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Abstract1

Our brain perceives the world by exploiting multiple sensory modalities to extract infor-2

mation about various aspects of external stimuli. If these sensory cues are from the same3

stimulus of interest, they should be integrated to improve perception; otherwise, they should4

be segregated to distinguish different stimuli. In reality, however, the brain faces the challenge5

of recognizing stimuli without knowing in advance whether sensory cues come from the same6

or different stimuli. To address this challenge and to recognize stimuli rapidly, we argue that7

the brain should carry out multisensory integration and segregation concurrently with com-8

plementary neuron groups. Studying an example of inferring heading-direction via visual and9

vestibular cues, we develop a concurrent multisensory processing neural model which consists10

of two reciprocally connected modules, the dorsal medial superior temporal area (MSTd) and11

the ventral intraparietal area (VIP), and that at each module, there exists two distinguishing12

groups of neurons, congruent and opposite neurons. Specifically, congruent neurons implement13

cue integration, while opposite neurons compute the cue disparity, both optimally as described14

by Bayesian inference. The two groups of neurons provide complementary information which15

enables the neural system to assess the validity of cue integration and, if necessary, to recover the16

lost information associated with individual cues without re-gathering new inputs. Through this17

process, the brain achieves rapid stimulus perception if the cues come from the same stimulus of18

interest, and differentiates and recognizes stimuli based on individual cues with little time delay19

if the cues come from different stimuli of interest. Our study unveils the indispensable role of20

opposite neurons in multisensory processing and sheds light on our understanding of how the21

brain achieves multisensory processing efficiently and rapidly.22

Keywords: Opposite neuron, Multisensory integration, Concurrent integration and segrega-23

tion, Decentralized architecture, Continuous attractor neural network.24
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Significance Statement25

Our brain perceives the world by exploiting multiple sensory cues. These cues need to be integrated26

to improve perception if they come from the same stimulus and otherwise be segregated. To27

address the challenge of recognizing whether sensory cues come from the same or different stimuli28

that are unknown in advance, we propose that the brain should carry out multisensory integration29

and segregation concurrently with two different neuron groups. Specifically, congruent neurons30

implement cue integration, while opposite neurons compute the cue disparity, and the interplay31

between them achieves rapid stimulus recognition without information loss. We apply our model32

to the example of inferring heading-direction based on visual and vestibular cues and reproduce33

the experimental data successfully.34

Introduction35

To survive as an animal is to face the daily challenge of perceiving and responding fast to a36

constantly changing world. The brain carries out this task by gathering as much as possible37

information about external environments via adopting multiple sensory modalities including vision,38

audition, olfaction, tactile, vestibular perception, etc. These sensory modalities provide different39

types of information about various aspects of the external world, and serve as complementary40

cues to improve perception in ambiguous conditions. For instance, while walking, both the visual41

input (optic flow) and the vestibular signal (body movement) convey useful information about42

heading-direction, and when integrated together, they give a more reliable estimate of heading-43

direction than either of the sensory modalities could deliver on its own. Indeed, experimental data44

has shown that the brain does integrate visual and vestibular cues to infer heading-direction and45

furthermore the brain does it in an optimal way as predicted by Bayesian inference1. Over the past46

years, experimental and theoretical studies verified that optimal information integration were found47

among many sensory modalities, for example, integration of visual and auditory cues for inferring48

object location2, motion and texture cues for depth perception3, visual and proprioceptive cues for49

hand position4, and visual and haptic cues for object height5.50

However, multisensory integration is only a part of multisensory information processing. While51

it is appropriate to integrate sensory cues from the same stimulus of interest (Fig. 1A left), sensory52

cues from different stimuli need to be segregated rather than integrated in order to distinguish53

and recognize individual stimuli (Fig. 1A right). In reality, the brain does not know in advance54

whether the cues are from the same or different objects. To recognize stimuli rapidly, we argue55

that the brain should carry out multisensory integration and segregation concurrently: a group of56

neurons integrates sensory cues, while the other computes the disparity between cues. The interplay57

between the two groups of neurons determines the final choice of integration versus segregation.58

An accompanying consequence of multisensory integration is, however, that it inevitably incurs59

information loss of individual cues (Fig. 1, also see SI and Fig. S1). Consider the example of60

integrating the visual and vestibular cues to infer heading-direction, and suppose that both cues61

have equal reliability. Given that one cue gives an estimate of θ degree and the other an estimate62

of −θ degree, the integrated result is always 0 degree, irrespective to the value of θ (Fig. 1B).63

Once the cues are integrated, the information associated with each individual cue (the value of64

θ) is lost, and the amount of loss information increases with the extent of integration (see SI).65

Thus, if only multisensory integration is performed, the brain faces a chicken and egg dilemma66

in stimulus perception: without integrating cues, it may be unable to recognize stimuli reliably67

in an ambiguous environment; but once cues are integrated, the information from individual cues68

is lost. Concurrent multisensory integration and segregation is able to disentangle this dilemma.69
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Figure 1: Multisensory integration and segregation. (A) Multisensory integration versus segregation. Two
underlying stimulus features s1 and s2 independently generate two noisy cues x1 and x2, respectively. If the
two cues are from the same stimulus, they should be integrated, and in the Bayesian framework, the stimulus
estimation is obtained by computing the posterior p(s1|x1, x2) (or p(s2|x1, x2)) utilizing the prior knowledge
p(s1, s2) (left). If two cues are from different stimuli, they should be segregated, and the stimulus estimation
is obtained by computing the posterior p(s1|x1) (or p(s2|x2)) using the single cues (right). (B) Information
of single cues is lost after integration. The same integrated result ŝ = 0◦ is obtained after integrating two
cues of opposite values (θ and −θ) with equal reliability. Therefore, from the integrated result, the values of
single cues are unknown.

The information of individual cues can be recovered by using the preserved disparity information if70

necessary, instead of re-gathering new inputs from the external world. While there are other brain71

regions processing unisensory information, concurrent multisensory integration and segregation72

provides an additional way to achieve rapid stimulus perception if the cues come from the same73

stimulus of interest, and differentiate and recognize stimuli based on individual cues with little time74

delay if the cues come from different stimuli of interest. This processing scheme is consistent with75

an experimental finding which showed that the brain can still sense the difference between cues in76

multisensory integration6,7.77

What are the neural substrates for implementing concurrent multisensory integration and segre-78

gation? Previous studies investigating the integration of visual and vestibular cues to infer heading-79

direction found that in each of two brain areas, namely, the dorsal medial superior temporal area80

(MSTd) and the ventral intraparietal area (VIP), there are two types of neurons with comparable81

number displaying different multisensory behaviors: congruent and opposite cells (Fig. 2)8,9. The82

tuning curves of a congruent cell in response to visual and vestibular cues are similar (Fig. 2A),83

whereas the tuning curve of an opposite cell in response to a visual cue is shifted by 180 degrees84

(half of the period) compared to that in response to a vestibular cue (Fig. 2B). Data analysis85

and modeling studies suggested that congruent neurons are responsible for cue integration8,10–12.86

However, the computational role of opposite neurons remains largely unknown. They do not inte-87

grate cues as their responses hardly change when a single cue is replaced by two cues with similar88

directions. Interestingly, however, their responses vary significantly when the disparity between89

visual and vestibular cues is enlarged13, indicating that opposite neurons are associated with the90

disparity information between cues.91

In the present study, we explore whether opposite neurons are responsible for cue segregation92

in multisensory information processing. Experimental findings showed that many, rather than a93

single, brain areas exhibit multisensory processing behaviors and that these areas are intensively94

and reciprocally connected with each other8,9,14–16. The architecture of these multisensory areas95

is consistent with the structure of a decentralized model11, which successfully reproduces almost96

all known phenomena observed in the multisensory integration experiments1,17. Thus we also97

consider a decentralized multisensory processing model11 in which each local processor receives a98
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Figure 2: Congruent and opposite neurons in MSTd. Similar results were found in VIP18. (A-B) Tuning
curves of a congruent neuron (A) and an opposite neuron (B). The preferred visual and vestibular directions
are similar in (A) but are nearly opposite by 180◦ in (B). (C) The histogram of neurons according to
their difference between preferred visual and vestibular directions. Congruent and opposite neurons are
comparable in numbers. (A-B) adapted from ref. 8, (C) from ref. 19.

direct cue through feedforward inputs from the connected sensory modality and meanwhile, accesses99

information of other indirect cues via reciprocal connections between processors.100

As a working example, we focus on studying the inference of heading-direction based on visual101

and vestibular cues. The network model consists of interconnected MSTd and VIP modules, where102

congruent and opposite neurons are widely found8,9. Specifically, we propose that congruent neu-103

rons in the two brain areas are reciprocally connected with each other in the congruent manner:104

the closer between the preferred directions of a pair of neurons in their respective brain areas, the105

stronger their connection is, and this connection profile encodes effectively the prior knowledge106

about the two cues coming from the same stimulus. On the other hand, opposite neurons in the107

two brain areas are reciprocally connected in the opposite manner: the further away between the108

preferred directions of a pair of neurons in their respective brain areas (the maximal difference is109

180 degree), the stronger their connection is. Our model reproduces the tuning properties of op-110

posite neurons, and verifies that opposite neurons encode the disparity information between cues.111

Furthermore, we demonstrate that this disparity information, in coordination with the integration112

result of congruent neurons, enables the neural system to assess the validity of cue integration113

and to recover the lost information of individual cues if necessary. Our study sheds light on our114

understanding of how the brain achieves multisensory information processing efficiently and rapidly.115

Results116

Probabilistic models of multisensory processing117

The brain infers stimulus information based on ambiguous sensory cues. We therefore formulate118

the multisensory processing problem in the framework of probabilistic inference, and as a working119

example, we focus on studying the inference of heading-direction based on visual and vestibular120

cues.121

Probabilistic model of multisensory integration122

To begin with, we introduce the probabilistic model of multisensory integration. Suppose two123

stimulus features {sm} generate two sensory cues {xm}, for m = 1, 2 (the visual and vestibular124

cues) respectively (Fig. 1A), and we denote the corresponding likelihood functions as p(xm|sm).125

The task of multisensory processing is to infer {sm} based on {xm}. xm is referred to as the direct126
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cue of sm (e.g., the visual cue to MSTd) and xl (l 6= m) the indirect cue of sm (e.g., the vestibular127

cue to MSTd).128

Since heading-direction is a circular variable in the range of (−π, π], we adopt the von Mises,129

rather than the Gaussian, distribution to carry out the theoretical analysis. In the form of the von130

Mises distribution, the likelihood function is given by131

p(xm|sm) = [2πI0(κm)]−1 exp [κm cos(xm − sm)]

≡ M(xm; sm, κm), (1)

where I0(κ) is the modified Bessel function of the first kind and order zero, and acts as the nor-132

malization factor. sm is the mean of the von Mises distribution, i.e., the mean value of xm. κm is133

a positive number characterizing the concentration of the distribution, and controls the reliability134

of cue xm.135

The prior p(s1, s2) describes the probability of concurrence of stimulus features (s1, s2) coming136

from the same stimulus, and it determines the extent to which the two stimulus features should137

be integrated. In this study, we consider a prior which has been used in several multisensory138

integration studies11,20–22, which is written as139

p(s1, s2) = (2π)−1M(s1 − s2; 0, κs)

=
[
(2π)2I0(κs)

]−1
exp [κs cos(s1 − s2)] . (2)

This prior reflects that the two stimulus features from the same stimulus tend to have similar values.140

The parameter κs specifies the concurrence probability of two stimulus features, and determines141

the extent to which the two cues should be integrated. In the limit κs → ∞, it will lead to full142

integration (see, e.g., ref. 5). Note that the marginal prior p(sm) is a uniform distribution according143

to the definition.144

It has been revealed that the brain integrates visual and vestibular cues to infer heading-145

direction in a manner close to Bayesian inference8,9. Following Bayes’ theorem, optimal multisen-146

sory integration is achieved by computing the posterior of two stimuli according to147

p(s1, s2|x1, x2) ∝ p(x1|s1)p(x2|s2)p(s1, s2).

Since the calculations of the two stimuli are exchangeable, hereafter we only present the results148

for s1. The posterior of s1 is calculated through marginalizing the joint posterior in the above149

equation,150

p(s1|x1, x2) ∝ p(x1|s1)

∫ π

−π
p(x2|s2)p(s1, s2)ds2

∝ p(s1|x1)p(s1|x2)

≈ M(s1;x1, κ1)M(s1;x2, κ2s), (3)

where we have used the conditions that the marginal prior distributions of sm and xm are uniform,151

i.e., p(sm) = p(xm) = (2π)−1. Note that p(s1|x2) ∝
∫
p(x2|s2)p(s1, s2)ds2 is approximated to be152

M(s1;x2, κ2s) through equating the mean resultant length of distribution (Eq. 12)23.153

The above equation indicates that in multisensory integration, the posterior of a stimulus given154

combined cues is equal to the product of the posteriors given the individual cues. Notably, although155

x1 and x2 are generated independently by s1 and s2 (since the visual and vestibular signal pathways156

are separated), x2 also provides information of s1 due to the correlation between s1 and s2 specified157

in the prior.158
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Figure 3: Geometric interpretation of multisensory processing of circular variables. (A) Two von Mises
distributions plotted in the polar coordinate (bottom-left) and their corresponding geometric representations
(top-right). A von Mises distribution can be represented as a vector, with its mean and concentration
corresponding to the angle and length of the vector, respectively. (B) Geometric interpretation of cue
integration and the cue disparity information. The posteriors of s1 given single cues are represented by
two vectors (green). Cue integration (blue) is the sum of the two vectors (green), and the cue disparity
information (red) is the difference of the two vectors. (C-E) The mean and concentration of the integration
(blue) and the cue disparity information (red) as a function of the cue reliability (C), cue disparity (D), and
reliability of prior (E). In all plots, κs = 50, κ1 = κ2 = 50, x1 = 0◦ and x2 = 20◦, except that the variables
are κ1 = κ2 in C, x2 in D, and κs in E.

Finally, since the product of two von Mises distributions is again a von Mises distribution,159

the posterior distribution is p(s1|x1, x2) = M(s1; ŝ1, κ̂1), whose mean and concentration can be160

obtained from its moments given by161

κ̂1e
jŝ1 = κ1e

jx1 + κ2se
jx2 , (4)

where j is an imaginary number. Eq. 4 is the result of Bayesian optimal integration in the form162

of von Mises distributions, and they are the criteria to judge whether optimal cue integration is163

achieved in the neural system. A link between the Bayesian criteria for von Mises and Gaussian164

distributions are presented in SI.165

Eq. 4 indicates that the von Mises distribution of a circular variable can be interpreted as166

a vector in a two-dimensional space with its mean and concentration representing the angle and167

length of the vector, respectively (Fig. 3A). In this interpretation, the product of two von Mises168

distributions can be represented by the summation of the corresponding two vectors. Thus, optimal169

multisensory integration is equivalent to vector summation (see Eq. 4), with each vector representing170

the posterior of the stimulus given each cue (the sum of the two green vectors yields the blue vector171

in Fig. 3B).172

Probabilistic model of multisensory segregation173

The above probabilistic model for multisensory integration assumes that sensory cues are originated174

from the same stimulus. In case they come from different stimuli, the cues need to be segregated,175
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and the neural system needs to infer stimuli based on individual cues. In practice, the brain needs to176

differentiate these two situations. In order to achieve reliable and rapid multisensory processing, we177

propose that while integrating sensory cues, the neural system simultaneously extracts the disparity178

information between cues, so that with this complementary information, the neural system can179

assess the validity of cue integration.180

An accompanying consequence of multisensory integration is that the stimulus information181

associated with individual cues is lost once they are integrated (see Supplementary Fig. S1). Hence182

besides assessing the validity of integration, extracting both congruent and disparity information183

by simultaneous integration and segregation enables the system to recover the lost information of184

individual cues if needed.185

The disparity information of stimulus 1 obtained from the two cues is defined to be186

pd(s1|x1, x2) ∝ p(s1|x1)/p(s1|x2), (5)

which is the ratio between the posterior given two cues and hence measures the discrepancy between187

the estimates from different cues. By taking the expectation of log pd over the distribution p(s1|x1),188

it gives rise to the Kullback-Leibler divergence between the two posteriors given each cue. This189

disparity measure was also used to discriminate alternative moving directions in ref. 24.190

Utilizing the property of the von Mises distribution and the periodicity of heading directions191

(− cos(s1 − x2) = cos(s1 − x2 − π)), Eq. 5 can be re-written as192

pd(s1|x1, x2) ∝ p(s1|x1)p(s1|x2 + π)

∝ M(s1;x1, κ1)M(s1;x2 + π, κ2s). (6)

Thus, the disparity information between two cues can also be expressed as the product of the193

posterior given the direct cue and the posterior given the indirect cue with the cue direction shifted194

by π. Indeed, analogous to the derivation of Eq. 3, Eq. 6 can be deduced in the same framework195

as multisensory integration but with the stimulus prior p(s1, s2) being modified by a shift π in the196

angular difference. Similarly, pd(s1|x1, x2) =M (s1; ∆ŝ1,∆κ̂1) whose mean and concentration can197

be derived as198

∆κ̂1e
∆ŝ1 = κ1e

jx1 − κ2se
jx2 . (7)

The above equation is the criteria to judge whether the disparity information between two cues is199

encoded in the neural system.200

Similar to the geometrical interpretation of multisensory integration, multisensory segregation201

is interpreted as vector subtraction (the subtraction between two blue vectors yields the red vector202

in Fig. 3B). This enables us to assess the validity of multisensory integration. When the two vectors203

representing the posteriors given the individual cues have small disparity, i.e., the estimates from204

individual cues tend to support each other, the length of the summed vector is long, implying205

that the posterior of cue integration has a strong confidence, whereas the length of the subtracted206

vector is short, implying that the weak confidence of two cues are disparate (Fig. 3D). If the two207

vectors associated with the individual cues have a large disparity, the interpretation becomes the208

opposite (Fig. 3D). Thus, by comparing the lengths of the summed and subtracted vectors, the209

neural system can assess whether two cues should be integrated or segregated.210

Figs. 3C and E further describes the integration and segregation behaviors when the model211

parameters vary. As shown in Fig. 3C, when the likelihoods have weak reliabilities, the Bayesian212

estimate relies more on the prior. Since the prior encourages integration of the two stimuli, the213

posterior estimate of stimulus 1 becomes more biased towards cue 2. At the same time, the mean214
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of the disparity information is biased towards the angular difference of the likelihood peaks. On the215

other hand, when the likelihoods are strong, the Bayesian estimate relies more on the likelihood,216

and the posterior estimate of stimulus 1 becomes less biased towards cue 2. The behavior when217

the prior concentration κs varies can be explained analogously (Fig. 3E).218

A notable difference between von Mises distribution and Gaussian distribution is that the con-219

centration of integration and disparity information changes with cue disparity in von Mises distri-220

bution (Fig. 3D), while they are fixed in Gaussian distribution25.221

Neural implementation of cue integration and segregation222

Before introducing the neural circuit model, we first describe intuitively how opposite neurons223

encode the cue disparity information and the motivation of the proposed network structure.224

Optimal multisensory integration computes the posterior of a stimulus given combined cues225

according to Eq. 3, which is equivalent to solving the equation ln p(s1|x1, x2) = ln p(s1|x1) +226

ln p(s1|x2). Ma et al. found that under the conditions that neurons fire independent Poisson spikes,227

the optimal integration can be achieved by combining the neuronal resposnes under single cue228

conditions, that is rj(x1, x2) = rj(x1) + rj(x2) (see details in SI), where r(x1, x2) and r(xm) are229

the responses of a population of neurons to the combined and single cues respectively12. Ma230

et al. further demonstrated that such a response property can be approximately achieved in a231

biological neural network. Similarly, multisensory segregation computes the disparity information232

between cues according to ln pd(s1|x1, x2) = ln p(s1|x1) + ln p(s1|x2 + π) (see Eq. 6). Analogous to233

multisensory integration, the optimal segregation can be achieved by rj(x1, x2) = rj(x1) + rj′(x2),234

where the preferred stimulus of neurons satisfying θj′ = θj + π (see details in SI). That is, the235

neurons combine the responses to the direct cue and the responses to the indirect cue but shifted236

to opposite direction. This inspires us to consider a network model where the inputs of indirect cue237

received by opposite neurons are shifted to opposite direction via connections. Below, we present238

the network model and demonstrate that the opposite neurons emerge from the connectivity and239

are able to achieve optimal segregation.240

The decentralized neural network model241

The neural circuit model we consider has the decentralized structure11, in the sense that it consists242

of two reciprocally connected modules (local processors), representing MSTd and VIP respectively243

(Fig. 4A). Each module carries out multisensory processing via cross-talks between modules. This244

decentralized architecture agrees with the experimental findings that neurons in MSTd and VIP245

both exhibit multisensory responses and that the two areas are abundantly connected with each246

other15,16. Below we only describe the key features of the decentralized network model, and its247

detailed mathematical description is presented in Methods (Eqs. 14-20).248

At each module, there exist two groups of excitatory neurons: congruent and opposite neurons249

(blue and red circles in Fig. 4A respectively), and they have the same number of neurons, as sup-250

ported by experiments (Fig. 2C)18,19. Each group of neurons is modelled as a continuous attractor251

neural network (CANN), mimicking the encoding of heading-direction in neural systems26,27. In252

CANN, each neuron is uniquely identified by its preferred heading direction θ with respect to the253

direct cue conveyed by feedforward inputs. The neurons in the same group are recurrently con-254

nected, and the recurrent connection strength between neurons θ and θ′ is modelled as a von Mises255

function decaying with the disparity between two neurons’s preferred directions |θ − θ′| (Fig. 4B256

black line and Eq. 15). In the model, the recurrent connection strength is not very strong to257

support persistent activities after switching off external stimuli, because no persistent activity is258
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Figure 4: The decentralized neural circuit model for multisensory processing. (A) The network consists
of two modules, which can be regarded as MSTd and VIP respectively. Each module has two groups of
excitatory neurons, congruent (blue circles) and opposite neurons (red circles). Each group of excitatory
neurons are connected recurrently with each other, and they are all connected to an inhibitory neuron pool
(purple disk) to form a continuous attractor neural network. Each module receives a direct cue through
feedforward inputs. Between modules, congruent neurons are connected in the congruent manner (blue
arrows), while opposite neurons are connected in the opposite manner (brown lines). (B) Connection profiles
between neurons. Black line is the recurrent connection pattern between neurons of the same type in the
same module. Blue and red lines are the reciprocal connection patterns between congruent and opposite
neurons across modules respectively. (C) The reliability of the networks estimate of a stimulus is encoded
in the peak firing rate of the neuronal population. Typical parameters of network model: ω = 3 × 10−4,
Jint = 0.5, Jrc = 0.3Jc, Jrp = 0.5Jrc, Ib and F in Eq. 20 are 1 and 0.5 respectively.

observed in multisensory areas. Moreover, neuronal responses in the same group are normalized by259

the total activity of the population (Eq. 18), called divisive normalization28, mimicking the effect260

of a pool of inhibitory neurons (purple disks in Fig. 4B). Each group of neurons has its individual261

inhibitory neuron pool, and the two pools of inhibitory neurons in the same module share their262

overall activities (Eq. 19), which intends to introduce mutual inhibition between congruent and263

opposite neurons.264

Between modules, neurons of the same type are reciprocally connected with each other (Figs. 4A-265

B). For congruent neurons, they are connected with each other in congruent manner (Eq. 16 and266

Fig. 4B blue line), that is, the more similar their preferred directions are, the stronger the neuronal267

connection is. For opposite neurons, they are connected in the opposite manner (Eq. 17 and268

Fig. 4B red line), that is, the more different their preferred directions are, the stronger the neuronal269

connection is. Since the maximum difference between two circular variables is π, an opposite neuron270

in one module preferring θ has the strongest connection to the opposite neuron preferring θ+ π in271

the other module. This agrees with our intuitive understanding as described above (as suggested272

by Eq. 6): to calculate the disparity information between two cues, the neuronal response to the273

combined cues should integrate its responses to the direct cue and its response to the indirect one274

but with the cue direction shifted by π (through the offset reciprocal connections). We set the275

connection profile between the opposite neurons to be of the same strength and width as that276

between the congruent ones (comparing Eqs. 16 and 17), ensuring that the tuning functions of277

the opposite neurons have the similar shape as those of the congruent ones, as observed in the278

experimental data18.279

When sensory cues are applied, the neurons combine the feedforward, recurrent, and reciprocal280
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Figure 5: Tuning properties of congruent and opposite neurons in the network model. (A-B) The tuning
curves of an example congruent neuron (A) and an example opposite neuron (B) in module 1 under three
cueing conditions. (C-D) The bimodal tuning properties of the example congruent (C) and the example
opposite (D) neurons when cue 1 has relatively higher reliability than cue 2 in driving neurons in module 1,
with α1 = 0.58α2, where αm is the amplitde of cue m given by Eq. 20. The two marginal curves around each
contour plot are the unimodal tuning curves. (E-F) Same as (C-D), but cue 1 has a reduced reliability with
α1 = 0.12α2. (G-H) The histogram of the differences of neuronal preferred directions with respect to two
cues in module 1 (G) and module 2 (H), when the reciprocal connections across network modules contain
random components of roughly the same order as the connections. Parameters: (A-B) α1 = 0.35U0, and
α2 = 0.8U0; (C-F) α2 = 1.5U0. α1 = 0.35U0 in (C-D) while α1 = 0.1U0 in (E-F). Other parameters are the
same as those in Fig. 4.

inputs to update their activities (Eq. 14), and the multisensory integration and segregation will be281

accomplished by the reciprocal connections between network modules. The results are presented282

below.283

Tuning properties of congruent and opposite neurons284

Simulating the neural circuit model, we first checked the tuning properties of neurons. The sim-285

ulation results for an example congruent neuron and an example opposite neuron in module 1286

responding to single cues are presented in Fig. 5. It shows that the congruent neuron, in response287

to either cue 1 or cue 2, prefers the same direction (−90◦) (Fig. 5A), whereas the opposite neuron,288

while preferring −90◦ for cue 1, prefers 90◦ for cue 2 (Fig. 5B). Thus, the tuning properties of289

congruent and opposite neurons naturally emerge through the network dynamics.290

We further checked the responses of neurons to combined cues, and found that when there291

is no disparity between the two cues, the response of a congruent neuron is enhanced compared292

to the single cue conditions (green line in Fig. 5A), whereas the response of an opposite neuron is293

suppressed compared to its response to the direct cue (green line in Fig. 5B). These properties agree294

with the experimental data8,9 and is also consistent with the interpretation that the integrated and295

segregated amplitudes are respectively proportional to the vector sum and difference in Fig. 3.296

Following the experimental protocol13, we also plotted the bimodal tuning curves of the example297

neurons in response to the combined cues of varying reliability, and observed that when cue 1 has a298

relatively high reliability, the bimodal responses of both neurons are dominated by cue 1 (Fig. 5C-299
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Figure 6: Optimal cue integration and segregation collectively emerge in the neural population activities
in the network model. (A) Illustration of the population response of congruent neurons in module 1 when
both cues are presented. Color indicates firing rate. Right panel is the temporal average firing rates of the
neural population during cue presentation, with shaded region indicating the standard deviation (SD). (B)
The position of the population activity bump at each instance is interpreted as the network’s estimate of the
stimulus, referred to as z1, which is decoded by using population vector. Right panel is the distribution of the
decoded network’s estimate during cue presentation. (C-E) The temporal average population activities of
congruent (blue) and opposite (red) neurons in module 1 (top row) and module 2 (bottom row) under three
cueing conditions: only cue 1 is presented (C), only cue 2 is presented (D), and both cues are simultaneously
presented (E). (F-I) Comparing the estimates from congruent and opposite neurons in module 1 with the
Bayesian predictions, with varying cue intensity (F), with varying cue disparity (G), and with varying
reciprocal connection strength between modules (H&I). Symbols: network results; lines: Bayesian prediction.
The Bayesian predictions for the estimates of congruent and opposite neurons are obtained by Eq. 4 and
Eq. 7. Parameters: (A-E) α1 = α2 = 0.35U0; (F) α2 = 0.7U0; (G-I) α1 = α2 = 0.7U0, and others are the
same as those in Fig. 4. In (F-H), x1 = 0◦, x2 = 20◦ and in (I), x1 = 0◦, x2 = 160◦.

D), indicating that the neuronal firing rates are affected more significantly by varying the angle of300

cue 1 than by that of cue 2, whereas when the reliability of cue 1 is reduced, the result becomes301

the opposite (Fig. 5E-F). These behaviors agree with the experimental observations13.302

Apart from the congruent and opposite neurons, the experiments also found that there exist303

a portion of neurons, called intermediate neurons, whose preferred directions to different cues are304

neither exactly the same nor the opposite, but rather have differences in between 0◦ and 180◦ 18,19.305

We found that by considering the realistic imperfectness of neuronal reciprocal connections (e.g.,306

adding random components in the reciprocal connections in Eqs. (16 and 17), see Methods), our307

model reproduced the distribution of intermediate neurons as observed in the experiment (Fig. 5G-308

H)18,19.309

Optimal cue integration and segregation via congruent and opposite neurons310

In response to the noisy inputs in a cueing condition, the population activity of the same group of311

neurons in a module exhibits a bump-shape (Fig. 6A), and the position of the bump is interpreted as312

the network’s estimate of the stimulus (Fig. 6B)27,29,30. In a single instance, we used the population313
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vector to read out the stimulus value (Eq. 21)31. The statistics of the bump position sampled from314

a collection of instances reflects the posterior distribution of the stimulus estimated by the neural315

population under the given cueing condition. Note that in this probabilistic population coding316

scheme, the concentration of the decoded posterior distribution is independent of the widths of the317

bumps at individual instances.318

To validate the hypothesis that congruent and opposite neurons are responsible for optimal319

cue integration and segregation respectively, we carried out simulations following the protocol in320

multisensory experiments1, that is, we first applied individual cues to the network and decoded the321

network’s estimate of the stimulus through population vector (see details in Methods). With these322

results, the Bayesian predictions for optimal integration and segregation were calculated according323

to Eq. 4 and Eq. 7 respectively; we then applied the combined cues to the network, decoded the324

network’s estimate, and compared them with the Bayesian predictions.325

Let us first look at the network’s estimate under single cue conditions. Consider the case that326

only cue 1 is presented to module 1 at −30◦. The population activities of congruent and opposite327

neurons at module 1 are similar, both centered at −30◦ (Fig. 6C top), since both types of neurons328

receive the same feedforward input. On the other hand, in module 2, congruent neurons’ responses329

are centered at −30◦, while opposite neurons’ responses are centered at 150◦ due to the offset330

reciprocal connections (Fig. 6C bottom). Similar population activities exist under cue 2 condition331

(Fig. 6D).332

We further look at the the network’s estimate under the combined cue condition. Consider the333

case that cues 1 and 2 are simultaneously presented to the network at the directions −30◦ and 30◦334

respectively. Then the disparity between the two cues is 60◦, which is less than 90◦. Compared335

with single cue conditions, the responses of congruent neurons are enhanced (comparing Fig. 6E336

with 6C-D), reflecting the increased reliability of the estimate after cue integration. Indeed, the337

decoded distribution from congruent neurons sharpens in the combined cue condition and moves to338

a location between cue 1 and cue 2 (Fig. S2 green), which is a typical phenomenon associated with339

cue integration. In contrast, with combined cues, the responses of opposite neurons are suppressed340

compared with those of the direct cue (comparing Fig. 6E with 6C-D). Certainly, the distribution341

of cue disparity information decoded from opposite neurons in combined cue condition is wider342

than that that under the direct cue condition (Fig. S2 purple). Note that when the cue disparity343

is larger than 90◦, the relative response of congruent and opposite neurons will be reversed (results344

are not shown here).345

To demonstrate that the network implements optimal cue integration and segregation and how346

the network encodes the probabilistic model (Eqs. 1 and 2), we changed a parameter at a time,347

and then compared the decoded results from congruent and opposite neurons with the Bayesian348

prediction. Fig. 6F-I indicates that the network indeed implements optimal integration and seg-349

regation. Moreover, comparing the network results with the results of the probabilistic model,350

we could find the analogy that the input intensity encodes the reliability of the likelihood (Eq. 1,351

comparing Fig. 6F with Fig. 3C), and the reciprocal connection strength effectively represents the352

reliability of the prior (Eq. 2, comparing Fig. 6H with Fig. 3E), which is consistent with a pre-353

vious study11. We further systematically changed the network and input parameters over a large354

parameter region and compare the network results with Bayesian prediction. Our results indicated355

that the network model achieves optimal integration and segregation robustly over a large range356

of parameters (Fig. S3), as long as the connection strengths are not so large that winner-take-all357

happens in the network model.358
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Concurrent multisensory processing359

The above results elucidate that congruent neurons integrate cues, whereas opposite neurons com-360

pute the disparity between cues. Based on these complementary information, the brain can access361

the validity of cue integration and can also recover the stimulus information associated with single362

cues lost due to integration. Below, rather than exploring the detailed neural circuit models, we363

demonstrate that the brain has resources to implement these two operations based on the activities364

of congruent and opposite neurons.365

Assessing integration vs. segregation366

The competition between congruent and opposite neurons can determine whether the brain should367

integrate or segregate two cues. Fig. 7A displays how the mean firing rates of two types of neurons368

change with the cue disparity, which shows that the activity of congruent neurons decreases with369

the disparity, whereas the activity of opposite neurons increases with the disparity, and they are370

equal at the disparity value of 90◦. The brain can judge the validity of integration based on the371

competition between these two groups of neurons (see more remarks in Conclusions and Discus-372

sions). Specifically, the group of congruent neurons wins when the cue disparity is small, indicating373

the choice of integration, and the group of opposite neurons wins when the cue disparity is large,374

indicating the choice of segregation. The decision boundary is at the disparity of 90◦, if the activi-375

ties of congruent and opposite neurons have equal weights in decision-making. In reality, however,376

the brain may assign different weights to congruent and opposite neurons and realize a decision377

boundary at the position satisfying the statistics of inputs (Fig. 7B).378

Recovering the single cue information379

Once the decision for cue segregation is reached, the neural system at each module needs to decode380

the stimulus based purely on the direct cue, and ignores the irrelevant indirect one. Through381

combining the complementary information from congruent and opposite neurons, the neural system382

can recover the stimulus estimates lost in integration, without re-gathering new inputs from lower383

brain areas if needed (see more remarks in Conclusions and Discussions).384

According to Eqs. 3 and 6, the posterior distribution of the stimulus given the direct cue can385

be recovered by386

ln p(s1|x1) = [ln p(s1|x1, x2) + ln pd(s1|x1, x2)] /2. (8)

As suggested in refs. 12,24, the above operation can be realized by considering neurons receiving387

the activities of congruent neurons (representing ln p(s1|x1, x2), Fig. 7C blue) and opposite neurons388

(representing ln pd(s1|x1, x2), Fig. 7C red) as inputs and generate Poisson spikes, such that the389

location of population responses and the summed activity encode respectively the mean and variance390

of the posterior p(s1|x1) (Fig. 7C green).391

Without actually building a neural circuit model, we decoded the stimulus by utilizing the392

activities of congruent and opposite neurons according to Eq. 8, and compared the recovered result393

with the estimate of a module when only the direct cue is presented (see the detail in Methods).394

Fig. 7D further shows that the recovering agrees with actual distribution and is robust against395

a variety of parameters (R2 = 0.985). Thus, through combining the activities of congruent and396

opposite neurons, the neural system can recover the lost stimulus information from direct cues if397

necessary.398
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Figure 7: Concurrent multisensory processing with congruent and opposite neurons. (A-B) Accessing
integration versus segregation through the joint activity of congruent and opposite neurons. (A) The firing
rate of congruent and opposite neurons exhibit complementary changes with cue disparity x1 − x2. (B)
The decision boundary of the competition between congruent and opposite neurons changes with read out
weight from congruent Wcong and opposite neurons Woppo. It is given by the value of x1 − x2 at which
Wcongr

c
m = Woppor

o
m. Dashed line is when Wcong = Woppo, the decision boundary is at 90◦. (C-D) Recovering

single cue information from two types of neurons. (C) Illustration of recovering through the joint activities
of congruent (blue) and opposite (red) neurons under the combined cue condition. We decoded the estimate
from congruent and opposite neurons respectively, and then vector sum the decoded results recovering the
single cue information. (D) Comparing the recovered mean of the stimulus given the direct cue with the
actual value. Parameters: those in (A-B) are the same as those in Fig. 6A, and those in D are the same as
those in Fig. S3.

Conclusions and Discussions399

Animals face challenges of processing information fast in order to survive in natural environments,400

and over millions of years of evolution, the brain has developed efficient strategies to handle these401

challenges. In multisensory processing, such a challenge is to integrate/segregate multisensory sen-402

sory cues rapidly without knowing in advance whether these cues are from the same or different403

stimuli. To resolve this challenge, we argue that the brain should carry out multisensory process-404

ing concurrently by employing congruent and opposite cells to realize complementary functions.405

Specifically, congruent neurons perform cue integration with opposite neurons computing the cue406

disparity simultaneously, so that they generate complementary information, based on which the407

neural system can assess the validity of integration and recover the lost information associated408

with single cues if necessary. Through this process, the brain can, on one hand, achieve rapid409

stimulus perception if the cues are from the same stimulus of interest, and on the other hand, dif-410

ferentiate and recognize stimuli based on individual cues with little time delay if the cues are from411

different stimuli of interest. We built a biologically plausible network model to validate this pro-412

cessing strategy. The model consists of two reciprocally connected modules representing MSTd and413

VIP, respectively, and it carries out heading-direction inference based on visual and vestibular cues.414

Our model successfully reproduces the tuning properties of opposite neurons, verifying that oppo-415

site neurons encode the disparity information between cues, and demonstrates that the interplay416
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between congruent and opposite neurons can implement concurrent multisensory processing.417

Opposite neurons have been found in experiments for years8,9, but their functional role remains418

a mystery. There have been few studies investigating this issue, and two computational works were419

reported32,33, where the authors explored the contribution of opposite neurons in a computational420

task of inferring self-motion direction by eliminating the confound information of object motion.421

They showed that opposite neurons are essential, as they provide complementary information to422

congruent neurons necessary to accomplish the required computation. This result is consistent with423

our idea that opposite neurons are indispensable in multisensory processing, but our study goes424

one step further by theoretically proposing that opposite neurons encode the disparity information425

between cues and that congruent and opposite neurons jointly realize concurrent multisensory426

processing.427

Our hypothesis on the computational role of opposite neurons can be tested in experiments.428

Through recording the activities of individual congruent neurons in awake monkeys when the mon-429

keys are performing heading-direction discrimination, previous studies demonstrated that congru-430

ent neurons implement optimal cue integration8,9. We can carry out a similar experiment to check431

whether opposite neurons encode the cue disparity information. The task is to discriminate whether432

the disparity from two cues, x1 − x2, is either smaller or larger than 0◦. To rule out the influence433

of the change of integrated direction to the activities of neurons, we fix the center of two cues, for434

example, the center is fixed at 0◦, i.e., x1 + x2 = 0◦, but the disparity between cues x1 − x2 varies435

over trials. Fig. 8A plots the responses of an example opposite neuron and an example congruent436

neuron respectively in our model with respect to the cue disparity x1− x2. It shows that the firing437

rate of the opposite neurons changes much more significantly with the cue disparity than that of the438

congruent neuron, suggesting that the opposite neuron’s response might be more informative to the439

change of cue disparity compared with a congruent neuron. To quantify how the activity of a single440

neuron can be used to discriminate the cue disparity, we apply receiver-operating-characteristics441

(ROC) analysis to construct the neurometric function (Fig. 8B), which measures the fraction of442

correct discrimination (see Methods). Indeed, the opposite neurons can discriminate the cue dis-443

parity much finer than congruent neurons (Fig. 8C). In addition, our model also reproduces the444

same discrimination task studied in refs. 8,9, i.e., to discriminate whether the heading-direction is445

on the left or right hand side of a reference direction under different cueing conditions (Fig. S4).446

The present study only investigated integration and segregation of two sensory cues, but our447

model can be generalized to the cases of processing more than two cues that may happen in reality34.448

In such situations, the network model consists of N > 2 modules, and in module m, the received449

sensory cues can be differentiated as the direct one and the integrated results through combining450

all cues,451

pd (sm|x1, . . . , xN ) ∝ p(sm|xm)[∏N
j=1 p(sm|xj)

]1/N
. (9)

Congruent neurons can be reciprocally connected with each other between modules in the congru-452

ent manner as described above, so that they integrate the direct and all indirect cues optimally453

in the distributed manner. Opposite neurons could receive the direct cue from feedforward in-454

puts (numerator in Eq. 9), and receive the activites of congruent neurons in the opposite manner455

(denominator in Eq. 9) through offset connection by 180◦. The interplay between congruent and456

opposite neurons determines whether the direct cue should be integrated with all other cues at each457

module, and their joint activities can recover the stimulus information based only on the direct cue458

if necessary. This encoding strategy is similar with the norm-based encoding of face found in IT459

neurons35.460
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Figure 8: Discrimination of cue disparity by single neurons. (A) The tuning curve of an example congruent
(green) and opposite (red) neuron with respect to cue disparity x1 − x2. In the tuning with respect to cue
disparity, the mean of two cues was always at 0◦, i.e., x1 + x2 = 0, while their disparity x1 − x2 was varied
from −32◦ to 32◦ with a step of 4◦. The two example neurons are in network module 1, and both prefer 90◦

with respect to cue 1. However, the congruent neuron prefers 90◦ of cue 2, while the opposite neuron prefers
−90◦ with respect to cue 2. Error bar indicates the SD of firing rate across trials. (B) The neurometric
function of the example congruent and opposite neuron in a discrimination task to determine whether the
cue disparity x1 − x2 is larger than 0◦ or not. Lines are the cumulative Gaussian fit of the neurometric
function. (C) Averaged neuronal discrimination thresholds of the example congruent and opposite neurons.
Parameters: α1 = 0.25U0, α2 = 0.8U0, and others are the same as those in Fig. 4.

In the present study, we only demonstrated by analysis that the neural system can utilize the461

joint activities of congruent and opposite neurons to assess the validity of cue integration and to462

recover the information of direct cues in cue integration, but we did not go into the detail of how463

the brain actually carries out these operations. For assessing the validity of cue integration, essen-464

tially it is to compare the activities of congruent and opposite neurons and the winner indicates465

the choice. This competition process can be implemented easily in neural circuitry. For instance,466

it can be implemented by considering that congruent and opposite neurons are connected to the467

same inhibitory neuron pool which induces competition between them, such that only one group of468

neurons will sustain active responses after competition to represent the choice; alternatively, the ac-469

tivities of congruent and opposite neurons provide competing inputs to a decision-making network,470

and the latter generates the choice by accumulating evidence over time36,37. Both mechanisms are471

feasible but further experiments are needed to clarify which one is used in practice. For recovering472

the stimulus information from direct cues by using the activities of congruent and opposite neurons,473

this study has shown that it can be done in a biologically plausible neural network, since the op-474

eration is expressed as solving the linear equation given by Eq. 8. A concern is, however, whether475

recovering is really needed in practice, since at each module, the neural system may employ an476

additional group of neurons to retain the stimulus information estimated from the direct cue. An477

advantage of recovering the lost stimulus information by utilizing congruent and opposite neurons478

is saving the computational resource, but this needs to be verified by experiments.479

The present study focused on investigating the role of opposite neurons in heading-direction480

inference with visual and vestibular cues as an example. In essence, the contribution of opposite481

neurons is to retain the disparity information between features to be integrated for the purpose482

of rapid concurrent processing. We therefore expect that opposite neurons, or their counterparts483

of similar functions, is a general characteristic of neural information processing where feature in-484

tegration and segregation are involved. Indeed, it has been found that in the middle temporal485

cortex (MT), two types of neurons exhibit congruent and opposite tuning properties with respect486

to moving directions at the center and surrounding of their receptive fields, respectively, and their487

numbers are comparable38. Moreover, MT neurons also exhibit congruent and opposite tunings488

with respect to binocular disparity and motion parallax, respectively39. We hope that this study489
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gives us insight into understanding the general principle of how the brain integrates/segregates490

multiple sources of information efficiently and rapidly.491

Methods492

Probabilistic model and its inference493

The probabilistic model used in this study is widely adopted in multisensory research20–22,25. Sup-494

pose that two sensory cues x1 and x2 are independently generated by two underlying stimuli s1 and495

s2 respectively. In the example of visual-vestibular cue integration1, s1 and s2 refer to the underly-496

ing visual and vestibular moving direction, while x1 and x2 are internal representations of moving497

direction in the visual and vestibular cortices. Because moving direction is a circular variable, we498

also assume that both sm and xm (m = 1, 2) are circular variables distributed in the range (−π, π].499

Because each cue is independently generated by the corresponding underlying stimulus, the joint500

likelihood function can be factorized501

p(x1, x2|s1, s2) = p(x1|s1)p(x2|s2).

In this study, each likelihood function p(xm|sm) (m = 1, 2) is modelled by the von Mises distribu-502

tion, which is a variant of circular Gaussian distribution23,40, given by Eq. 1. Note that in Eq. 1,503

κm is a positive number characterizing the concentration of the distribution, which is analogous504

to the inverse of the variance (σ−2) of Gaussian distribution. In the limit of large κm, a von505

Mises distribution M(xm; sm, κm) approaches to a Gaussian distribution with variance of κ−1
m

23.506

I0(κm) = (2π)−1
∫ π
−π e

κ cos θdθ is the modified Bessel function of the first kind and order zero, which507

acts as the normalization factor of the von Mises distribution.508

The prior p(s1, s2) specifies the probability of occurrence of s1 and s2, and is set as a von Mises509

distribution of the discrepancy between two stimuli11,20,21, given by Eq. 2. Note that the marginal510

prior of either stimulus, e.g., p(s1) =
∫ π
−π p(s1, s2)ds2 = 1/2π is a uniform distribution.511

Inference512

The inference of underlying stimuli can be conducted by using Bayes’ theorem to derive the posterior513

p(s1, s2|x1, x2) ∝ p(x1|s1)p(x2|s2)p(s1, s2), (10)

The posterior of either stimuli, e.g., stimulus s1, can be obtained by marginalizing the joint posterior514

(Eq. 10) as follows (the posterior of can be similarly obtained by interchanging indices 1 and 2)515

p(s1|x1, x2) =

∫ π

−π
p(s1, s2|x1, x2)ds2

∝ p(x1|s1)

∫ π

−π
p(x2|s2)p(s1, s2)ds2

∝ p(s1|x1)p(s1|x2), (11)

where we used the fact that both marginal distributions p(sm) and p(xm) are uniform and then516

interchanged the role of xm and s1 in their conditional distributions. It indicates that the posterior517

of s1 given two cues corresponds to a product of posterior of s1 when each xm is individually518

presented, which could effectively accumulate the information of s1 from both cues. p(s1|x2) can519
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be calculated as (see details in SI),520

p(s1|x2) ∝
∫ π

−π
p(x2|s2)p(s1, s2)ds2 'M(s1;x2, κ2s),

where A(κ2s) = A(κ2)A(κs). (12)

A(κ) =
∫ π
−π cos θeκ cos θdθ/

∫ π
−π e

κ cos θdθ calculates the mean resultant length (first order trigono-521

metric statistics), measuring the dispersion of a von Mises distribution. An approximation was used522

in the calculation through equating the mean resultant length of the integral with that of a von523

Mises distribution23, because the integral of the product of two von Mises distributions is no longer524

a von Mises distribution. The meaning of A(κ2s) can be understood by considering the Gaussian525

equivalent of von Mises distribution, where the inverse of concentration κ−1 can approximate the526

variance of Gaussian distribution, yielding κ−1
2s ≈ κ

−1
2 + κ−1

s .527

Finally, substituting the detailed expression into Eq. 11,528

p(s1|x1, x2) ∝ exp [κ1 cos(s1 − x1) + κ2s cos(s1 − x2)]

∝ exp[(κ1 cosx1 + κ2s cosx2) cos s1

+ (κ1 sinx1 + κ2s sinx2) sin s1]

∝ exp [κ̂1 cos(s1 − ŝ1)] . (13)

The expressions of the mean ŝ1 and concentration κ̂1 can be found in Eq. 4. The expressions of529

∆ŝ1 and ∆κ̂1 in the disparity information can be similarly calculated and is shown in Eq. 7.530

Dynamics of decentralized network model531

We adopted a decentralized network model in this study11. The network model contains two532

network modules, with each module consisting of two groups of neurons with the same number:533

one is intended to model congruent neurons and another is for opposite neurons. Each neuronal534

group is modelled as a continuous attractor neural network27,41,42, which has been widely used535

to model the coding of continuous stimuli in the brain31,43,44 and it can optimally implement536

maximal likelihood inference29,30. Denote unm(θ, t) and rnm(θ, t) as the synaptic input and firing537

rate at time t respectively for an n-type neuron (n = c, o represents the congruent and opposite538

neurons respectively) in module m (m = 1, 2) whose preferred heading direction with respect to539

the feedforward cue m is θ. It is worthwhile to emphasize that θ is the preferred direction only540

to the feedforward cue, e.g., the feedforward cue to network module 1 is cue 1, but θ does not541

refer to the preferred direction given another cue, because the preferred direction of an opposite542

neuron given each cue is different. In the network model, the network module m = 1, 2 can be543

regarded as the brain areas MSTd and VIP respectively. For simplicity, we assume that the two544

network modules are symmetric, and only present the dynamical equations for network module 1.545

The dynamical equations for network module 2 can be obtained by interchanging the indices 1 and546

2 in the following dynamical equations.547

The dynamics of the synaptic input of n-type neurons in network modulem, unm(θ, t), is governed548

by549

τ
∂unm(θ, t)

∂t
= −unm(θ, t) +

π∑
θ′=−π

Wrc(θ, θ
′)rnm(θ′, t) +

π∑
θ′=−π

Wn
rp(θ, θ

′)rnk 6=m(θ′, t) + Inm(θ, t), (14)
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where Inm(θ, t) is the feedforward inputs from unisensory brain areas conveying cue information.550

Wrc(θ, θ
′) is the recurrent connections from neuron θ′ to neuron θ within the same group of neurons551

and in the same network module, which is set to be552

Wrc(θ, θ
′) =

Jrc
2πI0(a)

exp
[
a cos(θ − θ′)

]
, (15)

where a is the connection width and effectively controls the width of neuronal tuning curves.553

Wn
rp(θ, θ

′) denotes the reciprocal connections between congruent neurons across network modules554

(n = c), or between opposite neurons across network modules (n = o). W c
rp(θ, θ

′) is the reciprocal555

connections between congruent cells across two modules (the superscript c denotes the connections556

are in a congruent manner, i.e., a 0◦ neuron will have the strongest connection with a 0◦ neuron),557

W c
rp(θ, θ

′) =
Jrp

2πI0(a)
exp

[
a cos(θ − θ′)

]
. (16)

For simplicity, W c
rp(θ, θ

′) and Wrc(θ, θ
′) have the same connection width a. This simplification558

does not change the basic conclusion substantially. A previous study indicates that the reciprocal559

connection strength Jrp determines the extent of cue integration, and effectively represents the560

correlation of two underlying stimuli in the prior p(s1, s2)11. Moreover, the opposite neurons from561

different network modules are connected in an opposite manner with an offset of π,562

W o
rp(θ, θ

′) =
Jrp

2πI0(a)
exp

[
a cos(θ − θ′ + π)

]
. (17)

Hence, an opposite neurons preferring 0◦ of cue 1 in network module 1 will have the strongest563

connection with the opposite neurons preferring of 180◦ of cue 2 in network module 2. It is564

worthwhile to note that the strength and width of W c
rp(θ, θ

′) and W o
rp(θ, θ

′) are the same, in order565

to convey the same information from the indirect cue. This is also supported by the fact that the566

tuning curves of the congruent and opposite neurons have similar tuning strengths and widths18.567

Each neuronal group contains an inhibitory neuron pool which sums all excitatory neurons’568

activities and then divisively normalize the response of the excitatory neurons,569

rnm(θ, t) =
[unm(θ, t)]2+
1 + ωDn

m(t)
, (18)

where ω controls the magnitude of divisive normalization, and [x]+ = max(x, 0) is the negative570

rectified function. Dn
m(t) denotes the response of the inhibitory neuron pool associated with neurons571

of type n in network module m at time t, which sums up the synaptic inputs of the same type of572

excitatory neurons unm(θ, t) and also receives the inputs from the other type of neurons un
′
m(θ, t),573

Dn
m(t) =

∑
θ[u

c
m(θ, t)]2+ + Jint

∑
θ[u

n′
m(θ, t)]2+. (19)

Jint is a positive coefficient not larger than 1, which effectively controls the sharing between the574

inhibitory neuron pool associated with the congruent and opposite neurons in the same network575

module. The partial share of the two inhibitory neuron pools inside the same network module576

introduces competition between two types of neurons, improving the robustness of network.577

The feedforward inputs convey the direct cue information from the unisensory brain area to a578

network module, e.g., the feedforward inputs received by MSTd neurons is from MT which extracts579

the heading direction from optic flow,580

Inm(θ, t) = Iffm (θ)+

√
FIffm (θ)ξm(θ, t) + Ib +

√
FIbε

n
m(θ, t),

where Iffm (θ) = αm exp[a cos(θ − xm)/2− a/2]. (20)
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The feedforward inputs contain two parts: one conveys the cue information (the first two terms in581

above equation), and another the background inputs (the last two terms in the above equation)582

which are always present no matter whether a cue is presented or not. The variance of the noise583

in the feedforward inputs FIffm (θ) is proportional to their mean, and F characterizes the Fano584

factor. The multiplicative noise is in accordance with the Poisson variability of the cortical neurons’585

response. αm is the intensity of the feedforward input and effectively controls the reliability of cuem.586

xm is the direction of cue m. Ib is the mean of background input. ξm(θ, t) and εnm(θ, t) are mutually587

independent Gaussian white noises of zero mean with variances satisfying 〈ξm(θ, t)ξm′(θ
′, t)〉 =588

δmm′δ(θ−θ′)δ(t−t′), and 〈εnm(θ, t)εn
′
m′(θ

′, t)〉 = δmm′δnn′δ(θ−θ′)δ(t−t′). Note that the cue-associated589

noise ξm(θ, t) to congruent and opposite neurons are exactly the same, while the background noise590

εnm(θ, t) to congruent and opposite neurons are independent of each other. Previous works indicated591

that the exact form of the feedforward inputs is not crucial, as long as they have a uni-modal592

shape42.593

Network simulation and parameters594

Each network module contains 180 congruent and opposite neurons respectively, whose preferred di-595

rection with respect to the feedforward cue is uniformly distributed in the feature space (−180◦, 180◦].596

For simplicity, the parameters of the two network modules were chosen symmetric with each other,597

i.e., all structural parameters of the two modules have the same value. The synaptic time constant598

τ was rescaled to 1 as a dimensionless number and the time step size was 0.01τ in simulation. All599

connections have the same width a = 3, which is equivalent to a value of about 40◦ for the width600

of tuning curves of the neurons. The dynamical equations are solved by using Euler method.601

The range of parameters was listed in the following if not mentioned otherwise. The detailed602

parameters for each figure can be found in figure captions. The strength of divisive normalization603

was ω = 3×10−4, and Jint = 0.5 which controls the proportion of share between the inhibition pools604

affiliated with congruent and opposite neurons in the same module (Eq. 19). The absolute values605

of ω and Jint did not affect our basic results substantially, and they only determine the maximal606

firing rate the neurons can reach. Of the particular values we chose, the firing rate of the neurons607

saturates at around 50 Hz. The recurrent connection strength between neurons of the same type and608

in the same network module was Jrc = [0.3, 0.4]Jc, where Jc is the minimal recurrent strength for a609

network module to hold persistent activity after switching off feedforward inputs. The expression610

of Jc can be found in SI. The strength of the reciprocal connections between the network modules611

is Jrp = [0.1, 0.9]Jrc, and is always smaller than the recurrent connection strength within the same612

network module. The sum of the recurrent strength Jrc and reciprocal strength Jrp cannot be too613

large, since otherwise the congruent and opposite neurons in the same network module will have614

strong competition resulting in the emergence of winner-take-all behavior. However, the winner-615

take-all behavior was not observed in experiments. The input intensity α was scaled relative to616

U0 = Jce
a/2/[2πω(1 + Jint)I0(a/2)], and is distributed in [0.3, 1.5]U0, where U0 is the value of the617

synaptic bump height that a group of neurons can hold without receiving feedforward input and618

reciprocal inputs when Jrc = Jc. The range of the input intensity was chosen to be wide enough to619

cover the super-linear to nearly saturated regions of the input-firing rate curve of the neurons. The620

strength of the background input was Ib = 1, and the Fano factors of feedforward and background621

inputs were set to 0.5, which led to the Fano factor of single neuron responses taking values of the622

order 1. In simulations, the position of the population activity bump was read out by calculating623

the population vector31,45. For example, the position of the population activities of the congruent624

neurons in module 1 at time t was estimated as625

zc1(t) = arg
[∑

θ r
c
1(θ, t)ejθ

]
, (21)
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where j is the imaginary unit, and the function arg[·] outputs the angle of a vector.626

Demo tasks of network model627

Testing network’s performance of integration and segregation628

We firstly applied each single cue to the network model individually. Under each cueing condition,629

we recorded the population activities in equilibrium state across time during cue presentation.630

In equilibrium state, the statistics of neuronal activities across time is equivalent to across trial.631

For each group of neurons in a module, e.g., the congruent neurons in network module 1, the632

instantaneous firing activities at an instance are fed into the population vector decoder (Eq. 21)633

to get the instantaneous stimulus estimate z1 made by neurons. When the direct cue (cue 1) is634

presented, the estimates z1 of a collection of instances are then substituted into Eqs. (S59) and635

(S61) to calculate the mean and concentration of the activities of the congruent neurons. In the636

single cue condition, the mean angle of the bump position is effectively the same as x1. Hence this637

decoded mean and concentration can be substituted into the first term on the right hand side of638

Eq. 4. Similarly, when only the indirect cue (cue 2) is presented, the estimates of a collection of639

instances of neural activities contribute to the second term. The sum of the two terms yields the640

Bayesian prediction of the optimal integration in combined cue condition. For opposite neurons,641

we substituted the decoded means and concentrations into Eq. (7) to get the prediction of optimal642

segregation in combined cue conditon.643

Reconstructing stimulus estimate under direct cue from congruent and opposite neurons’ ac-644

tivity645

The stimulus estimate from its direct cue can be recovered from the joint activities of congruent646

and opposite neurons in real-time when two cues are simultaneously presented. Eq. 8 indicates that647

the reconstruction of the posterior distribution of the direct cue can be achieved by multiplying648

the decoded distribution from congruent and opposite neurons in a network module. Thus, for649

example, the reconstructed estimate of stimulus 1 at time t given its direct cue can be obtained by650

ŝ1(t)|x1 = arg
[
(
∑

θ r
c
1(θ, t)) ejz

c
1(t) + (

∑
θ r

o
1(θ, t)) ejz

o
1(t)
]
, (22)

where zc1(t) and zo1(t) are the positions of the population activities of the congruent and opposite651

neurons in network module 1 respectively, which were decoded by using population vector (Eq. 21).652

In real-time reconstruction, the sum of firing rate represents the concentration of the distribution.653

This is supported by the finding that the reliability of the distribution is encoded by the summed654

firing rate in probabilistic population code11,12.655

Discriminating cue disparity on single neurons656

A discrimination task was designed on the responses of single neurons to demonstrate that opposite657

neurons encode cue disparity information. The task is to discriminate whether the cue disparity,658

x1 − x2, is either smaller or larger than 0◦. In the discrimination task, the mean direction of two659

cues, x1 + x2 = 0, is fixed at 0◦, in order to rule out the influence of the change of integrated660

direction to neuronal activity. Meanwhile, the disparity between two cues, x1−x2, is changed from661

−32◦ to 32◦ with a step of 4◦. For each combination of cue direction, we applied three cueing662

conditions (cue 1, cue 2, combined cues) to the network model for 30 trials and the firing rate663

distributions of the single neurons were obtained (Fig. 8A and B).664
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We chose an example congruent neuron preferring 90◦ in network module 1, and also an example665

opposite neuron in network module 1 preferring 90◦ with respect to cue 1. We used receiver666

operating characteristic (ROC) analysis46 to compute the discriminating ability of the example667

neurons on cue disparity. The ROC value counts the proportion of instances where the direction of668

cue 1, x1, is larger than the one of cue 2. Neurometric functions (Fig. 8B and E) were constructed669

from those ROC values and were fitted with cumulative Gaussian functions by least square, and670

then the standard deviation of the cumulative Gaussian function was interpreted as the neuronal671

discrimination threshold (Fig. 8C)8. A smaller value of the discrimination threshold means that672

the neuron is more sensitive in the discrimination task. Although we adopted the von Mises673

distribution in the probabilistic model, the firing rate distribution of single neurons can be well674

fitted by a Gaussian distribution, justifying the use of the cumulative Gaussian distribution to fit675

the ROC values.676
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