑦; 𝜇, 𝜙), 0 < 𝑦 < 1,

 626 

where α is the probability that a zero or one occurs, γ is the probability that a one occurs (given 627 

an observation is a zero or a one), and µ and ϕ are the mean and precision of the beta 628 

distribution, respectively. In the parameterisation approach we used53 ϕ is inversely related to 629 

the variance. Beta parameterisation is also sometimes expressed through the parameters p and 630 

q that can be derived from our framework following ϕ	=	p	+	q54. Because only 7% of time series 631 

did not experience any change in species composition (𝑦 = 0) in the time period after 632 

contemporary forest loss, and less than 1% of time series had a completely new set of species 633 

(𝑦 = 1) occupying the ecological communities, for 𝑦 = 0 and 𝑦 = 1, α and γ were modelled 634 

assuming a Bernoulli distribution and logit-link function, and models were fit with only an 635 

intercept. For 0 < 𝑦 < 1, we assumed a beta error distribution and a logit-link function: 636 

𝑙𝑜𝑔𝑖𝑡(𝜇𝑗, 𝑖, 𝑝) = 𝛽0 + 	𝛽0𝑗 + 𝛽1 ∗ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗, 𝑖, 𝑝 + 𝛽2 ∗ 𝑝𝑒𝑟𝑖𝑜𝑑𝑗, 𝑖, 𝑝, 637 

𝑦𝑗, 𝑖, 𝑝	~	𝐵𝑒𝑡𝑎(𝜇𝑗, 𝑖, 𝑝, 𝜙),  638 

where durationj,i,p is the duration of the time series in years of cell i within biome j		for period	p,	639 

and periodj,i,p is an indicator variable for the period (before or after forest loss); β0, β1 and β2		640 
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are the global intercept and slope estimates for duration and the categorical period variable 641 

respectively (fixed effects), and β0j are the biome-level departures from β0 (biome-level random 642 

intercepts); yj,i,p  is the estimate of turnover for the ith cell in the jth biome for the pth period. 643 

 644 

Population change before, after and during the period of all-time historic peak forest loss 645 

To determine if population change differed based on whether population time series were 646 

recorded before, during, or after the period of all-time historic peak forest loss (the timing of the 647 

largest forest loss event at the location of each time series between the years 850 and 2015), 648 

we modelled µ (population change) as a function of when monitoring started (categorical with 649 

three levels – before, during or after peak forest loss) and time series duration (numeric) as 650 

fixed effects, with a biome random effect to account for the spatial clustering of the data. Low 651 

sample size precluded a similar analysis for biodiversity change (Extended Data Figure 3). The 652 

model was as follows: 653 

𝜇𝑗, 𝑖, 𝑚 = 𝛽0 + 𝛽0𝑗 + 𝛽1 ∗ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗, 𝑖, 𝑚 + 	𝛽2 ∗ 𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔	𝑠𝑡𝑎𝑟𝑡𝑗, 𝑖, 𝑚,	654 

𝑦𝑗, 𝑖,𝑚	 ∼ 	𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝑗, 𝑖, 𝑚, σ2), 655 

where durationj,i,m is the duration of the time series in years of cell i within biome j		for monitoring 656 

start	m,	and	monitoring	startj,i,m	is an indicator variable denoting when monitioring started; β0, 657 

β1 and β2	 	 are the global intercept and slope estimates for duration and the categorical 658 

monitoring start variable respectively (fixed effects), β0j	is the biome-level departures from β0 659 

(respectively; biome-level random effects); yj,i,m is the estimate for change in population size or 660 

species richness for the ith cell in the jth biome for the mth monitoring start. 661 

 662 

Habitat conversion and population and biodiversity change 663 
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To determine the influence of the type of forest cover change (i.e., land-use transitions) on 664 

population and biodiversity change, we compared the distributions of population and biodiversity 665 

change across transitions types (from primary forest to secondary forest, from primary forest to 666 

non-natural habitat, and from secondary forest to non-natural habitat, to which we refer as 667 

habitat conversion). Small sample sizes (on average 10 time series per transition type) 668 

precluded statistical analysis, thus we report findings from a visual inspection of distributions of 669 

population and biodiversity change across habitat conversion types.  670 

 671 

To test the effect of forest cover change on population and biodiversity change among sites, we 672 

modelled population and biodiversity change versus overall forest cover change (calculated as 673 

forest cover gain and forest cover loss (GFC database, 2000-2016) and forest loss (LUH 674 

database, across the duration of the time series). Models of population and richness change 675 

versus forest cover change were fitted assuming Gaussian error. 676 

𝜇𝑗, 𝑖 = 𝛽m +	𝛽mn + 𝛽o ∗ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗, 𝑖 + 𝛽p ∗ 𝑓𝑜𝑟𝑒𝑠𝑡	𝑐ℎ𝑎𝑛𝑔𝑒n,s, 677 

𝑦𝑗, 𝑖	 ∼ 	𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝑗, 𝑖, σ2), 678 

where durationj,i is the duration of the time series in years of cell i within biome j, forest	changej,i 679 

is the forest cover change in cell i	within biome j; β0, β1 and β2		are the global intercept and slope 680 

estimates for duration and forest cover change respectively (fixed effects), and β0j are the 681 

biome-level departures from β0 ( biome-level random intercepts); yj,i  is the  population or 682 

richness change metric (a separate model for population declines, population increases, 683 

richness losses and richness gains) in the ith cell within the jth biome. 684 

 685 

Models of turnover versus forest cover change were fit with a zero one inflated beta distribution 686 

to account for the properties of turnover (bounded between zero and one). We used the same 687 
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probability density function for the zero one inflated beta distribution as in the model for turnover 688 

before and after contemporary peak forest loss. For 𝑦 = 0 and 𝑦 = 1, α and γ were modelled 689 

assuming a Bernoulli distribution and logit-link function, and we fit models with only an intercept. 690 

For 0 < 𝑦 < 1, we assumed a beta error distribution and a logit-link function: 691 

𝑙𝑜𝑔𝑖𝑡v𝜇n,sw = 𝛽m +	𝛽mn + 𝛽o ∗ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛n,s + 𝛽p ∗ 𝑓𝑜𝑟𝑒𝑠𝑡	𝑐ℎ𝑎𝑛𝑔𝑒𝑗, 𝑖, 692 

𝑦n,s~𝐵𝑒𝑡𝑎v𝜇n,s, 𝜙w,  693 

where durationj,i is the duration of the time series in years of cell i within biome j, forest	changej,i 694 

is the forest cover change in cell i	within biome j; β0, β1 and β2		are the global intercept and slope 695 

estimates for duration and forest cover change respectively (fixed effects), and β0j are the 696 

biome-level departures from β0 (biome-level random intercepts); yj,i  is turnover  in the ith cell 697 

within the jth biome. 698 

 699 

Lags in population and biodiversity responses to contemporary peak forest loss 700 

To test for temporal lags in population and biodiversity responses to contemporary peak forest 701 

loss, we first calculated when population and biodiversity change were greatest following peak 702 

forest loss for each time series. Rates of population change were calculated using state-space 703 

models and a Kalman filter20,34. Peak richness change and peak turnover were calculated as 704 

the maximum value of the absolute differences between consecutive observations of species 705 

richness and turnover. We then quantified lag as the number of years between contemporary 706 

peak forest loss and peak population/biodiversity change. We modelled lag as a function of 707 

taxa, as we expect that species with longer generation times will respond to disturbance more 708 

slowly.  709 

𝜇𝑗, 𝑖 = 𝛽0𝑗 + 𝛽o ∗ 𝑡𝑎𝑥𝑎n,s,	710 

𝑦𝑗, 𝑖	 ∼ 	𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇n,s, 𝜎
p), 711 
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where taxaj,i is the taxa of the cell i in the biome j time series, β1 is the slope for taxa effect 712 

(fixed effect), andβ0j are the biome-level random intercepts; yj,i is the  temporal lag in the 713 

population or biodiversity change metric (a separate model for population change, richness 714 

change and turnover)  for the ith cell within the jth biome. 715 

 716 

We conducted a post-hoc analysis where we tested our temporal lag and generation time 717 

hypothesis in a more quantitative manner by modelling lag as a function of generation time in 718 

mammals, the taxa for which generation time data were freely available55. 719 

𝜇𝑔 = 𝛽0 + 𝛽1 ∗ 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒𝑔,	720 

𝑦𝑔	 ∼ 	𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝑔, σ2), 721 

where generation	 timeg is the mammal generation time in years, β0 and β1 are the global 722 

intercept and slope (fixed effect); yg is the temporal lag in population change for a species with 723 

generation time g. 724 

 725 

Prior specification 726 

For all models except the model of turnover versus overall forest cover change (which was a 727 

zero one inflated model), we used weakly regularising normally-distributed priors for the global 728 

intercept and slope: 729 

𝛽0	 ∼ 	𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 6),	730 

𝛽1	 ∼ 	𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 6). 731 

For the turnover models that had a zero one inflated beta distribution, we used the following 732 

priors: 733 

𝛽0	 ∼ 	𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 6),	734 

𝛽1	 ∼ 	𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 6), 735 
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𝑧𝑜𝑖	~	𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 0.5), 736 

𝑐𝑜𝑖	~	𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 0.5), 737 

where zoi is the probability of being a zero or a one and coi is the conditional probability of being 738 

a one (given an observation is a zero or a one). 739 

 740 

Group-level parameters (the rarefied cell random effect in the species richness over time model, 741 

i, and the biome random effect in all models, j) were all assumed to be gaussian(0,	σ), and priors 742 

on the σ were the same for all models: 743 

𝜎𝛽0𝑗	 = 𝜎𝛽0𝑗, 𝑖	 ∼ 	ℎ𝑎𝑙𝑓		𝐶𝑎𝑢𝑐ℎ𝑦(0, 2). 744 

All models were fitted in a Bayesian framework using the brms package v2.1.053 in R v3.5.156. 745 

Models were run for 6000 iterations, with a warm up of 2000 iterations. Convergence was 746 

assessed visually by examining trace plots and using Rhat values (the ratio of the effective 747 

sample size to the overall number of iterations, with values close to one indicating convergence).  748 

 749 

Sensitivity analyses 750 

Our analyses were not sensitive to our calculation of turnover in the final year of the time series 751 

relative to the first year, and previous examinations of the BioTIME database have found that 752 

calculating turnover relative to the second year of observation produced similar results4. We 753 

also quantified population change using the BioTIME database (following the same state-space 754 

modelling framework as with the LPD) and found similar lack of directional patterns in the 755 

relationships between population change and overall forest loss (Extended Data Figure 5f). We 756 

found no distinct geographic or taxonomic patterning in the relationships between population 757 

change, biodiversity change and forest cover change (Extended Data Figure 9). Furthermore, 758 

the relationships between population decreases and increases and forest loss were not 759 

influenced by whether species were tightly associated with forests or not (Extended Data Figure 760 
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5g-i). Similar post-hoc analysis was not possible for the biodiversity time series because habitat 761 

preference data were not available for many of the species included in the BioTIME database. 762 

The cell size over which we calculated forest cover change (from 10 km2 to 500 km2) did not 763 

influence overall findings, as detected forest cover change scaled proportionately with cell size 764 

across locations (Extended Data Figure 10a-b). Landscape context (forest cover in a 500 km2 765 

cell around sites) also did not influence the relationship between forest cover change and 766 

population and biodiversity change (Extended Data Figure 10c-d). We did not find directional 767 

patterns between population and biodiversity change and time since the largest forest loss event 768 

(Extended Data Figure 10f-h). Our findings were not influenced by the type of forest cover 769 

(primary vs secondary), as loss of secondary forest cover scaled proportionately to primary 770 

forest loss (Extended Data Figure 10e). 771 
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 793 

Data and code availability 794 

Code for the rarefaction of the BioTIME Database is available from 795 

https://doi.org/10.5281/zenodo.1475218. Code for statistical analyses is available from 796 

http://doi.org/10.5281/zenodo.1490144. Population and biodiversity data are freely available in 797 

the Living Planet and BioTIME Databases12,13. The Living Planet Database can be accessed on 798 

http://www.livingplanetindex.org/data_portal. The BioTIME Database can be accessed on 799 

Zenodo (https://doi.org/10.5281/zenodo.1211105) or through the BioTIME website 800 

(http://biotime.st-andrews.ac.uk/). Land-use change data are publicly available in the Land Use 801 

Harmonization Database30, the Forest Cover Change Database31, and the MODIS Landcover 802 

Database32. 803 
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