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ABSTRACT

Recent studies have shown that higher-order epistasis is ubiquitous and can have large effects on complex
traits. Yet, we lack frameworks for understanding how epistatic interactions are influenced by basic aspects
of cell physiology. In this study, we assess how protein quality control machinery—a critical component of
cell physiology—affects epistasis for different traits related to bacterial resistance to antibiotics. Specifically,
we attempt to disentangle the interactions between different protein quality control genetic backgrounds and
two sets of mutations: (i) SNPs associated with resistance to antibiotics in an essential bacterial enzyme
(dihydrofolate reductase, or DHFR) and (ii) differing DHFR bacterial species-specific amino acid background
sequences (Escherichia coli, Listeria grayi, and Chlamydia muridarum). In doing so, we add nuance to the
generic observation that non-linear genetic interactions are widespread and capricious in nature, by proposing a
mechanistically-grounded analysis of how proteostasis shapes epistasis. These findings simultaneously fortify
and demystify the role of environmental context in modulating higher-order epistasis, with direct implications for
evolutionary theory, genetic modification technology, and efforts to manage antimicrobial resistance.
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INTRODUCTION1

Vagarious interactions between parcels of genetic information (e.g. mutations, gene variants, gene networks),2

as captured in phenomena like pleiotropy and epistasis, are widely recognized as a powerful force in crafting3

the relationship between genotype and phenotype (Cordell, 2002; Remold and Lenski, 2004; Phillips, 2008;4

Natarajan et al., 2013; Chou et al., 2014; Mackay and Moore, 2014; Sackton and Hartl, 2016; Crona et al., 2017;5

Otwinowski et al., 2018). Epistasis, informally defined as the “the surprise at the phenotype when mutations are6

combined, given the constituent mutations’ individual effects” (Weinreich et al., 2013) is now a highly relevant7

frontier of evolutionary genetics. It casts an uncertainty shadow over many areas of biology aiming to understand8

or manipulate genetic variation (e.g. GWAS, genetic-modification), as it speaks to unpredictability regarding9

how phenotypes are related to the genes that are presumed to underlie them.10

An especially provocative related phenomenon is “higher-order epistasis.” It offers that parcels of genetic11

information not only interact in a pairwise fashion (e.g. mutation A interacting non-linearly with mutation B;12

mutation B interacting non-linearly with mutation C) but potentially in all possible combinations, each with13

a potentially unique statistical effect (e.g. when the interaction between all 3 mutations—A, B and C—has a14

quantitative value that cannot be reduced to a combination of independent or pairwise effects) (Weinreich et al.,15

2013; Poelwijk et al., 2016; Crona et al., 2017; Sailer and Harms, 2017). Statistically, higher-order epistasis is16

an unwieldy concept because the number of possible interactions can grow exponentially with the number of17

interacting parcels, which presents both conceptual and computational challenges (as it is a mental challenge18

to keep track of thousands of potential interactions, and computationally challenging to analyze them using19

available technology).20
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proteostasis shapes higher-order epistasis

Many studies of higher-order epistasis focus on the interactions between suites of SNPs associated with21

a certain phenotype, engineered in combination or via a library of mutations using high-throughput methods22

(Ferretti et al., 2016; Poelwijk et al., 2016; Crona et al., 2017; Domingo et al., 2018; Otwinowski et al., 2018;23

Tamer et al., 2018). Fewer studies specifically dissect the strength and sign of epistatic interactions between SNPs24

within a gene and particular suites of mutations or gene deletions in other parts of the genome (Williams et al.,25

2005; Lehner, 2011; Vogwill et al., 2016). Even fewer dissect the impact of physiological contexts on epistasis, a26

glaring omission when you consider the biochemical and biophysical specifics of the cellular environment in27

which genes and proteins are made and function.28

One particular context that we might predict would shape epistasis within a cell would be that dictated by29

sets of chaperones and proteases, which have already been demonstrated to have a profound impact on a range of30

bacterial phenotypes (Gottesman et al., 1997). Prior studies focusing on the chaperonins GroEL/ES and Lon31

protease have established their centrality in regulating the presence and state of only certain proteins in the32

cytoplasm (Hartl et al., 2011). And even more recent studies have uncovered how only members of this protein33

quality control (PQC) system (GroEL/ES and Lon) specifically stabilize different variants of dihydrofolate34

reductase (Bershtein et al., 2013). The allelic resolution of this proteostasis machinery is a striking finding, and35

begs the question of how this machinery might frame higher-order epistasis in traits that are controlled by select36

proteins.37

Here, we quantify the magnitude, sign, and order of epistatic effects acting on three mutations within a gene,38

as influenced by three well-defined proteostasis environments (conferred through the engineering of 3 genotypes39

of bacteria): wild-type, groEL+, and ∆lon. We examine these effects for two related traits that contribute40

to antibiotic resistance (IC50 and protein abundance) (Rodrigues et al., 2016), and decompose the impact of41

proteostasis environment on two classes of potential epistatic interactors: (i) 3 biallelic sites associated with42

drug resistance in an enzyme target of antibiotics (dihydrofolate reductase or DHFR) and and (ii) 3 different43

amino acid backgrounds corresponding to species of bacteria (Escherichia coli, Chlamydia muridarum, and44

Listeria grayi). We find that the sign and magnitude of interactions among SNPs is highly contingent upon45

certain genotypic contexts, and observe that epistasis can work differently (qualitatively and quantitatively)46

across related traits. Importantly, because the biology of the system under study is well understood (e.g. the47

biophysics of variation in DHFR function, the basis through which PQC machinery regulates proteins), we can48

surmise on the mechanism underlying certain epistatic interactions both within and between genes. We discuss49

these findings in light of theory in evolutionary genetics, the study of antibiotic resistance and the challenges50

facing genetic modification technology.51

METHODS AND MATERIALS52

Strains and phenotypes53

Our collection of strains, which are a subset of those originally engineered for the study of the DHFR structure54

and function by Bershtein et al. (2013), include mutants from three species: E. coli, L. grayi, and C. muridarum.55

We measured phenotypic effects of mutations at three sites in the FolA gene enconding DHFR. We encoded the56

allelic state of a strain using binary notation, 000 corresponding to the ancestor (containing no mutations) and57

111 containing all 3 focal mutations, as is common in these types of combinatorial data sets. For simplicity, we58

refer to individual sites by their position and amino acid change in E. coli (even though these can be different in59

the other two species; see below).60

We initially chose IC50, protein abundance and drugless growth rate as traits of interest. IC50, a proxy for the61

ability of an organism to withstand the activity of antibiotics (Trimethoprim in this case), is largely determined62

by several factors, including abundance and drugless growth rate (Rodrigues et al., 2016).63

Construction of the PQC mutants : Genes encoding ATP-dependent protease Lon were deleted using homologous64

recombination enhanced by lambda red, essentially as described (Datsenko and Wanner, 2000). Wild type E.65

coli K12 MG1655 cells were co-transformed with various pFLAG-DHFR mutants and pGro7 plasmid (Takara)66

expressing groES-groEL under pBAD promoter. Chaperone expression was induced by the addition of 0.267

percent arabinose.68

Construction of the DHFR mutants : The combinatorially complete set of mutants were constructed for all69

three species, for the three sites of interest in the FolA gene (E. coli, P21L, A26T, and L28R; C. muridarum,70

P23L, E28T, and L30L; L. grayi, P21L, A26T, and L28R). These mutations were introduced by Quick-Change71
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Site-Directed Mutagenesis Kit (Stratagene) and cloned into the pFLAG expression vector (Sigma-Aldrich). Each72

mutagenized plasmid underwent confirmatory sequencing.73

Measurement of drugless growth rate : Bacterial cultures were grown overnight (37 ◦C) in M9 minimal medium74

were normalized to an OD of 0.1 with fresh medium. When appropriate, GroEL overexpression and/or increase75

in DHFR concentrations were induced by adding arabinose and IPTG immediately after normalization. After76

additional growth during 5-6 hours a new normalization to an OD = 0.1 was performed before inoculation of77

96-well plates (1/5 dilution) containing M9 medium. Growth was quantified by integration of the area under the78

growth curve.79

Measurement of IC50 : As with the drugless growth rate, bacteria were grown across a range of concentrations80

of TMP ranging from (0-2,500 µg/mL), incubated at 37 ◦C. Absorbance measurements at 600 nm were taken81

every 30 min for 15 hours. OD readings vs. time were calculated between 0 and 15 hours. IC50 values were82

determined from the fit of a logistic equation to plots of growth vs. Trimethoprim concentrations. Reported IC5083

are averaged from at least three replicates.84

Measurements of intracellular protein abundance: : DHFR abundance was measured from the total catalytic85

activity of the varying alleles in cellular lysate as described in prior work. With regards to protein abundance:86

how much DHFR is produced by a given cell is the product of many biochemical and biophysical actors.87

DHFR abundance is an important component of drug resistance, because in order to survive the presence of88

Trimethoprim (which disrupts the biosynthesis of a folate, a key metabolite; see Supplementary Information), the89

organism must produce enough DHFR to carry out normal cellular function. Also, because we know that protein90

quality control machinery, like GroEL and Lon protease, can degrade proteins like DHFR (Bershtein et al., 2013;91

Rodrigues et al., 2016), then there is a physiological basis for an expectation that these PQC genetic backgrounds92

would influence protein abundance.93

Statistical analysis94

Our approach, a novel application of regularized regression techniques, allows us to measure higher-order95

epistasis acting across traits and biological scales (both intra- and intergenic). These methods can be used to96

infer statistical interactions at work in experimental and natural data sets. Notably, this regression approach can97

be applied to data sets of varying structure, can easily incorporate experimental noise, and can produce results for98

data sets with missing values (even though the data set in this study is complete). For more discussion on the99

constraints of other methods commonly used to calculate higher-order epistasis in combinatorial data sets, see100

the Supplemental Information.101

Initial exploration: : We set out to infer interactions in three bacterial traits: IC50, DHFR abundance, and bacterial102

growth rate (total experimental N=232, 360, 252, respectively). For each phenotype, we first fit a general linear103

model of the form Y ∼ S+C+H, where Y is the phenotype of interest (IC50, abundance, or growth), S is the104

species fixed factor (with 3 levels), C is the PQC context (wild-type, ∆lon, and GroEL+) and H is a haplotype105

variable (with 8 levels, coding for the possible combinations of mutations P21L, A26T, and L28R). We tested for106

the presence of epistasis by fitting alternative models that include the interaction terms S×C, S×H, C×H and107

S×C×H, and choosing the model of best fit based on the Bayesian information criteria (i.e. BIC; a penalty for108

added regression coefficients proportional to the natural log of the sample size) and a combination of forward and109

reverse model selection as implemented in the R programming language’s stats package (R Core Team, 2018).110

After finding significant interaction effects in these initial models for IC50 and protein abundance, we proceeded111

to carry out further analyses on these two phenotypes.112

Regularized regressions (Elastic Net/LASSO): : We tested for epistasis by fitting regularized regressions, which113

select the set of explanatory variables and estimate their coefficients in a single procedure. Briefly, this is done by114

including penalties proportional to the value of each coefficient (corresponding to each explanatory variable) in115

the regression equation. As with other regression procedures (e.g., least-squares), the objective is to minimize116

this (penalized) equation. In doing so, it finds a balance between small coefficient values and error in the fit of117

the model. If a variable does not affect the phenotype of interest, its coefficient will be zero. We took non-zero118

coefficients as evidence that a particular variable, or interaction term, has a significant effect on the phenotype.119

We fit these models on standardized phenotypic variables, allowing direct comparisons between the coeffi-120

cients estimated from different regressions (i.e., units for regression coefficients are standard deviations). Prior to121
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standardization, we log-transformed Abundance and IC50 values to improve normality. We ran the regression122

procedures using the glmnet package (Friedman et al., 2010) in R, which carries out an Elastic Net regularization.123

Specifically, we used the ’cv.glmnet’ method, which fits models with varying penalty weights (changing the124

λ parameter) and finds the best model by cross-validation (in our case, a leave-one-out approach). To avoid125

over-fitting, we chose the simplest model that is still within one cross-validated standard error of the best fit126

model (that is, using λmin +1s.e.). The Elastic Net method combines linear and quadratic penalties (in α and127

1−α proportions, respectively) to obtain a sparse set of variables. In the Results section, we present regressions128

using α = 1, which yields fewer non-zero coefficients (and we deem more conservative) and is equivalent to129

a LASSO approach (Tibshirani, 1996). Regressions using other values of α had little effect on the qualitative130

patterns (see Data S1 for both data sets: α = 1 and 0.5).131

For each phenotype, we fit models at two scales. First, we ran a full model (Z ∼ S×C×P21L×A26T ×L28R)132

that included 72 terms: the main effects of five variables (species, PQC context, and the mutations P21L, A26T,133

and L28R) and all possible interactions. Second, we ran models within PQC-species context (that is, 9 separate134

models per phenotype), to get a more detailed perspective on how PQC shapes intragenic epistatic interactions.135

Within each PQC-species context, the model fit was w ∼ P21L×A26T ×L28R, where w is the phenotypic value136

normalized within each group (i.e., using mean and variance of each PQC-species set). The estimated coefficients137

for these models are summarized in Table S2).138

Script availability139

All the scripts for these analyses—written in R (R Core Team, 2018) and using methods in the tidyverse140

(Wickham, 2017), glmnet (Friedman et al., 2010), and treemapify (Wilkins, 2018) packages—are available in the141

Supplement.142

RESULTS143

We first set out to construct a coarse picture of the experimental data: whole alleles of DHFR, with SNPs in144

various combination engineered into several background strains, and assayed for three traits relevant to drug145

resistance. Figure 1 shows how the engineered alleles (the 8 combinatorial mutants) perform with respect to146

IC50, protein abundance and drugless growth, across genotypic contexts (species and PQC background). While147

these first two phenotypes show patterns highly consistent with epistatic interactions at several levels, growth148

rate shows no significant variance across genotype contexts (confirmed by GLM models and BIC model choice;149

Figure S1).150

Having identified that epistatic interactions are likely to exist in the IC50 and abundance traits (Figures 1 and151

S1), we employed a set of regularized regressions to ”decompose” the magnitudes, signs and orders of epistatic152

effects operating at the different scales of genetic parcels represented in this data set (SNPs in DHFR associated153

with resistance to Trimethoprim, species-specific amino acid background, and PQC mutations). Effect sizes can154

be found in Tables S1 and S2.155

Decomposition of epistasis for IC50156

The main driver of IC50 is the species-specific amino acid background (Figure 2A). The C. muridarum and157

L. grayi amino acid backgrounds have the largest negative effects in the full LASSO regression for this trait158

(effect sizes -1.44 and -0.9 respectively). Taken alone, these findings suggest that the species background is an159

important factor in determining the IC50 phenotype. Our knowledge of the biology of the system provides us a160

mechanistically informed interpretation: prior studies demonstrate that the DHFR enzyme in C. muridarum is161

inefficient catalytically, and that L. grayi is thermodynamically unstable (Rodrigues et al., 2016). Given that162

catalysis and thermostability are necessary for an enzyme to carry out its function, that the C. muridarum and L.163

grayi amino acid backgrounds have such strong negative effects is unsurprising. We cannot, however, relegate164

the entirety of main effects to species background: the second-largest effect overall is the presence of the L28R165

mutation (effect size = 1.22), demonstrating that main effect actors of various kinds can influence the IC50166

phenotype.167

Even though main effects define the top three independent drivers of IC50, higher-order interactions have168

a larger total effect than main effects on this trait (Figure 2A). Among interactions, the specific patterns are169

mechanistically diverse: some are between species-specific amino acid background and individual SNPs (e.g,170

L. grayi:L28R, effect size = -0.69), others between species-specific background and PQC environments (L.171

grayi:GroEL+, effect size = 0.41). As with the main effects, several of these findings might be explained by our172
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Figure 1 Phenotypic variation of DHFR mutants across proteostasis contexts. Phenotypes depend on protein
quality control context (horizontal axis) and species background (E. coli, green circles; C. muridarum, blue
diamonds; L. grayi, in red squares). DHFR mutations at three amino acid positions are represented in binary
notation (000=wild type, 001= P21L, 010=A26T, 001=L28T, and their respective double and triple mutants).
Points are biological replicates; lines are mean values.

knowledge of the study system. Though there is a basis for the prediction that the amino acid background of L.173

grayi and the GroEL+ phenotype would interact (the GroEL+ phenotype helps to stabilize the relatively unstable174

L. grayi DHFR enzyme), many of the calculated higher-order interactions cannot be so readily explained, and175

might serve as the basis of future inquiry. Several plausible mechanistic interpretations are explored in Table 1.176

Decomposition of epistasis for protein abundance177

As with the IC50, Figure 2B shows that the C. muridarum amino acid background has the strongest main effect178

on protein abundance. This reflects a general pattern of similarity in effects between IC50 and abundance, which179

share their top 3 main effect factors: C. muridarum (effect size = -1.01), L28R (effect size = 0.88), and L. grayi180

(effect size = -0.84). Interactions, however, appear to play a much larger role in determining protein abundance.181

We observe several notable patterns, with third-order interactions displaying the largest overall effect, defined by182

the interaction with the largest single effect (of any) on abundance: L. grayi:A26T:L28R (effect size = 1.59).183

Conspicuously absent from the most important main effects are the PQC backgrounds (GroEL+, ∆lon; effect184

sizes = 0.25 and 0.38, respectively). This suggests that protein quality control machinery is mostly a meaningful185

actor in determining DHFR abundance in the presence of other genetic parcels. Or rather, only certain SNP and186

species background combinations seem to be significantly affected by the presence or absence of certain protein187

quality control variants. Table 2 proposes potential mechanisms that could explain several of these interactions,188

based on knowledge of the study system. As with IC50, these proposed mechanisms are speculative, but could be189

the basis of more detailed inquiry in the future.190
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Figure 2 Widespread presence of higher-order interactions for A)IC50 and B) protein abundance. Distribu-
tion of regression coefficients from a LASSO regression allowing interactions across species, protein quality
control context, and DHFR mutations for two phenotypes of interest. Bars represent the sign and magnitude
of the 20 largest coefficients in the best-fit model. Coefficients are arranged from top to bottom by their mag-
nitude, and their color represents their order (grey for main effects, increasing darkness of red for terms of
order 2 through 5). The treemaps in the bottom right corner of each panel represent the sum of all non-zero
coefficients by order (the area of each box is the total effect of terms of that order).

IC50 vs. abundance: correlation and pleiotropy191

The determinants of IC50 and protein abundance are similar, but there are meaningful and relevant outliers (Figure192

3; R2 = 0.35, GLM p = 10−7). The significant relationship between effect sizes estimated from our full models193

for IC50 and abundance suggests that large-scale patterns of epistasis between these related traits are correlated.194

This correlation is not surprising: it reflects that these traits are connected at a mechanistic level, since bacteria195

need to make the enzyme in order to survive the effects of a drug that antagonizes that enzyme. More interesting196

are, perhaps, the outlier factors: the L. grayi:A26T:L28R interaction has a strong effect on abundance (effect197

size = 1.59) and none on IC50 (effect size = 0). Similarly, the L. grayi:P21L:L28R interaction has a negative198

effect on IC50 (effect size = -0.11) and a solidly positive effect on abundance (effect size = 0.66). Thus, at a199

more detailed level of analysis we observe that individual effects can differ quite substantially, which highlights200

that certain mutation-interactions can tune related phenotypes in different ways (in both magnitude and sign of201
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effect). The differences in inferred effect sizes suggest that higher-order effects on abundance (P21:A26T:L28R,202

L. grayi:P21L:L28R, L. grayi:A26T:L28R) need not translate into downstream effects on IC50. In other words,203

we find in these differences some indication of pleiotropy, where mutations (or, in this case, interactions among204

mutations) display different effects on even functionally-related phenotypes.205
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L.grayi:

A26T:
L28R

L.grayi:
P21L:
L28R
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A26T:
L28R

L.grayi:
A26T

C.muridarum:
P21L

Figure 3 Epistatic effects are correlated between IC50 and protein abundance traits, with several important
higher-order outliers that demonstrate pleiotropic effects. Highlighted are the five terms with largest discrepan-
cies in value between the two phenotypes.

Epistatic effects of SNPs across PQC contexts206

Having conducted analyses aimed at decomposing epistasis across the entire experimental data set (Figures 2207

and 3), we employed more granular methods to observe the phenotypic effects of the individual SNPs (P21L,208

A26T, L28R) in various combination relative to their putative ancestor (genotype 000 in each PQC-species209

group) as a function of PQC background. The coefficients, inferred by fitting nine separate LASSO models210

(one per PQC-species background), show considerable variation across PQC backgrounds and are consistent211

with the notion that PQC background is a direct modulator of epistatic effects. For IC50, note the especially212

strong positive effects of the P21L:A26T (E. coli species background; effect size = 1.85) and the A26T:L28R (L.213

grayi species background; effect size = 1.30) pairwise effects in the GroEL+ PQC context. The different PQC214

backgrounds have markedly different patterns of higher-order epistasis (Figure 4A), with ∆lon having notable215

pairwise interactions across SNP and species amino acid backgrounds.216

For abundance, PQC background remains a powerful driver of epistatic effects, but in a manner much different217

than IC50. In general, epistatic order differed substantially across PQC backgrounds (Figure 4B, bottom panel),218

with several especially notable effects in ∆lon: P21L:A26T and P21:L28R (both in C. muridarum; effect sizes =219

1.03 and 0.98, respectively), and a third-order interaction P21L:A26T:L28R with a strongly negative effect (also220

in C. muridarum; effect size = -1.06).221
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Figure 4 Magnitude, direction and order of epistatic effects between SNPs across PQC-species backgrounds
for A) IC50 and B) DHFR abundance. The estimated effect of single amino acid substitutions (P21L, A26T,
and L28R) and their interactions vary across PQC background, indicating higher-order epistasis. Effect sizes
were estimated using a LASSO regression within PQC-species background (see Methods and Materials).
Dashed lines are drawn for clarity only. The bars at the bottom of each panel summarize the relative contribu-
tion of each order (main effects in grey, pair-wise interactions in light red, third-order in dark red) to the total
of (absolute) coefficients estimated in each model.

DISCUSSION222

In this study, we have attempted to dissect the epistatic interactions (in terms of magnitude, sign, and order)223

operating across SNPs, species-specific amino acid backgrounds, and protein quality control genetic backgrounds224

for two phenotypes related to drug resistance in bacteria. Below we discuss the major findings, organized into225

several subsections. Additional discussion points can be found in the Supplemental Information.226

Higher-order epistasic interactions within and between genes influence two traits related to227

drug resistance228

The results speak to the difficulty in making a priori assumptions about the way that epistasis operates when229

a system contains potential interactions of different kinds (e.g. intragenic and intergenic). If we assume that230

physical distance between mutations correlates with the strength of interactions, we might guess that individual231

SNPs within a gene or local amino acids within the same gene (intragenic epistasis) might interact more232

readily than parcels between loci (intergenic epistasis). This assumption, however, is not supported by our233

results: we observed that higher-order interactions involving multiple SNPs and PQC backgrounds (i.e., intergenic234

interactions) can have important effects on several phenotypes, often as large as intragenic interactions. Discussed235

in light of modern evolutionary genetics, these results add further color to the debates surrounding the challenges236

of deconstructing complex phenotypes from effects of individual SNPs, as is often the goal of genome wide237

association studies. For example, even in circumstances where we are successful in identifying SNPs that are238

significantly over-represented in a population of individuals with a certain phenotype, interactions between239

these SNPs and any number of other genetic parcels (perhaps outside of the gene where the candidate SNPs240

are located) very well may account for most of the variance in the phenotype of interest. That being the case,241

evolutionary geneticists are justified in being cautious in interpreting the importance of main effect SNPs on242

complex phenotypes.243

While epistasis patterns are correlated between related traits, several higher-order effects244

demonstrate pleiotropic behavior245

Just as provocative as the observed capriciousness of epistatic interactions is the manner in which these fac-246

tors influence related traits. Protein abundance affects how a microbe survives the presence of an antibiotic247

(Trimethoprim in this case) through producing enough DHFR to perform the necessary catalytic functions (which248

is reflected in the IC50). Protein abundance has been identified as a component in an quantitative approach249

used to predict the IC50 from various biochemical and biophysical parameters (See Supplemental Information).250

Because of this, we would expect the patterns of epistasis between IC50 and protein abundance (Figure 4) to be251

well correlated. At another level of analysis, however, the nature and magnitude of individual effects are different252
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between these traits: several higher-order effects that meaningfully influence protein abundance (both negatively253

and positively) have almost no effect on IC50. We might summarize these findings another way: strong overall254

correlations between epistatic interactions acting on related traits still allows for meaningful differences in the255

identity and magnitude of individual interactions. When it comes to how certain epistatic interactions manifest,256

related traits might not be so related at all.257

Patterns of epistasis are broadly affected by PQC environments258

We found candidate SNP interactions with large and specific effects on both IC50 and abundance, but most259

differed across PQC backgrounds. Though the results in this study have further demonstrated how widespread260

epistasis can be, we have also identified how there are individual SNPs (or SNP combinations) that influence261

individual traits while having a minor influence on related ones. And so, despite the prevailing idea that262

epistasis undermines a simple answer to questions about how complex phenotypes are constructed, our effort to263

decompose the epistasis in this system has identified SNP/SNP-interactions that could be summarized as being264

reliable signatures for the phenotypes measured in this study. However, these findings supplement recent studies265

that emphasize the importance of recipient genome in understanding and predicting the phenotypic effects of266

transgenic mutations (Vogwill et al., 2016; Wang et al., 2016), as PQC context strongly dictated the consequences267

of these SNPs.268

Environmental influences on higher-order epistasis: Moving towards mechanistic explana-269

tions270

An under-nuanced summary of the results of this study might suggest a nihilistic take on modern genetics in271

light of epistasis, where all roads lead to (hypothetical and sarcastically framed) “epistasis implies that we can272

never fully decouple the heritable components of a complex trait” or “we can never predict the phenotypic273

consequences of a given SNP across different genotypic contexts.” These conclusions might be discouraging,274

especially to those who would prefer that main effects drive the phenotypes of interest (say, in a bio-engineering275

setting). The data presented here, however, are hardly the only results that would produce such disappointment,276

as complex traits without higher-order epistasis at work are quickly becoming the exception. That epistasis277

produces spurious phenotypic effects is an unambiguous theme of the results of this study (reflected most directly278

in Figures 2 and 4), supporting recent studies that affirm the presence of higher-order epistasis across a wide279

breadth of phenotypes, in many organisms.280

Moreover, we argue that such broad summaries of epistasis patterns are unnecessary, as our analysis allows281

us to discuss epistasis at a greater (and more useful) level of detail. We specifically demonstrate how individual282

components of a critical physiological determinant (PQC) environment shape how epistasis manifests in a283

single protein, across phenotypes. Note that, in prior studies, GroEL+ and ∆lon were demonstrated to have284

similar effects on DHFR mutations. In this study, their respective cytoplasmic environments shaped higher-order285

interactions differently (however the magntidude) across different organismal traits. For example, the results286

suggest where to start if we ever wanted to tune the phenotypes in this study in a certain direction. We found that287

the L28R main effect has a positive influence on IC50 in many contexts, and that the A26T:L28R combination288

powerfully influences DHFR abundance in the L. grayi background.289

Lastly, our approach does more than simply resolve how epistatic interactions drive a set of phenotypes.290

These results also offer a small step towards what might be the future of the study of epistasis, where statistical291

methods reveal potential mechanisms or generate testable hypotheses for how parcels of genetic information292

interact in constructing complex phenotypes. This perspective will be necessary if true genetic-modification (as293

driven by CRISPR or other methods) will ever become commonplace. At some point we will need to know what294

to expect when we engineer a given mutation into a given background: how that mutation interacts with other295

parcels (across the genome), how we might finely tune such interactions, or if we should bother trying at all.296
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Table 1 Possible mechanisms underlying the five largest factors affecting IC50.

Effect Category Magnitude Mechanistic interpretation
C. muridarum Species

(main effect)
−1.44 The C. muridarum amino acid background is ther-

modynamically unstable, more prone to proteolytic
degradation and has low catalytic efficiency. Con-
sequently, it has a strong negative effect on the
ability to survive in the presence of drug, across all
other interacting genetic backgrounds.

L28R SNP
(main effect)

1.22 The L28R mutation greatly increases both struc-
tural stability and the drug inhibition constant (Ki),
and consequently, helps DHFR perform its enzy-
matic function in the presence of drug, across geno-
typic contexts.

L. grayi Species
(main effect)

−0.90 The L. grayi amino acid background is very ther-
modynamically unstable and prone to proteolytic
degradation. This is partially compensated for by
reasonably high catalytic efficiency (Kcat/Km), but
still has a net negative effect on IC50.

C. muridarum:
P21L

Species x SNP
(second-order)

−0.82 The C. muridarum amino acid background is inef-
ficient and thermodynamically unstable. The P21L
mutation is, however, slightly stabilizing, which di-
minishes the negative impact of the C. muridarum
amino acid background. The net effect remains
negative however. This result highlights how pow-
erful the C. muridarum amino acid background is,
in that it can “drag down” the positive effects of
certain SNPs.

L. grayi:L28R Species x SNP
(second-order)

−0.69 This highlights the non-linear interaction between
a powerfully positive SNP (L28R) and the strongly
negative main effect L. grayi background. That the
interaction term is negative highlights that even the
stabilizing effects of a positive effect SNP (L28R)
cannot compensate for the negative effects of the
unstable L. grayi amino acid background.
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Table 2 Possible mechanisms underlying the five largest factors affecting DHFR abundance.

Effect Category Magnitude Mechanistic interpretation
L. grayi: A26T:
L28R

Species x SNP x
SNP
(third-order)

1.59 The strongly positive effect of this third order in-
teraction is emblematic of the restorative effects of
A26T:L28R, even on backgrounds typified by low
availability, as in L. grayi (effect size = -0.84).

C. muridarum Species
(main effect)

−1.01 As described in Table 1 (as applied to its effect on
IC50), the C. muridarum amino acid background
has low functional availability and low catalytic
efficiency. These factors contribute to its negative
impact on both IC50 and abundance.

L. grayi:L28R Species x SNP
(second-order)

−1.01 The L28R mutation, in isolation, is associated with
DHFR thermostability, and relatedly, abundance
(effect size = 0.88). The L. grayi background has
a net negative effect on abundance (effect size =
-0.84). Therefore, one might predict that their com-
bination might cancel out towards a nearly-neutral
effect. Instead, this interaction has a net negative
effect on abundance, an example of how some ef-
fects cannot be easily interpreted from knowledge
of the underlying biochemistry of the enzyme.

L28R SNP
(main effect)

0.88 The L28R SNP has a strong positive effect on
DHFR thermostability, which is at least partly cor-
related with protein abundance.

L. grayi: GroEL:
A26T: L28R

Species x PQC x
SNP x SNP
(fourth-order)

0.87 The interaction between the A26T:L28R double
mutant and the L. grayi amino acid background has
a strongly positive effect on abundance (effect size
= 1.59) that is somehow diminished in the presence
of the GroEL+ PQC background. This is peculiar
when we consider the positive GroEL+ main effect
(effect size = 0.25). This implies that the positive
effect (in terms of magnitude and direction) of the
GroEL+ PQC background is specific to the SNP
and amino acid combinations present in DHFR,
a finding for which there is no simple, intuitive
explanation.
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SUPPLEMENTAL INFORMATION401

Summary402

Below find additional treatments of sub-topics which may be relevant to material offered in main text. These403

include a supplemental discussion, methods and results. They also include supplemental figures and tables.404

Study limitations405

As with any study making a general claim about an important problem (epistasis in this case), there is the406

ubiquitous potential critique about the possibility that these results “do not generalize.” We remind the authors407

of such criticism that the study system focused on traits related to antibiotic resistance, a phenotype with408

biomedical implications. That being the case, even if the methods and results were only relevant to the problem of409

antibacterial resistance to antifolate compounds (and did not generalize further), we would consider the findings410

to be relevant for several scientific and biomedical communities. We are, however, confident that the methods411

and results are reflective of phenomena present in complex traits across the biosphere.412

Further notes on motivations for epistatic decomposition413

Several studies that measure epistasis utilize data sets where multiple mutations are constructed in all possible414

combinations, often in the guise of a graph called a fitness (or adaptive) landscape (Greene and Crona, 2014;415

Ferretti et al., 2016; Ogbunugafor et al., 2016; Sailer and Harms, 2017; Weinreich et al., 2018). For data sets416

where variation at sites of interest is biallelic, these combinatorial sets are composed of 2L mutations, where L417

is the number of different loci being examined. The mutations that compose the combinatorial set might have418

originated from experimental evolution (Chou et al., 2014; Toprak et al., 2012) or from field surveys (Projecto-419

Garcia et al., 2013; Domyan et al., 2014; Natarajan et al., 2018). Regardless of their source, several methods420

have been introduced to detect the presence of higher-order interactions between mutations in combinatorial data421

sets. One notable method involves the Fourier-Walsh transformation to generate terms corresponding to epistatic422

interactions between biallelic sites in a fitness graph (Weinreich et al., 2013; Poelwijk et al., 2016; Weinreich423

et al., 2018). The benefits of this approach include the transparency and relative ease of the calculation: given a424

complete fitness graph, one can get a good estimation of how much higher-order epistasis is operating. These425

methods, while effective, are defined by several constraints: the phenotype values in the graph used to calculate426

these epistatic terms do not effectively incorporate experimental noise into their calculations. In addition, these427

methods are mathematically confined to combinatorial sets of SNPs that are biallelic. Lastly, these methods do428

not apply to data sets where there are missing values, a characteristic of many experimental and natural data429

sets. Even more modern methods of measuring genetic interactions based on the fitness rank-order of alleles can430

estimate epistasis in partial data sets (Crona et al., 2017). These methods have, to the best of our knowledge, so431

far been applied to fitness graphs composed of biallelic loci.432

As discussed in the Methods and Materials section, the epistatic decomposition methods utilized in this433

study have no such constraints, as they incorporate experimental noise, do not require biallelic loci, and434

can accommodate missing data. The relaxing of the biallelic loci constraint is especially important for this435

study: while the individual SNP loci in the data set can be characterized as biallelic (P21L, A26T, L28R), the436

species context (Escherichia coli, Chlamydia muridarum, and Listeria grayi) and protein quality control genetic437

background (wild-type, groEL+, and ∆lon) are each composed of three variants per locus.438

0.1 Notes on the choice of traits for study: drugless growth, IC50, and intracellular abundance439

The biology underlying how the measured traits (drugless growth, IC50, intracellular abundance) relate to drug440

resistance is well-studied and reasonably intuitive. Drugless growth rate is synonymous to fitness of an organism.441

In order to be resistant to Trimethoprim, a given microbe must demonstrate some baseline ability to grow. In this442

system, we expect drugless growth to be lower and less variant across genotypic contexts, indicative of a trait443

with relatively little higher-order epistasis. This expectation comes from our knowledge of the biology of the444

system: plasmids were used to express the DHFR mutants in the background bacterial strain in order to measure445

abundance, IC50 and drugless growth. In almost all strains, the simple presence of the plasmid was burdensome446

to the background strain, almost independent of which species of DHFR was being expressed, or what the PQC447

genetic background was. Consequently, the drugless growth trait provides something analogous to a negative448

control, a trait that should be relatively bereft of higher-order epistasis, as all bacterial strains carrying plasmid449

had a similar low growth rate.450
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Notes on the biochemistry and biophysics of the study system451

Prior studies have established that the deleterious effect of destabilizing DHFR mutations can be alleviated by the452

action of the protein quality control(PQC) machinery (Bershtein et al., 2013). Specifically, GroEL/ES chaperonins453

and Lon proteases were shown to be major modulators of the total intracellular DHFR abundance, acting upon454

partially unfolded protein intermediates to either promote folding or proteolytic degradation, respectively. The455

impact of PQC background on fitness is particularly relevant in cases where drug-resistance DHFR mutations are456

associated with stability trade-offs (Rodrigues et al., 2016) and in scenarios of horizontal gene transfer (Bershtein457

et al., 2015).458

Though the IC50 values utilized in this study are laboratory derived, prior studies have identified relationships
between IC50 and biochemical and biophysical parameters. Rodrigues et al. Rodrigues et al. (2016) described
such an analytical expression:

IC50 =
1
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kn
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kn
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γANS

Kn
i −

1
α

Kn
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We do not use the above equation in this study, and consequently, are providing it in the supplemental infor-459

mation only to highlight that a mathematical relationship has been proposed that links these traits analytically.460

Mechanistically, we can most simplistically summarize their relationship this way: in order for a population461

of bacteria to grow in the presence of trimethoprim (which IC50 is a presumptive measure of), they must be462

functional cells that can growth without drug and must produce enough DHFR (the target of Trimethoprim) such463

that the normal metabolic functions of DHFR are performed. If only small amounts of DHFR are produced, then464

we can expect low amounts of drug to sufficiently limit growth (low IC50).465

Regarding antifolates and the evolution of resistance466

The study focused on dihydrofolate reductase, an essential enzyme and target of antibiotics. Though the focus of467

the study was more general (about resolving epistastic effects across genotypic contexts), the specific biological468

problem of antifolate resistance did warrant a more detailed examination, which we provide here. Antifolates469

are used clinically as treatments for a wide range of diseases, ranging from bacteria, to protozoal diseases and470

as anticancer agents (Bershtein et al., 2015; Schnell et al., 2004; Kompis et al., 2005; Liu et al., 2013). These471

compounds interfere with one of two steps in the de novo biosynthetic pathway of tetrahydrofolate (THF),472

essential for the production of purines and of several amino acids. The genetic basis for antifolate resistance473

evolution in bacteria lies in a small number of missense mutations in several genes, one of which is dihydrofolate474

reductase (DHFR). Previous studies had identified that three mutations (A26T, P21L, L28R) that are often found475

in present various combinations and have an effect on trimethoprim resistance (an antifolate) in E. coli (Toprak476

et al., 2012).477

Regarding the implications of the results for the study of antibiotic resistance478

We should very briefly highlight the results in light of their implications for the study of drug resistance. As479

previously described, the study system was bacterial DHFRs, the protein target of antifolate drugs. While we480

might call these drugs “antifolates,” we should be very clear about how genotypic contexts influence the evolution481

of drug resistance. Consequently, for future efforts at “resistance management,” we should be clear about what482

contextual details influence the phenotypic consequences of resistance-associated SNPs before we fully conclude483

how a given set of SNPs drives resistance evolution in nature. Direct questions about what these data say about484

the evolution of drug resistance are the object of current inquiry from individuals involved in this study.485

Supplemental Table 1. Epistastic decomposition: Regression effect sizes by order for IC50, protein abun-486

dance, and drugless growth, for α = 0.5 and 1.0.487

Supplemental Table 2. Transgenic SNP analyses. These are the data displayed in Figure S2, that demonstrate488

the phenotypic effects of individual SNP and SNP-combinations.489

Supplemental Table 3. Biophysical properties of the mutants as measured in prior studies (Rodrigues et al.,490

2016). We supply them here because they are the basis for speculations on the mechanisms underlying some of491

the epistatic interactions measures in this study (as discussed in Tables 1 and 2).492

Supplemental data and code. Data and scripts used in this study can be found at the following location:493

https://github.com/guerreror/dhfr494

15/16

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2018. ; https://doi.org/10.1101/470971doi: bioRxiv preprint 

https://doi.org/10.1101/470971
http://creativecommons.org/licenses/by-nc-nd/4.0/


proteostasis shapes higher-order epistasis

0

5

10

Drugless Growth Abundance IC50

C
ou

nt

Order
1

2

3

Figure S1. Based on the Bayesian inference criteria (BIC), drugless growth rate has no higher-order interac-
tions, and very few significant main effect drivers. This is in stark contrast to the IC50 and abundance pheno-
types, both which of contain several higher-order interactions.
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