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Background:  According to well-established evolutionary biology theory reproduction trades-off 

against longevity, implying that upregulating the reproductive axis might drive major diseases .We 

assessed whether the central driver of reproduction gonadotropin-releasing hormone 1 (GnRH1) 

had a causal effect on the leading cause of global morbidity and mortality, i.e. ischemic heart disease 

(IHD). As a contrast we similarly examined the role of GnRH2 because it is more a driver of female 

sexual behavior. 

Methods: We applied strong (p-value <5x10-6) and independent genetic predictors of GnRH1 and 

GnRH2 to an extensively genotyped IHD case (n=76,014) - control (n=264,785) study using 

multiplicative random effects inverse variance weighted (IVW), weighted median, MR-Egger and 

MR-PRESSO estimates.  

Results: GnRH1, predicted by 11 genetic variants, was positively associated with IHD (IVW odds 

ratio (OR) 1.04 per effect size, 95% confidence interval (CI) 1.01 to 1.08), but GnRH2, predicted by 

15 genetic variants, was not (IVW OR 0.98, 95% CI 0.95 to 1.02).  

Conclusions: GnRH1 is a potential IHD genetic target. Apart from demonstrating a central tenet of 

evolutionary biology in humans, our study suggests that existing treatments and environmental 

factors targeting GnRH1, its drivers or consequences could be re-purposed to prevent and treat 

IHD. Given, the importance of reproduction to the human species, many such exposures likely exist. 

 

Keywords: GnRH, IHD, Mendelian randomization 

Abbreviations: 

CVD: cardiovascular disease 

GWAS: genome-wide association study 

GnRH: Gonadotropin-releasing hormone 

IHD: ischemic heart disease 

SNP: single nucleotide polymorphism 
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Background 

Despite substantial progress in prevention and control, cardiovascular disease (CVD) remains 

incompletely understood.1 CVD reduction is vital to achieving the Sustainable Development Goals.2 

To address this gap, CVD is being re-conceptualized within the well-established evolutionary 

biology theory that growth and reproduction trade-off against longevity.3 4 Dietary restriction 

mimetics are being investigated in CVD.5 Genetic selection in favour of both fertility and ischemic 

heart disease (IHD) has been demonstrated.6 Reproduction is driven centrally by gonadotropin-

releasing hormone 1 (GnRH1)7 likely driven by environmental factors to ensure optimal timing of 

reproduction. We used Mendelian randomization to estimate the causal effect of GnRH1 on IHD. 

Mendelian randomization uses genetic proxies of exposure. Genetic make-up is determined 

randomly at conception giving randomization akin to that in a randomized controlled trial,8 and 

thereby unconfounded estimates. We also considered GnRH2, because it is more a driver of female 

sexual behavior than reproduction,7 9 10 so GnRH1 would be expected to have more of an effect on 

IHD.  

 

Methods 

Gonadotropin-releasing hormone 1 and 2 

Genetic associations with GnRH1 and GnRH2 protein were obtained from a genome-wide 

association study (GWAS) (n=3,301; mean age, 43.7 years; 1,615 women [49%]) of people of 

European descent.11 Genetic associations with rank inverse normalized residuals were obtained 

from linear regression of natural log-transformed protein abundances adjusted for age and sex, 

duration between blood draw and processing and the first three principal components of ancestry 

from multidimensional scaling to account for population stratification.11  

 

We used all single nucleotide polymorphisms (SNPs) which independently (r2<0.05) and strongly 

(p-value <5 x 10-6) predicted GnRH1 or GnRH2. We used the “clump_data” function of MRBase12 to 

select between SNPs in linkage disequilibrium. We assessed the strength of genetic instruments 

from the F-statistic using an approximation.13 We discarded SNPs associated with potential 

confounders, including current smoking, age at completion of full-time education, Townsend index, 

alcohol intake frequency and number of days per week walked for 10+ minutes, at Bonferroni 

corrected significance in the UK Biobank GWAS summary statistics 

(https://github.com/Nealelab/UK_Biobank_GWAS) of ≤361,194 people of White British ancestry. 
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To assess whether the SNPs might affect IHD other than via GnRH we searched two curated 

genotype to phenotype databases, Ensembl release 94 (http://useast.ensembl.org/index.html) and 

PhenoScanner,14 for paths by which the SNPs predicting GnRH1 or GnRH2 might affect IHD other 

than via GnRH. We searched PhenoScanner for diseases and traits associated with the SNPs (or 

their correlates r2>.0.8) at p-value<1x10-5.  

 

Ischemic heart disease 

Genetic associations with IHD were obtained from the largest publicly available extensively 

genotyped IHD case (n=up to 76,014)-control (n=up to 264,785) study based on a meta-analysis of 

the CARDIoGRAPMplusC4D 1000 Genomes case (n=60,801)-control (n=123,504) study/ 

MIGen/CARDIoGRAM Exome chip study, the UK Biobank SOFT CAD study (cases=10,801, 

controls=137,371), and two case (n=4120)-control (n=3910) studies from Germany and Greece.15 

CARDIoGRAMplusC4D 1000 Genomes participants are largely of European descent (77%) with 

detailed phenotyping based on medical records, clinical diagnosis, procedures that indicate IHD, 

such as revascularization, and/or angiographic evidence of stenosis, and sometimes case status 

ascertained from medications or symptoms that indicate angina or from self-report.16 In the UK 

Biobank SOFT CAD GWAS the case phenotype included fatal or nonfatal myocardial infarction, 

percutaneous transluminal coronary angioplasty or coronary artery bypass grafting, chronic IHD 

and angina. Controls were defined as individuals who were not a case after exclusions.15  

 

Statistical analysis  

SNP-specific Wald estimates were combined using inverse variance weighting (IVW) with 

multiplicative random effects. Wald estimates were calculated as the SNP on IHD estimate divided 

by the SNP on GnRH1 or GnRH2 estimate. As sensitivity analysis we used a weighted median, which 

may provide correct estimates if the SNPs are invalid instruments for <50% of the weight, MR-

Egger, which is robust to pleiotropy assuming the instrument strength is independent of the direct 

effect,17 and Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO), which 

detects potentially pleiotropic SNPs from the residual sum of squares and removes statistically 

significant outliers.18 Finally, we repeated the analysis using SNPs predicting GnRH1 or GnRH2 at p-

value<5 x 10-8. We replaced palindromic SNPs by proxies. We used the R packages 

“MendelianRandomization” and “MRPRESSO” to obtain estimates. We used R (version 3.5.1, The R 

Foundation for Statistical Computing, Vienna, Austria) for our analysis. 
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Ethics 

 We used publicly available summary data with no direct involvement of participants in the 

study. No ethical approval is required. 

 

Results 

Of the 225 SNPs predicting GnRH1 at 5 x 10-6 one of the 12 independent SNPs (rs145898851) was 

not available for IHD and had no proxy with r2>=0.5, giving 11 SNPs, of which two were replaced by 

proxies (rs28529564 by rs114767131 (r2=0.59) and rs11039086 by rs57323109 (r2=0.95)). Of the 

123 SNPs predicting GnRH2 one invalid SNP (chromosome position, 20:2975929) was discarded. Of 

the 15 independent SNPs, three were replaced by proxies (rs34246308 by rs1941401 (r2=0.98), 

rs79590491 by rs79238287 (r2=0.84), and rs6999411 by rs3019086 (r2=0.50)). The F-statistic for 

GnRH1 was 33 and for GnRH2 was 24. None of the SNPs were associated with potential 

confounders in the UK Biobank.   

GnRH1 was positively associated with IHD using IVW with little evidence of pleiotropy (Figure 1a). 

The weighted median, MR-Egger and MR-PRESSO gave similar estimates (Table 1), again with little 

evidence of pleiotropy. Some genetic predictors of GnRH1 were associated with potential 

consequences of GnRH1 and causes of IHD (rs141012986 with height and atrial fibrillation, 

rs2731674 with height, coagulation factors, metabolites, interleukins, lung function, body 

composition, and rs4241818 with thrombosis and metabolites). GnRH2 was not associated with 

IHD using IVW with little evidence of pleiotropy (Figure 1b). The weighted median, MR-Egger and 

MR-PRESSO gave similar estimates with little evidence of pleiotropy (Table 1). Rs34439826 

predicting GnRH2 was associated with height and forced vital capacity, while rs79238287 was 

associated with estrogen treatment.   

At genome-wide significance, 2 SNPs (rs4241818 and rs2731674) independently predicted GnRH1 

and 1 SNP (rs3787480) predicted GnRH2. Based on these two SNPs GnRH1 was positively 

associated with IHD (IVW with fixed effects odds ratio, 1.08; 95% confidence interval, 1.02 to 1.14). 

Based on rs3787480 GnRH2 was not associated with IHD (Figure 1b). 

 

Discussion 

Consistent with theoretical predictions from evolutionary biology and empirical evidence,6 this 

study showed GnRH1, but not GnRH2, positively associated with IHD. 
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This first study assessing the role of GnRH in IHD makes cost-effective use of publicly available 

GWAS, nevertheless several considerations bear mention. First, although the F-statistics were >10, 

weak instrument bias is possible, which likely biases towards the null. Second, confounding by 

population stratification is possible; however both samples mainly concern people of European 

descent with genomic control,11 15 and the SNPs were not associated with potential confounders. 

Third, some SNPs predicting GnRH1 were associated with factors relevant to cardiovascular 

disease, however GnRH1 is the master of reproduction7 9 10 suggesting vertical rather than 

horizontal pleiotropy. Fourth, Mendelian Randomization gives unconfounded estimates, but is open 

to the selection bias that may occur in observational studies of older adults,19 because of missing 

prior deaths from the same underlying cohort. However, IHD occurs at relatively young ages and 

generally precedes other types of cardiovascular disease, making it less open to such bias. Fifth, 

GnRH1 and GnRH2 were not measured in the sample with the outcome, however genetic predictors 

of proteins should not vary by sample. Sixth, effects of genetic variants on IHD could vary by age or 

sex, but sufficiently large unbiased sex-specific samples are not available to test this possibility. 

Seventh, we assumed linear associations. Eighth, canalization could generate a bias, however the 

reproductive axis is most active before birth, during the mini-puberty of infancy and from puberty. 

Ninth, reproduction trades off against other drivers of longevity, such as immunity,20 and so might 

be expected to promote infections and protect against auto-immune conditions. However, these 

predications are difficult to test, because currently sufficiently large densely genotyped GWAS of 

relevant events are not available. 

 

Physiologically GnRH1 drives reproduction,7 9 10 including sex hormones. In randomized controlled 

trials (conjugated equine) estrogen did not protect against CVD in men or women.21 A randomized 

controlled trial assessing the cardiovascular safety of testosterone in women has been completed22 

but not published. The first trial designed to assess the effect of testosterone on major adverse 

cardiac events in men (NCT03518034) has just started. Regulators in North America have recently 

warned of cardiovascular risk of testosterone administration.23 24 Correspondingly, genetic 

validation of testosterone as a target of intervention in IHD has recently been demonstrated.25 

Regulation of the reproductive axis may be more relevant to IHD in men than women because 

estrogen levels are similar in men and post-menopausal women, but androgen levels are 

substantially higher in men than women.26 As such, GnRH1 might be more likely to affect IHD via 

testosterone, and be particularly relevant for men. Higher rates of IHD in men than women are not 

explained by current risk factors.1  
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From a practical perspective this study suggests that drivers and consequences of GnRH1 might be 

targets of intervention for IHD. Drivers of GnRH1 include energy balance indicated by insulin.27 

Insulin increases IHD risk.28 Insulin raises testosterone29 30 providing a pathway from GnRH1 to 

IHD. Other potential drivers of GnRH1 include neurokinins,31 32 nitric oxide,33 

aspartate/glutamate,34 35 gamma-aminobutyric acid36 and dynorphin.37 Notably, a common feature 

of several successful treatments for IHD is suppression of the male reproductive axis, including 

spironolactone, a known anti-androgen, statins,38 digoxin,39 nitric oxide40 and some 

hypertensives.41 

 

Conclusion 

This study confirms in humans the central tenet of evolutionary biology that reproduction trades-

off against longevity, by showing that GnRH1, specifically, is positively associated with IHD. This 

study implies that GnRH1, its drivers and its consequences, are potential targets of intervention for 

the leading cause of global morbidity and mortality.  
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Table 1. Mendelian randomization estimates for associations of GnRH1 (based on 11 independent 

SNPs with p-value <5x10-6) and GnRH2 (based on 15 independent SNPs with p-value <5x10-6) with 

IHD, using a study largely based on CARDIoGRAPMplusC4D 1000 Genomes and the UK Biobank 

SOFT CAD.  

 

Exposure Mendelian 

randomization method 

Odds 

ratio 

95% 

confidence 

interval 

p-

value 

Cochran’s 

Q statistic 

(p-value) 

MR-Egger 

 Intercept 

p-value 

I2 

GnRH1 Inverse variance weighted 1.04 1.01, 1.08 0.01 6.06 (0.81) - - 

effect Weighted median 1.04 1.00, 1.09 0.08 - - - 

size MR-Egger 1.02 0.93, 1.13 0.61 5.92 (0.75) 0.70 75.5% 

 MR-PRESSO (corrected) 1.04 1.03, 1.05 0.01  - - 

        

GnRH2 Inverse variance weighted 0.98 0.95, 1.02 0.29 13.3 (0.50) - - 

effect Weighted median 0.99 0.94, 1.04 0.64 - - - 

size MR-Egger 0.98 0.88, 1.10 0.75 13.3 (0.43) 0.99 0.0% 

 MR-PRESSO (corrected) 0.98 0.95, 1.02 0.30  - - 
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Figure 1. Overall IVW (random effects) and SNP-specific estimates for the association of (a) GnRH1 

and (b) GnRH2 with IHD. 
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